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Chapter

Queries Processing in Wireless
Sensor Network
Kamel Abbassi and Tahar Ezzedine

Abstract

For the super-excellence applications used to control the water level in rivers,
temperature handles a very large volume of information and does not stop con-
stantly changing. These spatio-temporal data collected by a network of sensors form
a set of thematic, integrated, non-volatile and historical data organized to help
decision-making. Usually this process is performed with temporal, spatial and spa-
tiotemporal queries. This in turn increases the execution time of the query load. In
the literatures, several techniques have been identified such as materialized views
(MV), indexes, fragmentation, scheduling, and buffer management. These tech-
niques do not consider the update of the request load and the modification at the
database level. In this chapter, we propose an optimal dynamic selection solution
based on indexes and VMs. the solution is optimal when it meets the entire work-
load with a reasonable response time. The proposed approach supports modification
at the database level and at the workload level to ensure the validity of the optimal
solution for this the knapsack algorithm was used.

Keywords: wireless sensor network, workload, optimized structure, NP-complete
problem, knapsack, materialized view, index, multiple selection problem,
monitoring

1. Introduction

A sensor network used to record physical conditions of the environment such as
temperature, rainfall, pollution, humidity, wind, etc. These data are sent to a data-
base server which will be processed later.

All this data collected by the sensors will be recorded in a database which is in
turn queried by client applications, such as the supervisor, the security agent, or a
third-party application.

This database will be queried by complex queries which require resources.
To decrease the response time, it is necessary to use optimization techniques

such as materialized views (MV), indexes, fragmentation, and the caching system.
All these techniques are proven in the case of relational databases.

A view is a virtual table representing the result of a query on the basis. As the name
suggests and unlike a standard view, in a materialized view the data is duplicated.

The index placed on a table will provide quick access to records, depending on
the value of one or more fields. In addition, allows to simplify and accelerate the
operations of search, sorting, joining or aggregation.

In this work, an approach proposed for the multiple selection of indexes and
materialized views with the knapsack algorithm. The work presents an
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improvement of another approach based on the greedy algorithm. The rest of this
work is organized like this: The first section deals with optimization techniques; the
problem of multiple selection of indexes and materialized views will be presented in
the second section. The contribution to the dynamic workload will be mentioned in
Section 4. In Section 5, a discussion of our approach for the case where the database
is dynamic will be described. Finally, a discussion on the experiment and the
contribution will be discussed.

2. Optimization techniques

The use of optimization techniques is based on two approaches. The first is the
sequential use of techniques such as indexes and fragmentations which have
depleted physical structure, but the second is the simultaneous use of techniques
which have similar physical structure such as materialized views and indexes.

In [1], authors proposed three approaches which are MVFirst, INDFirst and
Joint enumeration. But the major drawback of this approach is the sequential and
isolating use of these techniques, which does not make it possible to benefit from
the advantage of the interactivity between these optimization structures.

The authors say that this last alternative is the best [2]. Bellatrech et al. [3]
improve part of the multiple selection problem with storage space management.

The authors use two spies to manage the space shared between two structures,
index and VM. If the optimal configuration needs more indexes, then the spy
associated with the index will take up space from the VM spy and vice versa.

In [4] use the drop algorithm for the selection simulation of indexes and MV.
These works only deal with the case where the load of requests is static and does

not change over time. In [5], authors proposed an approach to dynamically select
materialized views. The approach is based on the PRQ predictor to predict the next
request and materialize its corresponding views using the conditional probability.
This approach uses a cost model based on cloud costs. This work shows a tremen-
dous improvement in terms of cost, execution time, and processing, but the authors
only used one optimization framework which is view materialized. Another
dynamic approach called Dynamat refreshes the configuration of materialized
views if their size exceeds the space allocated for it [6]. Several criteria are used, for
example, delete rarely used views. A hybrid approach jointly exploits a static set of
persistent views used by multiple request and maintenance sequences, and another
dynamic set of aggregated and smaller sizes accessible and replaceable on the fly
[7]. However, these approaches focus only on the refresh performance of material-
ized views and not on query workload. In addition, do not use other optimization
structures. Karkad et al. [8] applied the buffer management and scheduling tech-
nique to three optimization structures (index, materialized views, and fragmenta-
tion). This approach requires caching, planning, and is not dynamic.

In our approach, the simultaneity between materialized and indexed views used
to benefit from the interaction between these structures. In addition, a mathemat-
ical modulization of the problem has been proposed based on the backpack algo-
rithm which proves their performance compared to the greedy algorithm used by
N. Maiz et al. [5].

3. Materialized view and index selection problem

Simultaneous selection of indexes and materialized views is an NP-Hard type
problem which gives several optimal solutions [9].
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The Knapsack problem, also noted KP, is an optimization problem. Presents a
situation which cannot support more than a certain weight, with all or part of a
given set N ∈O of objects O ¼ o1, o2 … … :onf g each having a weight weight oið Þ and a
value profit oið Þ. Items put in the backpack must maximize the total value and not
exceed the maximum weight S The problem is formalized as follows:

X

oi

weight oið Þ< S (1)

∀N ∈O,
X

oi ∈N

profit oið Þ<
X

oi ∈ S

profit oið Þ (2)

On the other hand, the problem of selecting indexes and materialized views
(PSIMV) consists in finding a set of indexes and materialized views constituting the
final configuration to optimize the workload requests. This optimization can be in
run time and storage space. The Workload requests, index and MV are presented as
follows:

Q ¼ q1, q2, … qm
� �

(3)

I ¼ i1, i2, … inf g (4)

V ¼ v1, v2, … vkf g (5)

Q presented the Workload queries. This set composed by m queries. I is the set
of n indexes and V presented the k materialized views.

S is the size allowed by the administrator to store indexes and MV. Then it is
necessary to find a configuration without violating the following constraints:

• Minimize the cost of Workload, i.e.

C Q,ConfigIV
� �

¼Min CIV Qð Þð Þ (6)

• The size of the configuration ConfigIV does not exceed S

X

i∈ConfigIV

size ivð Þ≤ S (7)

The problem of selecting indexes and materialized views is adopted by the
genetic algorithm. The starting population is the set of candidate indexes and MVs.
The objective function to optimize is the cost of the workload. The next section
shows the analogy between the problem of selecting indexes and materialized views
and the knapsack algorithm.

3.1 Selection problem with index and MV vs. knapsack algorithm

In this work, we present the correspondence between the problem of the knap-
sack and that of the multiple selection of indexes and materialized views (Table 1).

3.2 Cost model

Typically, the number of indexes and candidate VMs is greater since the input
load is significant. The creation of all these indexes and MVs is not possible due to
the constraint on the allocated storage space. To solve the problem, we use a cost
model which allows us to keep only the most advantageous indexes and MVs. This
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model estimates the space in bytes occupied by indexes and VMs, the data access
costs and the maintenance cost in terms of number of inputs and outputs.

Indexes and MVs are the objects in this optimization system. Cost of an object
is the sum of storage size, access data cost both these indexes and MVs and
maintenance cost.

Costoi ¼ Sizeoi þ Cost_Accessoi þ Cost_Matoi (8)

The benefit provided by an Oiobject is the difference the cost of the Workload
before adding the object Cost_Load_Before Oið Þ and after the addition of this object
Cost_Load_After Oið Þ. the following equation calculates the profit:

Profit Oið Þ ¼ Cost_Load_Before Oið Þ � Cost_Load_After Oið Þ (9)

To add this object to the configuration list, we followed this equation

Profit Oið Þ ¼
>0, AddOitoConfig

≤0, donothing

�

(10)

If Profit Oið Þ>0, There is a benefit, so add the object Oi to the configuration, else
not add Oi to the configuration.

This query system can be static or dynamic. When the Workload and the data
stored in the database are invariable in this case, it is a static system which will be
discussed in Section 4. On other hand, if the Workload and the database are
modifiable, then it is a dynamic system which will be discussed in Section 5.

4. Statistic workload

A request load is the set of requests that have arrived and are waiting for their
turn to be executed. This section will discuss the case where the database does not
change, and the requests have arrived successively in random order. Bellatrach et al.
[3] proposed a static approach that does not support the changing of Workload.
Authors apply the greedy algorithm which does not necessarily provide an optimal
solution. In [6], authors show that dynamic programming and more optimal than
the Greedy algorithm.

The Knapsack algorithm is an example of dynamic algorithms used for
optimization problems. In the proposed approach, Artificial Intelligence uses this
algorithm only in the learning phase and afterwards a model will be created to
predict the final solution and avoid the execution of this algorithm on each new
request.

Knapsack problem Problem with selecting indexes and materialized views

Objects The total set of Indexes and materialized views

Weight The point shows the size of each object and the required execution time.

Profit This is the profile to be won if these objects are used. Shows the gain in

execution time and storage

Size The number of bits needed to store the objects that form the optimal solution

Object set The final configuration of indexes and materialized views

Table 1.
Selection of indexes and materialized vs. knapsack.
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An optimal configuration is the set of materialized views and indexes which
extend to the workload in a reasonable time with the minimum of resources.

The following algorithm takes as input the list of indexes and Materialized views
to create an optimal configuration on condition that this configuration extends to
the entire load of requests and does not exceed the authorized storage size.

Algorithm 1. Static approach.

Input: Index I, MV
Output: Config
Initialization: Config! {Ø}, Sizemax = 0, Profitmax = 0
Start

1. O=I ∪ MV
2. S=Space authorized by administrator
3. for (Oi ∈ O \{Config} et Sizemax < S) then
4. if Profit (Oi) > Profitmax then
5. Profitmax Profit (Oi)
6. Config Config {Oi}
7. Sizemax Sizemax + Size (Oi)
8. End if
9. End for

End

S is the size of the disk space allocated to store MVs and indexes, it is fixed by
administrator.

Objective function Profit () calculates for each index or MV. It is the difference
in cost between the workload run time with or without this object (Index or MV). If
this object improves the system, it will be added to the entire configuration. At the
end of this algorithm, the final configuration is made up of a set of indexes and MVs
which represent the optimal solution. This technique considers the similarity
between the two optimization structures index and MV.

These iterations will be repeated until there is no improvement in the Profit ()
function, or until all indexes and VMs have been selected, or until the limit storage
space is exceeded.

Changes at the database level or in the workload require a new configuration to
revert to the new Workload. Then you must rebuild new indexes and VMs. This
operation is very time consuming.

In Dynamat [8] the authors have removed the least used VMs to free space for
new creations. In this approach the authors limit themselves to use only the MV
optimization structure.

To solve this inconsistency problem, the authors find three strategies. The first
one is that all views are updated regularly at each time interval [10]. The second one
is that all views are updated at the end of each transaction [11] and the last strategy
is that the changes are propagated in a delayed manner. I.e. a VM is updated only
when it is used by a request.

Our approach combines the two structures (Index and Materialized views) to
benefit from the structural affinity between these two optimization techniques.

In a real-time survival system, query processing is important. To ensure optimal
validation of the solution after the change in workload and database, two artificial
intelligence techniques are used.

The arrival of requests is random and varied depending on the context and in
this case. On the other hand, the database can be modified during the execution of
the queries. In this part we will study the two cases.
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We used artificial intelligence to create materialized views for the dynamic
processing of the workload and to make requests as visible as possible. With auto-
matic learning, we proposed an algorithm that allows to search for the logical link
between the query load and the optimal configuration, then and after the learning
phase will predict the final solution (Minimum configuration).

We started with a remodeling phase. Each request is presented by a factor which
presents the list of attributes used. on the other side a matrix which presents all the
possible solutions which are prepared in advance.

The Workload Q is formed by n queries, i.e., Q ¼ Q1, …Qnf g. A query is
composed by j attributes, where ϵ a1, … akf g, and each query has the following

form: Q i ¼ aij

n o

, ∀i : 1::n, j : 1::k. The activation function used in this work is

presented as follows:

f a j

� �

¼
1 ∗ a j if a j used in Q

0 ∗ a j else

(

(11)

The workload can be presented in form of matrix as follow:

MatA ¼

a11 ∗ f a1ð Þ ⋯ a1k ∗ f akð Þ

⋮ ⋱ ⋮

an1 ∗ f a1ð Þ ⋯ ank ∗ f akð Þ

0

B

B

@

1

C

C

A

(12)

A final solution is a set of structures such as Index and MV that guarantees the
response to the entire query load with minimal cost. Based on, N attributes, we can

find 2N � 1 views and the final solution has a view between 1 and 2N � 1.

FS f ¼ v f
e

� �

,where e∈ 1::2N � 1
� �

, f ¼ 1::22
N�1 � 1

� �

(13)

In order to verify if this materialized view ve is included in the solution FS f or
not, the function h veð Þ having the following form should be used

h veð Þ ¼
1, ve if ve used in FS

0, ve else

(

(14)

The maximum number of final solutions is 2N � 1
� �2N�1

, where N is the number
of attributes in database tables.

The final solutions are presented as follows

FS ¼

v11 ∗ h v1ð Þ ⋯ v
2N�1ð Þ

2N�1

2N�1
∗ h v2N�1ð Þ

⋮ ⋱ ⋮

vn1 ∗ h v1ð Þ ⋯ v
2N�1ð Þ

2N�1

2N�1
∗ h v2N�1ð Þ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(15)

The references of the final solutions are stored in a vector VS with the following
form

VS ¼ S f

� �

,where f ¼ 1::22
N�1 � 1

� �

(16)
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Figure 1 shows the three layers of our modeling and the steps to create candidate
solutions. First step is the extraction of the attributes used in all the tables of the
database a1, ::, anf g, then create a vector containing all the possible materialized
views, i.e. the possible combinations with the attributes v1, ::, v2n�1f g. A material-
ized view contains at least one attribute and at most all attributes. The number of
VMs is 2n � 1:

Then the candidate solutions, which presents all the possible combinations of the

VMs. The maximum number of solutions is 22
n�1 � 1.

To apply the automatic learning, To apply machine learning, you have to start
with the learning phase, this phase the algorithm will build a logical link between
the attributes and the final solutions. The duration of this phase is set by the
administrator (Figure 2).

The algorithm is composed of two phases: The first phase is used for training.
However, the second is used to predict materialized views.

Figure 3 shows the architecture of our approach. The system administrator sets
the period for learning the model. If this phase is in progress, each time a new
request arrives the system will use the knapsack algorithm to find the right config-
uration and at the same time prepare the neural network model. At the end of the
learning phase the system will use this module provided in the first phase to predict
a new optimal configuration for each arrival query.

The final FS solution is the optimal configuration that extends to the workload
with a reasonable execution time. With this approach, a logic established between
the requests and the final solutions to avoid recalculating each time.

Figure 1.
Final solutions tree.

Figure 2.
Machine learning to create optimal solutions.

7

Queries Processing in Wireless Sensor Network
DOI: http://dx.doi.org/10.5772/intechopen.94749



In this experiment uses a workload containing 5 queries numbered from 1 to 5
and a database of 4 attribute differences that make 15 materialized views and 32,768
final solutions (Table 2).

Between 09:21 am and 9:47 am the requests arrive randomly. At the start the
Workload contains only the query Q5 and for this workload the final solution is
4523 on the other hand the predicted final solution is 25,531 which is our predicted
solution is different from the real solution.

To test the approach, an implementation of the algorithm was carried out with
Python 3 on a laptop computer equipped with a Windows 10 operating system, 64
bits and 8 GB of RAM. The experimental results are discussed in the following figure.

First, each query is executed with the greedy algorithm to see the final solution
as shown by the blue dots in Figure 4. In the second step our algorithm will be
compared with the first to see if possible, to predict the final solution (orange
curve) without wasting the time to recalculate the configuration each time a request
arrives.

Figure 3.
Switching between the training phase and the prediction phase.

Time Query Workload Index of final solution Index of predicted final solution

09:21:00 Q5 Q5 4523 25,531

09:22:00 Q4 Q5Q4 2660 18,747

09:23:00 Q3 Q5Q4Q3 29,366 21,896

09:24:00 Q4 Q5Q4Q3 16,468 24,525

09:25:00 Q5 Q5Q4Q3 29,845 5103

09:26:00 Q2 Q5Q4Q3Q2 3280 23,163

… … … … …

09:42:00 Q4 Q5Q4Q3Q2Q1 23,181 23,181

09:43:00 Q4 Q5Q4Q3Q2Q1 20,649 20,649

09:44:00 Q1 Q5Q4Q3Q2Q1 8366 8366

09:45:00 Q5 Q5Q4Q3Q2Q1 21,667 21,667

09:46:00 Q2 Q5Q4Q3Q2Q1 4942 4942

09:47:00 Q4 Q5Q4Q3Q2Q1 11,120 11,120

Table 2.
Dataset final solution.
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This figure clearly shows that after a learning phase, the algorithm manages to
predict the final solution and consequently a great gain in the execution time and
the resources used.

5. Dynamic database

This section discusses the case where the database is dynamic, during the exe-
cution of the queries, an update on the data is in progress. Updating all optimization
structures is very expensive, so it is a good idea to update only the affected optimi-
zation structures.

For this, two binary tables are proposed and stored in the database (Table 3).
The Matrix IT[i, t] stores the link between the indexes and the tables of the data-
base. If index number 3 is used by table number 5, then IT[3, 5] = 1 otherwise equal
to 0. Likewise, for the Matrix VT[v, t] which presents the materialized views linked
to the tables. For example, if the materialized view number 5 (MV5) is linked with
Table 4 then VT[5,4] = 1 otherwise equal to 0.

To understand, here is the following example: either Table T1 used by the
indexes I1, I2, I4 and MVs V2, V4. Table T3 used by indexes I2, I4 and MVs V1, V4,
so each time the database is updated, it is wise to modify only the structure
concerned (index or MV). Each time the database tables are updated, a trigger
searches for the index or Materialize view affected by this change. More details
below (Figure 5).

The trigger is an integrated solution in all DBMS. It is a program that launches a
series of tasks with each change in the database. It identifies the objects to be
modified in the configuration. At each update operation (insertion, update, or

Figure 4.
Final solution vs. predicted final solution.

T1 T1 T3 T4 T5 T6

I1 1 0 0 1 1 0

I2 1 0 1 1 0 1

I3 0 1 0 1 1 1

I4 1 0 1 0 1 1

I5 0 1 0 1 0 1

Table 3.
Matrix IT.
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deletion) the trigger does the same operation on the object concerned (Index or
MV). For example, if a new row is inserted in the Table Ti, the trigger inserts the
same row in the index and the VM linked by the table Ti. After each iteration, if the
size of the configuration exceeds S or if the solution has become non-optimal,
Algorithm 1 must be restarted.

This architecture guarantees that all the indexes and MVs form the optimal
configuration even after updating the Workload.

Algorithm 2. Dynamic database.

Input: Index I, MV,Tables, Workload
Output: Config
Initialization: task!{Ø}, lock=false
Start

10. While (true) do
11. task trigger()
12. lock false
13. if(task) then
14. lock true
15. {I, MV} get_structure (Tables)
16. Update(Config(I,MV))

Figure 5.
Algorithm of the dynamic approach.

T1 T1 T3 T4 T5 T6

v1 0 0 1 0 1 0

v2 1 1 0 1 0 1

v3 0 0 0 0 0 0

v4 1 0 1 1 1 0

v5 0 0 0 1 0 1

Table 4.
Matrix VT.
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17. lock false
18. End if
19. if(! lock) then
20. Execute (Workload)
21. End if
22. End for

End

Algorithm 2 is still running, the trigger () function returns the list of tables
infected by update if not returns null. Variable lock initialized to false to prevent the
execution of the workload pending the configuration update. If there are updates,
the lock variable takes true and get_structure() function searches the structures
infected with this modification. This function uses two matrices IT and VT. Then
Update() function modifies the configuration to support the new updates in the
tables. And at the end of this operation, the variable lock will be released to execute
the Workload.

6. Conclusions

In this work, a similarity between the problem of selecting indexes and materi-
alized views with the Knapsack algorithm was proposed. The contributions are: The
first level, the use of the backpack algorithm to present this problem as well as a
mathematical modeling, then the use of machine learning to reduce the execution
time of the workload. For this, two tables were used to ensure that the optimal
configuration remains reliable even after updating the database. To validate this
approach, an algorithm developed in python.
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