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Chapter

Chaos and Complexity Dynamics
of Evolutionary Systems
Lal Mohan Saha

Abstract

Chaotic phenomena and presence of complexity in various nonlinear dynamical
systems extensively discussed in the context of recent researches. Discrete as well as
continuous dynamical systems both considered here. Visualization of regularity and
chaotic motion presented through bifurcation diagrams by varying a parameter of
the system while keeping other parameters constant. In the processes, some perfect
indicator of regularity and chaos discussed with appropriate examples. Measure of
chaos in terms of Lyapunov exponents and that of complexity as increase in topo-
logical entropies discussed. The methodology to calculate these explained in details
with exciting examples. Regular and chaotic attractors emerging during the study
are drawn and analyzed. Correlation dimension, which provides the dimensionality
of a chaotic attractor discussed in detail and calculated for different systems. Results
obtained presented through graphics and in tabular form. Two techniques of chaos
control, pulsive feedback control and asymptotic stability analysis, discussed and
applied to control chaotic motion for certain cases. Finally, a brief discussion held
for the concluded investigation.

Keywords: chaos, Lyapunov exponents, chaos indicator, bifurcation,
topological entropy, correlation dimension

1. Introduction

Henri Poincaré, (1892–1908), [1], was first to acknowledge the possible exis-
tence of chaos in nonlinear systems while studying a 3-body problem comprising
Sun, Moon and Earth. He noticed the dynamics of the system turned to be sensitive
towards initial conditions, which was later termed as chaos. His results based on
theoretical analysis and he could not demonstrate it because computers were not
available at that time. Lorenz, a weather scientist, demonstrated existence of chaos
by using a computer in 1963, [2], and in this way supported chaos theory of
Poincaré. Thus, Lorenz provided the foundation of chaos theory and inspired a
fundamental reappraisal of systems of nonlinearity in many disciplines of science,
engineering, biological and medical sciences, atmospheric science, economics,
social sciences and where not? In our everyday life, chaos happened frequently in
various form like cyclone, tsunami, tornado, epidemics/pandemics etc. Spread of
any uncontrollable form of disease in medical science is nothing but a chaotic and
contagious nature of disease. Systematic studies in various areas resulting in
numerous articles on chaos and nonlinear dynamics appeared in many well-reputed
scientific journals, [3–19].
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Most biological systems exhibit enormous diversity and structurally
multicomponent resulting in ecological imbalance and disorder/disharmony in
environment. Inspired by articles of Lotka, Volterra, and Allee, numerous articles
appeared with diversity in assumptions depending of species and their living envi-
ronmental conditions in predator-prey models, [20–44].

Real systems are mostly nonlinear and many of them are with multicomponent
structure. Their individual elements possess individual properties. Such systems are
termed as the complex system.

During evolution, a complex system exhibits chaos in some parameter space but
also some other phenomena called complexity. This complexity is due to the inter-
action among multiple agents within the system displayed in the form of coexis-
tence of multiple attractors, bistability, intermittency, cascading effects, exhibit of
hysteresis properties etc. Thus, complexity can viewed as its systematic nonlinear
properties and it is due to the interaction among multiple agents within the system.
Foundation work and elaborate descriptions on complexity can viewed from some
pioneer articles on complexity in nonlinear dynamics presented in [45–51]. Study
of complexity means to know the results that emerging from a collection of
interacting parts.

A dynamical system be chaotic then it must be (i) sensitive to initial
conditions, (ii) topologically mixing and (iii) its periodic orbits must be dense.
In chaotic systems, there exists a strange attractor, a chaotic set, which has fractal
structure. Complex systems are also sensitive to their initial conditions and two
complex systems that are initially very close together in terms of their various
elements and dimensions can end up in distinctly different places. Wide
discussions on complex system may found in some pioneer literatures,
[14, 18, 45, 46, 48, 50, 51].

Chaos measured by Lyapunov exponents, (also called Lyapunov characteristic
components or LCEs); LCE > 0 indicates existence of chaos and LCE < 0 indicates
regularity, [52–62]. A complex system can better understood by measuring (i)
chaos, (ii) Topological entropies and (iii) correlation dimension. Topological
entropy, a non-negative number, provides a perfect way to measure complexity of a
system. More topological entropy in any system signifies more complexity in it.
Actually, it measures the evolution of distinguishable orbits over time, thereby
providing an idea of how complex the orbit structure of a system is, [48–50, 61–69].
A system may be chaotic with zero topological entropy. In addition, a significant
increase in topological entropy does not justify that it is chaotic. The book by
Nagashima and Baba, [62], gives a very clear definition of topological entropy.
The correlation dimension provides the dimensionality of the chaotic attractor.
Correlation dimensions are non-integers and this is one reasons besides self-
similarity that chaotic sets have fractal structure, [60, 68–73].

It emerges from a good number of recent researches that chaos appearing in
dynamical system be controlled and suggested number techniques to control chaos,
[74–88]. These techniques have some limitations depending on the models and
nature of nonlinearity.

Objective of this article is to investigate the emergence of chaos and complexity
in nonlinear dynamical systems through examples of nonlinear models.
Numerical simulations carried out for bifurcation analysis, plotting of LCEs
and topological entropies for different systems. Numerical calculations extended
to obtain correlation dimensions for certain chaotic attractors emerging in
different systems. The study further extended to explain different types of
chaos controlling technique. Studies confined to one, two and three-dimensional
systems only.
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2. Dynamic models with chaos and complexity

2.1 One dimensional discrete models

2.1.1 Dynamics of laser map

A highly simplified type discrete nonlinear model for laser system, arising from
Laser Physics, described in articles, [12, 50, 89–91]. The model describes evolution
of certain Fabry-Perot cavity containing a saturable absorber and driven by an
external laser represented by

xnþ1 ¼ Q �
A xn

1þ xn2
, ∀∈R, n∈N (1)

Here Q is the normalized input field and A is a parameter depends on the
specifics of the parameters and A > 0. The fixed points of the map are the real root
of equation

x3 � Qx2 þ 1þ Að Þx�Q ¼ 0 (2)

This equation has either three real roots or one real and a pair of complex
conjugate roots depending on parameter space A,Qð Þ. Stability occur in the form of
stability and bistability, [89].

Fixed Points and Bifurcations:
ForQ fixed,Q ¼ 2:76, andA<4:3793, only one stable steady state solution exits and

stable two cycle starts whenA exceeds this value. Thus, approximately,A ¼ 4:3793, is
the bifurcation point. At valueA ¼ 4:3, the stable steady state solution is x* = 0.720533.

Keeping Q ¼ 2:76 and varying parameter A, bifurcation diagrams are drawn,
Figure 1, for four different ranges of values of A. Similarly, keeping A fixed,

Figure 1.
Bifurcation diagrams of map (1) for four cases: when Q = 2.76 and parameter A varies.
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A ¼ 5:4 and varying Q in four different ranges, bifurcation diagrams are drawn,
Figure 2. One observe clearly the appearance of periodic windows within chaotic
region of bifurcations as an indication of intermittency and other complex phe-
nomena. Periodic windows become gradually shorter and appearance become more
frequent while moving forward in parameter space.

Both time series plots shown in Figure 3 are for chaotic evolution of system (1)
and correspond to parameters (a) A,Qð Þ = (5.3, 2.76), due to which an unstable
fixed point obtained as x� ¼ 0:58531, and parameters (b) ) A,Qð Þ = (5.4, 2.9), due
to which an unstable fixed point obtained as x� ¼ 0:572218. For both cases, initial
point taken is x0 ¼ 0:5 which lies nearby these points and so, also, unstable.

Calculations of Lyapunov Exponents, (LCEs):
Lyapunov exponents, LCEs, for map (1), calculated for four cases, Figure 4,

positive LCEs appearing above zero line clearly indicate chaotic motion and those
below this line indicate regular motion.

Figure 2.
Bifurcation diagrams of map (1) for four cases: when A = 5.4 and parameter Q varies.

Figure 3.
Chaotic time series plots with initial value x0 = 0.5: (a) A = 5.3, Q = 2.76 and (b) A = 5.4, Q = 2.9.
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Topological Entropies:
Numerical calculations further proceeded to calculate topological entropies for

system (1) and shown in Figure 5; where figures of upper row obtained by varying
parameter A while keeping parameter Q = 2.76 and those of lower row obtained by
varying parameter Q while keeping parameter A = 5.4.

Figure 4.
Plots of LCEs: (a) for the upper row Q = 2.76, 4.0 ≤ A ≤ 5.5 and 5.0 ≤ A ≤ 7.0; (b) for the lower row A = 5.4,
0.5 ≤ Q ≤ 3.5 and 1.4 ≤ Q ≤ 1.8.

Figure 5.
Topological entropy plots: (a) for upper row Q = 2.76 and 4.0 ≤ A ≤ 5.5& 4.7 ≤ A ≤ 5.3; (b) for lower row A
= 5.4 and 0.4 ≤ Q ≤ 2.5 & 1.4 ≤ Q ≤ 1.9.
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Correlation Dimension:
Extending further the numerical study, correlation dimensions of system (1)

calculated for a chaotic attractor by using Mathematica codes, [73].
Consider an orbit O x1ð Þ = x1, x2, x3, x4 … …f g, of a map f : U ! U, where Us an

open bounded set in Rn. To compute correlation dimension of O x1ð Þ, for a given
positive real number r, we form the correlation integral,

C rð Þ ¼ lim
n!∞

1

n nþ 1ð Þ

X

n

i 6¼j

H r� ∥xi � xj∥
� �

(3)

Where,

H xð Þ ¼
0, x<0

1, x≥0

�

is the unit-step function, (Heaviside function). The summation indicates num-
ber of pairs of vectors closer to rwhen1≤ i, j≤n and i 6¼ j. C rð Þmeasures the density
of pair of distinct vectors xi and xj that are closer to r.

The correlation dimension Dc of O x1ð Þ is then defined as

Dc ¼ lim
r!0

logC rð Þ

log r
(4)

To obtain Dc, logC rð Þ is plotted against log r, Figure 6, and then we find a
straight line fitted to this curve. The intercept of this straight line on y-axis provides
the value of the correlation dimension DC. Correlation dimensions of time series
attractors, Figure 3, obtained as:

a. For first attractor, Q = 2.76, A = 5.3, a plot of the correlation integral curve is
shown in Figure 6. Then, the linear fit of the correlation data used in this
figure obtained as

y ¼ 0:95661xþ 0:687605

Figure 6.
Plot of correlation integral curve for A = 5.3, Q = 2.76 and x0 = 0.5.
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The y-intercept of this straight line is 0:687605. Therefore the correlation
dimension of the attractor in this case is DC ¼ 0:69 .

b. In a similar way, correlation dimension for second attractor of Figure 3,
A = 5.4 and Q = 2.9, as Dc ¼ 0:56. Plots of correlation dimensions against
parameters A, Q shown in Figure 7.

2.1.2 Dynamics of biological red cells model

The population of red blood cells in a healthy human being oscillates within a
certain tolerance interval in normal circumstances. But, sometimes, in presence of a
disease such as anemia, this behavior fluctuate dramatically. A discrete model of
blood cell populations, Martelli, ([73], p: 35), presented here.

Let xn, xnþ1 representing quantities of cells per unit volume (in millions) at time
n and nþ 1, respectively and pn, dn are, respectively, the number of cells produced
and destroyed during the nth generation then

xnþ1 ¼ xn þ pn � dn (5)

Then, assuming that

dn ¼ a xn, a∈ 0, 1½ �

pn ¼ b xnð Þre�sxn ,

where b, r, s all positive parameters. With these our one-dimensional discrete
model for blood cells populations comes as

xnþ1 ¼ 1� að Þ xn þ b xnð Þre�s xn (6)

The case a ¼ 1 , means that during the time interval under consideration all cells
that were alive at time n are destroyed. In such a case, above models simply comes as

xnþ1 ¼ b xnð Þre�s xn (7)

For a ¼ 0:8, b ¼ 10 , r ¼ 6 and s ¼ 2:5 , three fixed points x ∗
0 ¼ 0, x ∗

1 ¼
0:989813, x ∗

2 ¼ 3:53665 obtained for system (6) of which only x ∗
0 ¼ 0 is stable

and other two are unstable. Chaotic motion observed for values of parameter a ¼
0:8, b ¼ 10, r ¼ 6, s ¼ 2:5, as shown in the time series plot, Figure 8, with initial
condition x0 ¼ 1:5.

Figure 7.
Plots of correlation dimensions: (a) with Q = 2.76 and varying A, (b) with A = 5.4 and varying Q.
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Interesting bifurcations observed for this map: For b = 1.1 � 106, r = 8, two
bifurcation diagrams are drawn; (a) in one for s =16 and 0≤ a≤ 1, and (b) in
another for a ¼ 0:8 and 3:5≤ s≤ 16:0 and shown in Figure 9. In former case one
finds initially period doubling bifurcation followed by loops before emergence of
chaos. In later case, one finds some typical type of bifurcation showing chaos
adding, folding and the bistability like phenomena. A magnification of right figure,
Figure 10, for smaller range, 4:5≤ s≤ 8:5, justifying chaos adding behavior.

Regular and chaotic motion experienced through bifurcation diagrams,
Figures 9 and 10, again confirmed by plots of Lyapunov exponents, Figure 11. This
system, bears enough complexity and, as its measure, plot of topological entropies,
Figure 12, obtained for values r ¼ 6, s ¼ 16 and b = 1.1 � 106 and 0≤ a≤ 1.
Fluctuations in increase of topological entropies appear, approximately, in the
region 0:25≤ a≤0:95 indicate existence of complexity.

The correlation dimension of its chaotic attractor for values a ¼ 0:78, when
r ¼ 6, s ¼ 16 and b = 1.1 � 106 is obtained as Dc ffi 0:253.

2.2 Two-dimensional models

2.2.1 Two-Gene Andrecut-Kauffman System

Chaos and complexity study of a discrete two-dimensional map for two-gene
system, proposed by Andrecut and Kaufmann, investigated recently, [35, 71, 92].
The map used to investigate the dynamics of two-gene system for chemical

Figure 8.
Chaotic time series plot of map (6) for a = 0.8, b = 10, r = 6, s = 2.5 and x0 ¼ 1:5.

Figure 9.
Bifurcation plots of Blood Cell model for ¼ 8 , b = 1.1 � 106 then for (a) s= 16 and 0 ≤ a ≤ 1 and for
(b) a = 0.1 and 3:5≤ s≤ 16:
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Figure 10.
Bifurcation of Blood Cell model when 3:0≤ s≤ 7:5 and a ¼ 0:8, r ¼ 8, b = 1.1 � 106.

Figure 11.
LCE Plots for ¼ 6 , s ¼ 16 and b = 1.1 � 106 , negative and positive values of LCEs, respectively, below and
above the zero line show the regular and chaotic zones of parameter space.

Figure 12.
Topological entropy plot for r ¼ 6, s ¼ 16 and b = 1.1 � 106 and 0≤ a≤1.
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reactions corresponding to gene expression and regulation. The discrete dynamic
variables xn and yn describe the evolutions of the concentration levels of transcrip-
tion factor proteins. The map represented by following pair of difference equations:

xnþ1 ¼
a

1þ 1� bð Þ xtn þ b ytn
þ c xn

ynþ1 ¼
a

1þ 1� bð Þ ytn þ b xtn
þ dyn (8)

With parameter values a ¼ 25, b ¼ 0:1, c ¼ d ¼ 0:18 and t ¼ 3, one obtains four
different fixed points with coordinates (2.30409, 2.30409), (�2.52688, 2.44162),
(2.44162, �2.52866), (�2.39464, �2.39464 ) and all are unstable.

For c 6¼ d and when a ¼ 25, b ¼ 0:1, c ¼ 0:18, d ¼ 0:42, and t ¼ 3, again, four
unstable fixed points exists as (2.2832, 2.5413), (�2.5458, 2.6566), (2.4613,
�2.7288), (�2.3744, �2.61705).Therefore, for all these the cases, orbit with initial
point taken nearby any of the fixed points be unstable and may be chaotic also.

We intend to investigate certain dynamic behavior of system (8) for cases when
c ¼ d and when c 6¼ d of evolutions showing irregularities due to presence of chaos
and complexity.

Numerical Simulations:
Drawing bifurcation diagrams and calculating Lyapunov exponents, topological

entropy and correlation dimensions of the system for different cases have
investigated performing numerical simulations. For values of the control
parameters following ranges proposed: a∈ 0, 50½ � , c∈ �0:4, 0:4½ �, b ¼ 0:1,
d ¼ 0:5, t ¼ 3, 4, 5.

Case 1: Taking c ¼ d, bifurcation diagrams are drawn along the directions x and y,
by varying c for cases t = 3, 4, 5 and certain fixed values of other parameters as shown
in Figure 13. Then, plots of attractors have been obtained for parameters a ¼ 25, b ¼
0:1, t ¼ 3 and (i) for regular case c ¼ d ¼ 0:32 and (ii) for chaotic case c ¼ d ¼ 0:18
and shown in Figure 14. In each case when t = 3, 4, 5, bifurcations show period
doubling leading to chaos and then to regularity. Also, bistability and folding nature
of phenomena are appearing here.

Lyapunov Exponents & Topological Entropies:
For chaotic evolution, when a ¼ 25, b ¼ 0:1, t ¼ 3, c ¼ d ¼ 0:18, Lyapunov expo-

nents are obtained shown in Figure 15. Numerical investigations further proceeded
for calculation of topological entropies. In Figure 16, plots of topological entropies are
presented for t = 3, 4, 5 and for different ranges of parameter c: Analysis of these
plots, gives an impression that for the case t = 3, system shows enough complexity in
the range 0.05 ≤ c ≤ 0.23. For the case t = 4, the system shows high complexity in the
range 0 ≤ c ≤ 0.22 and in case t = 5, high complexity appears in 0 ≤ c ≤ 0.44.

Case II:When c and d are different, bifurcation diagrams, Figure 17, shows clear
picture of complex nature of the system.

In Figure 18, plots of Lyapunov exponents, (LCE’s), for chaotic evolution for
different cases discussed above are shown in the upper row and plots of topological
entropies are shown in the lower row for these cases. For all the plots, parameters
a = 25 and b = 0.1 are common. Here, topological entropy plots are drawn for
different ranges of parameter c.

When parameters c and d both were allowed to vary, one gets 3D plots for
topological entropies as shown here in Figure 19.

Correlation dimensions:
Being one of the characteristic invariants of nonlinear system dynamics, the

correlation dimension provides measure of dimensionality for the underlying attrac-
tor of the system. A statistical method used to determine correlation dimension. It is
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an efficient and practical method in comparison to others, like box counting etc. The
procedure to obtain correlation dimension follows from steps of calculations in [73]:

For case t = 3 and a = 25, b = 0.1, c = 0.28, d = 0.12, correlation integral data
calculated and its plot is obtained, Figure 20. The linear fit of correlation integral
data obtained as

Y ¼ 0:0581323x� 0:580866

The y-intercept of this straight line is 0.580866. Therefore the correlation
dimension of the attractor in this case is, approximately, Dc = 0.581.

Computation of correlation dimension carried out for more cases for different
set of values of parameters as shown in Table 1.

2.2.2 Complexities in micro-economic Behrens Feichtinger model

Investigation on microeconomic chaotic disturbances and certain measure to
control chaos appeared in some recent articles, [72, 93–95], extended here for

Figure 13.
Three cases of bifurcation scenarios of map (8) for parameters c ¼ d: (a) t= 3, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤
0.5; (b) t = 4, a ¼ 35, b ¼ 0:1 and 0 ≤ c ≤ 0.65; (c) t = 5, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤ 0.5.
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complexity analysis. The problem proposed as an micro economic model of two
firms X and Y competing on the same market of goods having asymmetric
strategies. The sales xn and yn of both firms are evolving in discrete time steps.

xnþ1 ¼ 1� αð Þ xn þ
a

1þ e �c xn�ynð Þ½ �

ynþ1 ¼ 1� βð Þ yn þ
b

1þ e �c Xn�Ynð Þ½ �
(9)

Figure 15.
Plots of Lyapunov exponents for chaotic evolution of map (8). Parameters are a ¼ 25, b ¼ 0:1, t ¼ 3, c ¼ d ¼
0:18 and when evolving from initial point (2.1, 2.1).

Figure 16.
Plots of topological entropy for map (8) when parameter c ¼ d. From left: (i) t = 3, a ¼ 25, b ¼ 0:1 and 0 ≤ c
≤ 0.5; (ii) t = 4, a ¼ 35, b ¼ 0:1 and 0 ≤ c ≤ 0.65; (iii) t = 5, a ¼ 25, b ¼ 0:1 and 0 ≤ c ≤ 0.8.

Figure 14.
Figures (a), (b), (c) correspond to time series, phase plane attractors and Lyapunov exponents; upper
row is for regular case and the lower row is for chaotic case of map (8). Parameters values are taken as
a ¼ 25, b ¼ 0:1, t ¼ 3 and (i) for regular case c ¼ d ¼ 0:32 and (ii) for chaotic case c ¼ d ¼ 0:18.
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where α, β (0< α, β< 1) are the time rates at which the sales of both firm decays
in the absence of investments. Parameters a, b describe the investment effectiveness
of both the firms. Parameter c is an “elasticity” measure of the investment strate-
gies. For parameter values α = 0.46¸ β = 0.7, a = 0.16, b = 0.9, c = 105, we have
observed the chaotic attractor of this model.

Bifurcation Diagram:
Bifurcation diagrams for system (9) obtained for α = 0.46¸ β = 0.7, a = 0.16,

b = 0.9 and by varying parameter c, 8 ≤ c ≤ 160 and in close range, 6 ≤ c ≤ 8,
Figure 21. Then, again it obtained for values α = 0.46¸ β = 0.7, a = 0.16, b = 0.6, c =
110 and 0 ≤ a ≤ 0.4, Figure 22. Appearance of period doubling followed by chaos
visible from these figures.

Attractors:
Time series plots and a plot of chaotic attractor obtained for values a = 0.16,

b = 0.9, c = 105, α = 0.46, β = 0.7 of system (9) shown in Figure 23. Plots shown in
Figure 24 are of LCEs for the chaotic motion.

Topological Entropies: Topological entropies calculated numerically and plot-
ted. These are shown in Figure 25. One finds significant increase topological

Figure 17.
Bifurcation plots when c 6¼ d for different ranges of parameter c. Cases (a), (b), (c), corresponds to t = 3, t = 4,
t = 5. Parameters are a ¼ 25, b ¼ 0:1 and d ¼ 0:20 for plots (a) & (c) and d = 0.30 for plot (b).
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entropy where the system shows regularity, (e.g., 20 ≤ c ≤ 75), and for values α =
0.46, β = 0.7, a = 0.16 and b = 0.9. This shows presence of complexities though there
is no chaos.

Figure 19.
3D plots for topological entropy variations. Parameters values are taken as a = 25, b = 0.1 and then 0 ≤ c ≤ 0.5
& 0 ≤ d ≤ 0.5.

Figure 20.
Plot of correlation integral curve for t = 3 and a = 25, b = 0.1, c = 0.28, d = 0.12.

Figure 18.
Upper row plots are for LCE’s and lower row plots are for topological entropies. Plots with (a), (b), (c) are
respectively corresponds to the cases t = 3, 4, 5. Parameters a = 25, b = 0.1 are common for all the plots. Then,
for (b)& (c) LCE’s plots, c = 0.2, d = 0.15 and that for plot (c) , c = 0.28, d = 0.12. For lower row topological
entropy plots, except parameter t, parameters a = 25, b = 0.1, d = 0.15 are common for all.
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Cases (t)/Parameters a b c d Approximate Dc

t = 3 25 0.1 0.28 0.12 0.581

t = 4 25 0.1 0.18 0.18 0.645

t = 5 25 0.1 0.18 0.18 0.703

t = 4 25 0.1 0.28 0.12 0.676

t = 5 25 0.1 0.28 0.12 0.772

t = 3 35 0.1 0.2 0.2 0.877

t = 4 35 0.1 0.2 0.2 0.618

t = 5 35 0.1 0.2 0.2 1.264

Table 1.
Correlation Dimensions for different sets of parameters.

Figure 21.
Bifurcation diagrams of system (9) with respect to coordinates x and y. Lower plots are correspond to
bifurcations in close range to indicate the appearance of periodic windows within bifurcation. α = 0.46¸ β = 0.7,
a = 0.16, b = 0.9, 8 ≤ c ≤ 160 & 6 ≤ c ≤ 8.

Figure 22.
Bifurcation of map (9) α = 0.46¸ β = 0.7, a = 0.16, b = 0.6, c = 110 and 0 ≤ a ≤ 0.4
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Correlation dimension:
Following steps used for map (8), correlation dimension of chaotic the attractor

for values α = 0.46, β = 0.7, a = 0.16, b = 0.9, c = 105, obtained as Dc = 0.064

2.2.3 Continuous Volterra-Petzoldt Model

A continuous 2-dimensional Lotka – Volterra type predator� prey model of
constant period chaotic amplitude, (UPCA model), proposed by Petzoldt, [96]
based on works, [97, 98], written as

dx

dt
¼ a x� α1

x y

1þ k1x

Figure 23.
Time series plots and chaotic attractor of the system (9) for a = 0.16, b = 0.9, c = 105, α = 0.46, β = 0.7 and
initial condition (0.1, 0.1).

Figure 24.
Plots of Lyapunov exponents for chaotic evolution of the system (9) for a = 0.16, b = 0.9, c = 105, α = 0.46,
β = 0.7.

Figure 25.
Plots of topological entropies: (a) left 2D plot is obtained for 12 ≤ c ≤ 170 and values of a = 0.16, b = 0.9, α =
0.46 and β = 0.7 and (b) right 3D plot is for 120 ≤ c ≤ 150 and 0 ≤ a ≤ 0.4 keeping same values for α and β.
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dy

dt
¼ �b yþ α1

x y

1þ k1x
� α2

y z

1þ k2y

dz

dt
¼ �c z�wð Þ þ α2

y z

1þ k2y
(10)

Bifurcation diagram for predator z while varying prey parameter b shown there,
Petzoldt [86], is interesting. Periodic bifurcations and chaotic attractor of this
model for different parameter space are presented in the figure, Figure 26.

Plots of time series for x(t), for cases of chaos, are given in Figure 27 and that
of Lyapunov exponents, (LCEs), of chaotic attractors shown in last two plots in
Figure 28.

In conclusion, one observes that the system (10) evolve into chaos after period
doubling phenomena.

Figure 26.
Periodic bifurcations and chaotic attractor formations of Volterra – Petzoldt model for different values of c fixed
parameters a = 1, b = 1, α 1 = 0.205, α 2 = 1, k1 = 0.05, k2 = 0, w = 0.006.

Figure 27.
Plots of time series curves for x(t) for chaotic evolutions for values of c. Other parameters are same as in
Figure 26.
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3. Chaos control technique

As nonlinear systems are hardly comparable in the sense that behavior of one
nonlinear system hardly match with another nonlinear system so the chaotic evolu-
tions. So controlling chaos to bring any chaotic system to regularity may differ from
one nonlinear system to another nonlinear system. Different types of controlling
chaos technique discussed in recent literatures, [75–88].

Following two chaos controlling technique discussed here:

3.1 Asymptotic Stability Method

Asymptotic stability analysis to stabilize unstable fixed point and to control
chaotic motion appeared in some recent researches, [83–85]. Though this method
has some limitations, it is perfect way to control chaos in models where it can be
applicable.

Description of the Method:
Dynamics of the actual map Xn + 1 and that of the desired map Yn + 1 can be

explained by following mapping:

Xnþ1 ¼ F xn,pð Þ (11)

Ynþ1 ¼ F yn,p∗
� �

(12)

Also, the neighborhood dynamics of Xn + 1 and Yn + 1 can be represented by the
relation:

Xnþ1 ¼ ARXn þ BR p

Ynþ1 ¼ ADYn þ BD p∗

Matrices AR, AD, BR, BD can be obtained from the following:

AR ¼ DXn F Xn,pð Þ,AD ¼ DYn F Yn,p
∗ð Þ

BR ¼ Dp F Xn,pð Þ,BD ¼ Dp∗F Yn,p
∗ð Þ

Here,

Xnþ1 ¼
xnþ1

ynþ1

 !

Ynþ1 ¼
x ∗
nþ1

y ∗
nþ1

 !

Figure 28.
Plots of LCEs of chaotic attractors of model (1) for values of c. Other parameters are same as in Figure 26.
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Let a, b are two parameters of the system and (xn, yn ) be any unstable fixed
point of above system for given values of a and b. Then, our objective is to obtain
two new values for a and b so that this unstable point becomes stable. For this, we
need the Jacobian matrices defined by

J ¼

∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y

0

B

B

@

1

C

C

A

, J∗ ¼

∂f

∂a

∂f

∂b
∂g

∂a

∂g

∂b

0

B

B

@

1

C

C

A

The control input parameter matrix p*can be given by

P∗ ¼ CR Xn þ CM p–CDYn (13)

Then, using (11)-(13), one obtains the following error equation:

enþ1 ¼ AR–BD CRð Þ en þ AR–AD þ BD CD–CRð Þf gYn þ BR–BDCMð Þp (14)

And en = Xn-Yn.

Note that in equation (13) and (14) the coefficient matrices CR, CD and CM are
to be determined so that if the error vector en = Xn-Yn is initialized as e0 = 0, then it
will be zero for all n future times. For asymptotic stability, we must have en ! 0 as
n ! ∞, then equation (14) implies

AR–AD þ BD CD–CRð Þ ¼ 0 ¼ >BD CD–CRð Þ ¼ AD �AR (15)

And BR–BD CM ¼ 0 ¼ >BDCM ¼ BR (16)

The necessary and sufficient condition for en!0 as n!∞ is

AR–BD CR ¼ �I (17)

From these, one can obtain matrices CM, CD, CR and then control parameter
matrix P* from (13).

A necessary and sufficient condition for the existence of matrices CM, CD, CR,

given by:

Rank BDð Þ ¼ Rank BD,AD–ARð Þ ¼ Rank BD,BRð Þ

3.2 Applications

3.2.1 Chaos Control in a 2–Dimensional Prey-Predator map

Considered a prey-predator model where both species evolve with logistic rule
and also influencing each other, [30], written as

xnþ1 ¼ a xn 1� xnð Þ � b xn yn

ynþ1 ¼ c yn 1� yn
� �

þ b xn yn (18)

For a = 3.7, b = 3.5, c = 0.2, one obtains four fixed points obtained as: (0, 0),
(0, �4.0), (0.72973, 0) & (0.25712, 0.49961) of which (0.25712, 0.49961) is unsta-
ble. So, the orbits originating nearby it would also be unstable and unpredictable &
may be chaotic. Nearby this unstable fixed point, we assume a desired initial point
as (0.3, 0.5). With this as initial point together with parameters a = 3.7, b = 3.5,

19

Chaos and Complexity Dynamics of Evolutionary Systems
DOI: http://dx.doi.org/10.5772/intechopen.94295



c = 0.2, time series, attractor and LCE plots are obtained and shown by Figure 29.
Clearly the system (18) is showing chaos at (0.3, 0.5) with a = 3.7, b = 3.5, c = 0.2.

Then, applying asymptotic stability discussed above for the map (18). For fixed
value c = 0.2, unstable fixed point obtained as (0.25712, 0.49961). Nearby this point

take initial point (0.3, 0.5) and p ∗ ¼
a

b

� �

¼
3:7

3:5

� �

. When above-mentioned

method applied, one obtains matrices:

AR ¼
0:048652 �0:899924

1:74865 0:900078

� �

AD ¼
�0:27 �1:05

1:75 1:05

� �

BR ¼
0:19101 �0:128462

0 0:128462

� �

BD ¼
0:21 �0:15

0 0:15

� �

CM ¼
0:90957 0

0 0:85641

� �

CR ¼
3:79669 �4:76117

11:6577 �0:66615

� �

CD ¼
2:28571 �4:7619

11:6667 0:333333

� �

p∗ ¼
3:91525

2:99538

� �

For the case when c = 0.2; new values of a and b; a = 3.91525, b = 2.99538 along
with initial point (0.3, 0.5)a phase plot and a plot of Lyapunov exponents (LEC),
are given in Figure 30.

3.2.2 Food chain model

Next, we have considered three dimensional food chain model, [23], written as

xnþ1 ¼ a xn 1� xnð Þ � b xnyn

ynþ1 ¼ c xn yn � d yn zn

Figure 29.
Time series graphs, attractor and LCE plots of the unstable system.
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znþ1 ¼ r ynzn (19)

For values a = 4.1, b = 3.7, c = 3, d = 3.5, r = 3.8 five fixed points exist for system
(19) given by: P0(0, 0, 0), P1(0, 0.2632, 0.2857), P2(0.518614, 0.263158, 0.158812),
P3(0.7561, 0, 0) and P4(0.3333, 0.4685, 0). Then, by stability analysis it has
obtained that the fixed points P2(0.518614, 0.263158, 0.158812) and
P4(0.3333, 0.4685, 0) are unstable. Then, taking nearby P2, a desired initial point P*
(0.5, 0.3, 0.2), chaotic attractors drawn, Figure 31.

In the process of stabilizing the desired point (0.5, 0.3, 0.2), calculations
performed to replace parameters a = 4.1, d = 3.5 and r = 3.8 to earlier case of map
(18). After obtaining all concerned matrices, replacement matrix obtained as

p ∗ ¼

a

d

r

0

B

@

1

C

A
¼

4:1035

1:05194

1:02707

0

B

@

1

C

A

Figure 31.
Time series and attractors of unstable system.

Figure 30.
Phase plot and LCE plot of controlled system when c = 0.2, a = 3.91525, b = 2.99538.
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At these new parameter values of a, d and r, the phase plot and the plot of
Lyapunov exponents of map (19) obtained, Figure 32. These show chaotic motion
controlled and the system returns to regularity.

3.2.2.1 Pulsive Feedback Technique to Chaos Control

Pulsive chaos control technique is discussed in detail in recent articles, [86–88].
As an application of this technique let us consider a simple 2 – dimension discrete
time Burger’s map

3.2.3 Controlling Chaos in 2-D Burger’s Map

xnþ1 ¼ 1� að Þ xn � y2n

ynþ1 ¼ 1þ bð Þ yn þ xn yn (20)

where a and b are non-zero parameters . This map evolve chaotically when
a= 0.9, b=0.856. To control chaotic motion we have used pulsive feedback control
technique, Litak et al. [86] by

Here (�0.9, 0.948683) is an unstable fixed point of the original Burger's map.
It has been observed that above chaotic motion is controlled and display regular
behavior after re-writing equations (1) as follows:

xnþ1 ¼ 1� að Þ xn � y2n þ ∈ xþ 0:9ð Þ

ynþ1 ¼ 1þ bð Þ yn þ xn yn þ ∈ y� 0:948683
� �

(21)

Repeating stability analysis for system (2) with the fixed point (�0.9,
0.948683), one finds this point be stable if ε < 0.45. So, taking ε = 0.435, phase plot
obtained as shown in Figure 34, indicates chaotic motion, Figure 33, is now
controlled.

3.2.4 Controlling Chaos in Volterra-Petzoldt Map

Evolution of Volterra-Petzoldt map already discussed in Section 2, Eq. (10). For
parameters a = 1, b = 1, c = 9.7, α1 = 0.205, α2 = 1, k1 = 0.05, k2 = 0 , w = 0.006, this
map shows chaotic motion. An unstable equilibrium solution P* (19.5374, 9.64328,
1.02602) exists in this case.

Figure 32.
Phase plot and LCE plot of map (19) showing regular motion and chaos is controlled.
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Applying the method of pulsive feedback, and re-writing eq. (10) as

dx

dt
¼ a x� α1

x y

1þ k1x
þ ∈ x� 19:5374ð Þ

dy

dt
¼ �b yþ α1

x y

1þ k1x
� α2

y z

1þ k2y
þ ∈ y� 9:64328

� �

dz

dt
¼ �c z�wð Þ þ α2

y z

1þ k2y
þ ∈ z� 1:02602ð Þ (22)

Then, using stability analysis, for stabilize the above unstable point P*, one
obtains the parameter ε = �0.45.

4. Discussions

Regular and chaotic evolutions observed in some 1-3 dimensional discrete and
continuous nonlinear models, which have applications in different areas of science.
Presence of complexity in these systems viewed by indications of significant
increase in topological entropies in certain parameter spaces. More increase in
topological entropy in a system signified the system is more complex. Bifurcation
phenomena for different systems show interesting properties like bistability, fold-
ing, intermittency, chaos adding etc. which are not common to all nonlinear sys-
tems. Proper numerical simulations performed for each system to obtain regular
and chaotic attractors, Lyapunov exponents (LCEs) as a measure of chaos, (evolu-
tion is regular if LCE < 0 and chaotic if LCE > 0), topological entropies and
correlation dimensions for chaotic attractors. It appears from the plots of topologi-
cal entropies that obtained for discrete models that complexity exists even in
absence of chaos. Correlation dimensions obtained for chaotic attractors are non-
integers because these attractors bear fractal properties. A chaotic attractor is com-
posed of complex pattern and so, in a variety of nonlinear evolving systems mea-
surement of topological entropy is equally important, [63–67].

To control chaotic motion, techniques of asymptotic stability analysis and that of
pulsive feedback control applied here. Pulsive control technique applied to
Volterra-Petzoldt map (10) and to Burger’s map (20), show chaos successfully
controlled and systems returned to regularity, Figures 34 and 35. Application of
Pulsive control method perfectly controlled chaotic motions in systems (10), (20)
shown here. Chaos is also controlled by this method for system (10), [72]. Asymp-
totic stability analysis method applied to a prey-predator system and to a food chain
model, respectively, to maps (18) and (19), and chaos effectively controlled shown,

Figure 33.
Chaos in Burgerger’s map for a = 1, b = 0.9.
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respectively, through figures, Figures 30 and 32. Asymptotic stability analysis
technique has some limitations explained in the articles where this method pro-
posed, [83, 84]. Though there are many ways to control chaos in dynamical sys-
tems, [74], both the techniques applied here are perfect and very effective in
controlling chaos, especially in real systems.
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Figure 35.
Plots of chaotic attractor changing into regular attractor by application of pulsive feedback technique.

Figure 34.
Plot of regular attractor for a = 1, b = 0.9 and ε = 0.435.
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