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Chapter

Chaotic Systems with Hyperbolic
Sine Nonlinearity
Jizhao Liu, Yide Ma, Jing Lian and Xinguo Zhang

Abstract

In recent years, exploring and investigating chaotic systems with hyperbolic sine
nonlinearity has gained the interest of many researchers. With two back-to-back
diodes to approximate the hyperbolic sine nonlinearity, these chaotic systems can
achieve simplicity of the electrical circuit without any multiplier or sub-circuits. In
this chapter, the genesis of chaotic systems with hyperbolic sine nonlinearity is
introduced, followed by the general method of generating nth-order (n > 3) chaotic
systems. Then some derived chaotic systems/torus-chaotic system with hyperbolic
sine nonlinearity is discussed. Finally, the applications such as random number
generator algorithm, spread spectrum communication and image encryption
schemes are introduced. The contribution of this chapter is that it systematically
summarizes the design methods, the dynamic behavior and typical engineering
applications of chaotic systems with hyperbolic sine nonlinearity, which may widen
the current knowledge of chaos theory and engineering applications based on
chaotic systems.

Keywords: chaotic systems, torus chaos, hyperbolic sine nonlinearity,
spread spectrum communication, image encryption

1. Introduction

Since Lorenz discovered chaos in a third-order ordinary differential
equations, a new field of science has been launched [1]. The fact that simple
equations can exhibit incredible complex behavior continues enthrall engineers to
apply chaotic systems to cryptosystem, secure communication, spread spectrum
communication, etc. [2].

There is no doubt that nonlinear term is very important to design chaotic
systems, which has peculiar complex properties such as ergodicity, highly initial
value sensitivity, non-periodicity and long-term unpredictability. According to the
literature, the nonlinearities can be piecewise nonlinear function [3], trigonometric
function [4], absolute value function [5], or power function [6]. With different
nonlinearities, the chaotic system can have various strange attractors as single-scroll
[7], double-scroll [8], multi-scroll [9], etc. The majority of such chaotic systems are
known for many years, and some chaotic systems with hidden attractors are derived
from them [10–12].

In recent years, chaotic systems with hyperbolic sine nonlinearities have gained
the interest of many researchers. With two back-to-back diodes to approximate the
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hyperbolic sine nonlinearity, these chaotic systems can achieve simplicity of the
electrical circuit without any multiplier or sub-circuits. Compared to single-scroll
chaotic systems, the chaotic system with hyperbolic sine nonlinearity has richer
dynamic behavior because it is symmetrical and can exhibit symmetry breaking,
and offers the possibility that attractors will split or merge as some bifurcation
parameter is changed [13].

In this chapter, we will systematically summarize the design method, the
dynamic behavior and typical engineering applications of chaotic systems with
hyperbolic sine nonlinearity. The genesis and general method of generating nth-
order (n > 3) chaotic systems with hyperbolic sine nonlinearity are introduced in
Section II. Some derived chaotic systems/torus-chaotic system with hyperbolic sine
nonlinearity is discussed in Section III. The application such as random number
generator algorithm, spread spectrum communication and image encryption
schemes are introduced in Section IV. Conclusions are finally drawn in Section V.

2. General chaotic systems with hyperbolic sine nonlinearity

2.1 The genesis of chaotic systems with hyperbolic sine nonlinearity

In 2011, Sprott and Munmuangsaen proposed an exponential chaotic system
[14], which happens to be an example of the simplest chaotic system [15]. In the
same year, Sprott used common resistors, capacitors, operational amplifiers, and a
diode to successfully implement this system in a circuit [16]. Few years later, the
simplest hyperbolic sine chaotic system is proposed [17]. Compared to the expo-
nential chaotic system, the hyperbolic sine chaotic system changed the nonlinearity
from exponential function (asymmetric function) to hyperbolic sine function
(symmetric function), which can exhibit symmetry breaking, and offers the
possibility that attractors will split or merge as some bifurcation parameter is
changed [18].

The simplest chaotic system with a hyperbolic sine is described as follows:

x⃛þ c€x þ xþ ρ ∗ sinh φ _xð Þ ¼ 0 (1)

Figure 1.
The corresponding circuit schematic diagram of Eq. (1).
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Where c is considered as the bifurcation parameter, sinh φ _xð Þ ¼ eφ _x�e�φ _x

2 ,

ρ ¼ 1:2 ∗ 10�6 and φ ¼ 1
0:026, which have been chosen to facilitate circuit implemen-

tation using diodes. The corresponding circuit schematic diagram of Eq. (1) is
shown as Figure 1.

When c ¼ 0:75, the Eq. (1) can exhibit chaotic behavior, which is shown as
Figure 2.

2.2 The general equations of generating chaotic systems with hyperbolic sine
nonlinearity

It is obvious that Eq. (1) can be written in the form with jerk equations:

_x1 ¼ x2

_x2 ¼ x3

_x3 ¼ �cx3 � f x2ð Þ � x1

8

>

<

>

:

(2)

where f x2ð Þ ¼ ρ ∗ sinh φx2ð Þ. Therefore, the higher order chaotic systems with
hyperbolic sine nonlinearity can be generated by adding jerk cabins, which is
described by:

_x1 ¼ x2 � x1

_x2 ¼ x3 � x2

⋯

_xn�3 ¼ xn�2 � xn�3

_xn�2 ¼ xn�1

_xn�1 ¼ xn

_xn ¼ �cxn � f xn�1ð Þ � nxn�2 � nxn�3 �⋯�
1

2n
x1
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(3)

where _xk�1 ¼ xk � xk�1 is the jerk cabin. With Eq. (3), we can construct
nth-order (n > 3) chaotic systems with hyperbolic sine nonlinearity.

When n = 4, the equations of fourth-order chaotic systems will be:

Figure 2.
Numerical and actual circuit state space plot in x� €x plane.
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_x1 ¼ x2 � x1

_x2 ¼ x3

_x3 ¼ x4

_x4 ¼ �x4 � f x3ð Þ � 5x2 � 0:125x1

8

>

>

>

>

>

<

>

>

>

>

>

:

(4)

Figure 3.
The corresponding circuit schematic diagram of Eq. (4).

Figure 4.
Numerical and actual circuit state space plot in x2 � x3 plane and x3 � x4 plane.
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The corresponding circuit schematic diagram of Eq. (4) is shown as Figure 3.
Its numerical and actual circuit state space plot is shown as Figure 4.
When n = 5, the equations of fifth-order chaotic systems will be:

Figure 5.
The corresponding circuit schematic diagram of Eq. (5).

Figure 6.
Numerical and actual circuit state space plot in x1 � x5 plane and x2 � x3 plane.
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_x1 ¼ x2 � x1

_x2 ¼ x3 � x2

_x3 ¼ x4

_x4 ¼ x5

_x5 ¼ �x5 � f x4ð Þ � 5x3 � 5x2 � 0:1x1

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(5)

The corresponding circuit schematic diagram of Eq. (5) is shown as Figure 5.
Its numerical and actual circuit state space plot is shown as Figure 6.

3. Derived chaotic systems/torus-chaotic system with hyperbolic sine
nonlinearity

3.1 Multi-nonlinearities hyperbolic sine chaotic system

One way to construct the derived chaotic systems is to add more nonlinear terms
of the equations. For example, the new chaotic system can be constructed by
Eq. (4), which is described as follows:

_x1 ¼ x2 � ρsinh φx1ð Þ

_x2 ¼ x3 � 0:3x2 � ρsinh φx2ð Þ

_x3 ¼ x4

_x4 ¼ �0:25x4 � ρsinh φx3ð Þ � 0:5x2 � 4x1

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(6)

Where ρ ¼ 1:2 ∗ 10�6, φ ¼ 1
0:026 . These equations can exhibit chaotic behavior as

shown in Figure 7.

Figure 7.
Numerical phase space plot of Eq. (6).
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3.2 Simple chaotic system with hyperbolic sine nonlinearity

The other way to construct the derived chaotic systems is to simplify the known
chaotic systems. For example, if we remove the parameter ρ and φ, search the
parameter space, we will have the following chaotic system:

_x1 ¼ 6x2 � x1

_x2 ¼ x3

_x3 ¼ x4

_x4 ¼ �x4 � sinh x3ð Þ � x1

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(7)

When initial conditions are set to be x1, x2, x3, x4ð Þ ¼ 0:7, 0:9, 1:0, 1:3ð Þ,
or x1, x2, x3, x4ð Þ ¼ �0:7,�0:9,�1:0,�1:3ð Þ, the system exhibits period
behavior. When the initial conditions are set to be x1, x2, x3, x4ð Þ ¼ 7, 9, 10, 13ð Þ
and x1, x2, x3, x4ð Þ ¼ �7,�9,�10,�13ð Þ, the system exhibits chaotic behavior.
Therefore, this system has four coexistence attractors [19], as shown in Figure 8.

3.3 Torus-chaotic system with hyperbolic sine nonlinearity

By introducing a nonlinear feedback controller to system Eq. (5), the following
system is obtained:

_x1 ¼ x2 � ρ sinh φx3ð Þ

_x2 ¼ x3 � x2

_x3 ¼ x4

_x4 ¼ x5

_x5 ¼ �cx5 � ρ sinh φx4ð Þ � 5x3 � 5x2 � 0:1x1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(8)

When c = 1, the Lyapunov exponents are λ1, λ2, λ3, λ4, λ5ð Þ ¼ 0:47, 0, 0,�1:10,�1:37ð Þ,
which suggests Eq. (8) is exhibiting torus-chaos behavior [20].

When c = 1.55 and the initial conditions are set to be x1, x2, x3, x4, x5ð Þ ¼
�0:1,�0:1,�0:1,�0:1,�0:1ð Þ and x1, x2, x3, x4, x5ð Þ ¼ 0:1, 0:1, 0:1, 0:1, 0:1ð Þ, the
system has two coexisting attractors as shown in Figure 9.

Figure 10 shows the Lyapunov exponent spectrum, Kaplan–Yorke dimension
spectrum and bifurcations of Eq. (8) as the coefficient c is varied over the range
c ∈ [0.3, 2]. Those figures suggest there is an interesting route leading to chaos [21].

1.When c ∈ [0.3, 0.4639], there exists a period-doubling behavior along with _x2
and _x3 subspace. However, the system shows torus behavior along with _x2 and
_x3 subspace. It is like saddle point: the system is stable in one direction but
unstable in the other direction.

2.When c ∈ [0.4640, 0.5574], the system exhibits two-torus-chaos behavior
except for some 2-torus windows. When the parameter passed c = 0.4639
to c = 0.4640, two-torus-chaos is born by replacing the 2-torus behavior.
The Lyapunov exponents at these two critical values are λ1, λ2, λ3, λ4, λ5ð Þ ¼
0, 0,�0:01,�0:57,�0:88ð Þ for c = 0.4639 and λ1, λ2, λ3, λ4, λ5ð Þ ¼
0:02, 0, 0,�0:60,�0:88ð Þ for c = 0.4640. This may cause by the
period-doubling route along with _x2 and _x3 subspace.
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Figure 9.
Coexistence attractors of Eq. (8).

Figure 8.
Coexistence attractors of Eq. (7).
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3.When c ∈ [0.5575, 0.5901], the system exhibits 2-torus behavior.

4.When c ∈ [0.5902, 1.5575], the system exhibits 2-torus-chaos behavior except
for 2-torus windows. The route leading to chaos is same to point 3.

5.When c ∈ [1.5575, 2] the system exhibits 2-torus behavior, except for some
3-torus windows like c = 1.6157.

Figure 10.
LEs spectrum, Kaplan–Yorke dimension spectrum and bifurcations of Eq. (8) as the coefficient c is varied over
the range c ∈ [0.3, 2].
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4. Engineering applications with chaotic systems with hyperbolic sine
nonlinearity

4.1 Random number generator

Sensitivity to initial conditions is one of the most important property of chaotic
systems. Therefore, chaotic systems are very suitable for the cryptography purpose.
But before that, it should be noticed that the probability density distributions
(PDD) of chaotic systems are not uniform distribution. Figure 11(a) and 11(b) are
the waveform and PDD of x4 of Eq. (4). It shows that PDD of the output sequences
has physical characteristic. The cryptosystem with these sequences cannot resist
side channel attack.

To remove physical characteristic, one can use the following de-correlation
operation:

Sout ¼ Sin ∗ 10
6 � floor Sin ∗ 10

6
� �

(9)

In fact, Eq. (9) can be applied in all chaotic/torus-chaotic/hyperchaotic systems.
The output sequences can pass fifteen random tests of NIST 800-22, as shown as in
Table 1, which indicated the proposed method can provide high security Level. This
proposed method can be used as a part of some cyber security systems such as the
verification code, secure QR code and some secure communication protocols.

Figure 11.
Waveform and PDD before and after de-correlation operation of x4 of Eq. (4): (a) is the waveform of x4 before
de-correlation operation; (b) is the PDD of x4 before de-correlation operation; (c) is the waveform of x4 after
de-correlation operation; (b) is the PDD of x4 after de-correlation operation.
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4.2 Image encryption

Image encryption is another widely used engineering application of chaotic
system. In this section, we will use Eq. (7) for image encryption purpose.

A flowchart of the encryption scheme is shown in Figure 12.
The detailed encryption process includes the following steps.
Input: Plain image; Initial conditions for the chaotic system; Control parameters

of the chaotic system.
Output: Ciphered image.
Step 1: Calculate the average pixel value of the plain image and generate the

pseudorandom sequence.
Step 2: Transform the pseudorandom sequence and change pixel value of the

image via XOR.
Step 3: Sort the pseudorandom sequence for permutation.
Step 4: Shift the pixel positions by column using the sorted elements.
Step 5: Shift the pixel positions by row using the sorted elements.
To provide a better understanding of this scheme, the pseudocode is provided in

Table 2.

Test P-value Result

Frequency 0.841481 Success

Block frequency 0.900704 Success

Runs 0.744455 Success

Longest run 0.172897 Success

Rank 0.368065 Success

FFT 0.762020 Success

Non-overlapping template 0.813121 Success

Overlapping template 0.532736 Success

Universal 0.856573 Success

Linear complexity 0.408679 Success

Serial 0.967366 Success

Approximate entropy 0.433157 Success

Cumulative sums 0.688582 Success

Random excursions 0.075229 Success

Random excursions variant 0.102049 Success

Table 1.
Pseudo-random properties of x3 of Eq. (8) after de-correlation operation.

Figure 12.
A flowchart of the encryption scheme.
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The decryption process of the proposed algorithm is the reverse process of the
encryption algorithm. A flowchart of the decryption process is shown in Figure 13.

The detailed decryption process includes the following steps.
Input: Plain image; Initial conditions for the chaotic system; Control parameter

of the chaotic system; Average pixel value of the plain image
Output: Decrypted image
Step 1: Generate the pseudorandom sequence via the initial conditions and the

average pixel values of the plain image
Step 2: Sort the pseudorandom sequence for row and column recovery.

Input: Plain image Org_Img, Initial conditions for the chaotic system, Control parameter for the chaotic

system,

Output: Ciphered Image En_Img

[m,n] size(Org_Img);

Avg_pixel_value mean2(Org_Img)*10^(-5) % mean2 is a function that

returns the

% average value of a matrix

x(1) x(1) + Avg_pixel_value

y(1) y(1)

z(1) z(1)

u(1) u(1)

s(1) u(1)*10^4 – floor(u(1)*10^4)

For i=1:1:m*n % Generate pseudorandom sequence that will

% be used for diffusion and permutation

[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))

x(i+1) x(i) +dx

y(i+1) y(i) +dy

z(i+1) z(i) +dz

u(i+1) u(i) +du

s(i+1) u(i+1)*10^4 – floor(u(i+1)*10^4)

End

Count=1 % Count flag

For i=1:m % Diffusion Operation

For j=i:n

diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR

En_Dif(i,j)=bitxor(Org_Img(i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;

End

End

S_index Sort(s)

For i=1:n % Column-wise permutation

For j=1:m

En_per_col (i,j) Sort (En_Dif, S_index)

End

End

For i=1:m % Row-wise permutation

For j=1:n

En_Img (i,j) Sort (En_per_col, S_index)

End

End

Table 2.
Image encryption scheme.
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Figure 13.
A flowchart of the decryption scheme.

Input: Ciphered image En_Img, Initial conditions for the chaotic system, control parameter for the

chaotic system, Avg_pixel_value of Org_Img

Output: Plain Image Org_Img

[m,n] size(En_Img);

x(1) x(1) + Avg_pixel_value

y(1) y(1)

z(1) z(1)

u(1) u(1)

s(1) u(1)*10^4 – floor(u(1)*10^4)

For i=1:1:m*n % Generate a pseudorandom sequence that will

% be used for decryption

[dx, dy, dz, du] Runge-Kutta (x(i), y(i), z(i), u(i))

x(i+1) x(i) +dx

y(i+1) y(i) +dy

z(i+1) z(i) +dz

u(i+1) u(i) +du

s(i+1) u(i+1)*10^4 – floor(u(i+1)*10^4)

End

S_index Sort(s)

For i=1:m % Row-wise permutation recovery

For j=1:n

De_per_row (i,j) Sort (En_Img, S_index)

End

End

For i=1:n % Column-wise permutation recovery

For j=1:m

De_per_col (i,j) Sort (De_per_row, S_index)

End

End

Count=1 % Count flag

For i=1:m % Diffusion recovery

For j=i:n

diff(Count) mod (s(Count)*10^14, 256) % transform s, which could be used for XOR

Org_Img (i,j)=bitxor(De_per_col (i,j), diff (Count)); % Bitwise exclusive OR

Count= Count+1;

End

End

Table 3.
Image decryption scheme.
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Step 3: Shift the pixel positions by row
Step 4: Shift the pixel positions by column
Step 5: Transform the pseudorandom sequence and recover the pixel values of

the image via XOR
To provide a better understanding of this scheme, the pseudo-code is provided

in Table 3
The testing results of encryption and decryption are shown in Figure 14.
In this system, all the initial conditions and control parameters can be considered

as secret keys. Because the basin of attraction of each initial condition is greater than
1, it could have more than 1015∗4 =1060 choices via a resolution of 10�15, in terms of
a numeric calculation. Moreover, if a range of control parameters are considered for
the key space, the key space of this system would far exceed 1090. Such a large key
space provides sufficient security against brute-force attacks.

Figure 14.
The testing results of encryption and decryption: (a) is the plain image of cameraman; (b) is the encrypted
image of cameraman; (c) is the decrypted image of cameraman; (d) is the plain image of breast CT image;
(e) is the encrypted image of breast CT image; (f) is the decrypted image of breast CT image; (g) is the plain
image of thorax CT image; (h) is the encrypted image of thorax CT image; (i) is the decrypted image of thorax
CT image.
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Correlation coefficients of adjacent pixels in the plain and encrypted image are
shown in Table 4.

The NPCR and UACI score of CT image are 99.5804% and 33.3227%.
From the above security analysis, the proposed scheme can provide high

security for cryptographic applications.

4.3. Spread spectrum communication

Chaotic systems can also use for spread spectrum communication propose. Dif-
ferent chaos shift keying (DCSK) technology employs nonperiodic and wideband
chaotic signals as carriers so as to achieve the effect of spectrum spreading in the
process of digital modulation. Figure 15 shows the scheme of modulation for DCSK.

In this scheme, every bit has two time slots. The first time slot is used for
transmission of a chaotic sequence for the reference signal. The second time slot is
used for transmission of another chaotic sequence for the reference signal which has
the same length as the first time slot. If the information bit is +1, then the informa-
tion signal is exactly the same as the reference signal. If the information signal bit is
�1, then the information signal is the negative of the reference signal. For bits bk,
the signal at time k is:

si ¼
xi 2kβ< i≤ 2kþ 1ð Þβ

bkxi�β 2kþ 1ð Þβ< i≤ 2 kþ 1ð Þβ

�

(10)

Where β is the number of sampling points. The spreading factor (SF) in the
DCSK system is SF ¼ 2β .

Figure name Direction Plain-image Ciphered image

Cameraman Image Horizontal 0.983146 0.001731

Cameraman Image Vertical 0.990025 0.004141

Cameraman Image Diagonal 0.973249 0.000324

Breast CT image Horizontal 0.978292 0.002500

Breast CT image Vertical 0.955481 0.006207

Breast CT image Diagonal 0.940737 0.003071

Thorax CT image Horizontal 0.994585 0.001267

Thorax CT image Vertical 0.994761 0.001267

Thorax CT image Diagonal 0.991973 0.001558

Table 4.
Correlation coefficients of adjacent pixels in the plain and encrypted image.

Figure 15.
Scheme of DCSK modulation.
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For demodulation as shown in Figure 16, the receiver calculates the correlation
between the received signal ri and the signal ri�β, which is ri delayed by β . After a
time k, the output of the correlator is:

Zk ¼
X

i¼ 2kþ1ð Þβþ1

2 kþ1ð Þβ

riri�β (11)

Thus, the information bit bk can be restored by the sign of the decision variable:

b̂k ¼ sgn Zk½ � (12)

The obtained BER performance under additive white Gaussian noise (AWGN)
channels for spreading factor 2β ¼ 200 is shown in Figure 17. From the comparison
results, DCSK can have a lower BER when using this system as a carrier signal in the
presence of noise.

5. Conclusions

In this chapter, we first described a third order chaotic system with hyperbolic
sine nonlinearity, then we introduced the method to expend this chaotic system to
high order chaotic systems. After that, we introduced the method to construct the
derived chaotic torus-chaotic systems. Finally, we introduced some applications
such as random number generator algorithm, spread spectrum communication and
image encryption schemes. The contribution of this chapter is that it systematically
summarizes the design method, the dynamic behavior and typical engineering
application of chaotic systems with hyperbolic sine nonlinearity, which may widen
the current knowledge of chaos theory and engineering applications based on cha-
otic systems.

Figure 16.
Scheme of the DCSK demodulation.

Figure 17.
Comparison of the bit error rate for a Chebyshev sequence and the hyperbolic sine system with DCSK.
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