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1. Introduction 

We ask the question: what is the purpose of this chapter in the whole book? This chapter is a 
supplement to fuzzy supply chains. The whole book could itself be divided into two parts 
according to the assumption whether the supply chain is a deterministic or non-
deterministic system. For non-deterministic supply chains, the uncertainty is the main topic 
to be considered and treated. From the history of mathematics and its applications, the 
considered uncertainty is the randomness treated by the probability theory. There are many 
important and successful contributions that consider the randomness in supply chain 
system analysis by probability theory (Beamon, 1998; Graves & Willems, 2000; Petrovic et 
al., 1999; Silver & Peterson, 1985). In 1965, L.A.Zadeh recognized another kind of 
uncertainty: Fuzziness (Zadeh, 1965). There are several works engaged on the research of 
fuzzy supply chains (Fortemps, 1997; Giachetti & Young, 1997; Giannoccaro et al., 2003; 
Petrovic et al., 1999; Wang & Shu, 2005). While this chapter is a supplement of fuzzy supply 
chains, the author is of the opinion that the parameters occurring in a fuzzy supply chain 
should be treated as fuzzy numbers. How to estimate the fuzzy parameters and how to 
define the arithmetic operations on the fuzzy parameters are the key points for fuzzy supply 
chain analysis. Existing arithmetic operations implemented in supply chain area are not 
satisfactory in some situations. For example, the uncertainty degree will extend rapidly 
when the product ×  interval operation is applied. This rapid extension is not acceptable in 
many applications. To overcome this problem, the author of this chapter presented another 
set of arithmetic operations on fuzzy numbers (Alex, 2007). Since the new arithmetic 
operations on fuzzy numbers are different from the existing operations, the fuzzy supply 
chain analysis based on the new set of arithmetic operations is different from the fuzzy 
supply chain analysis introduced earlier. That is why the author has presented his modeling 
of fuzzy supply chains based on the earlier work here as a supplement to works on the 
fuzzy supply chains.  
In Section 2, as a preliminary section, the structure and basic concepts of supply chains are 
described mathematically. The simple supply chains which are widely used in applications 
are defined clearly. Even though there have been a lot descriptions on supply chains, the 
author thinks that the pure mathematical description on the structure of supply chains here 
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is a special one and specifically needed in this and subsequent sections. In Section 3, the 
estimation of fuzzy parameters and the arithmetic operations on fuzzy parameters are 
introduced. In Section 4, based on the fuzzy parameter estimations and arithmetic 
operations, the fuzzy supply chain analysis will be built. The core of supply chain analysis is 
the determination of the order-up-to levels in all sites. By means of the possibility theory 
(Zadeh, 1978), a couple of real thresholds the optimistic and the pessimistic order-up-to 
levels is generated from the fuzzy order-up-to the level of site with respect to a certain fill 
rate r. There are no mathematical formulae to calculate the order-up-to levels for all sites in 
general supply chains, but this is an exception whenever a simple supply chain is stationary. 
In Section 5, the stationary simple supply chain and the stationary strategy are introduced 
and the optimistic and pessimistic order-up-to the levels at all sites of a stationary simple 
supply chain are calculated. An example of a stationary simple supply chain is given in 
Section 6. Conclusions are given in Section 7. 

2. The basic descriptions of supply chains 

A supply chain consists of many sites (also know as stages) and each site (stage) ic  

provides/produces a certain kind of part/product jp  at a certain unit/factory. For 

simplicity, assume that different units provide different kinds of parts/products. Let 

},,,{ 21 ncccC L= be the set of all sites in a supply chain, and *C  be an extension of 

such that it includes the set of external suppliers denoted by Y and the set of end-customer 

centers denoted byZ : 

 ZCYC ∪∪=*   (2.1) 

We will simply treat an external supplier or an end-customer center also as a site. There is a 

relationship among the sites of *C : If a site ic uses materials/parts/products from a 

site jc , then we say the site jc  supplies the site ic  and is denoted as ij cc → . The site jc  

is called an up-site of ic , and ic is called a down-site of ic . The suppliers inY have no up-

sites and the customers in Z have no down-sites in *C . The relation of supplying can be 

described in mathematics as a subset ** CCS ×⊆ : 

 Scc ij ∈),(  if and only if ij cc → .  (2.2) 

If we do not consider the case of a site supplying itself, then the supplying relation S is anti-

reflexive, i.e., for any *Cc j ∈ , jj cc → is not possible. If we do not consider the case of 

two sites supplying each other, then S is anti-symmetric, i.e., for any ic , *Cc j ∈ , if 

ji cc → , then ij cc → is not possible.  

Definition 2.1 A Supply chain )*,( SC  is a set of sites *C  equipped with a supplying 

relation S, which is an anti-reflexive and anti-symmetric relation on C*. 
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An anti-reflexive and anti-symmetric relation S ensures that there is no cycle occurring in 
the graph of a supply chain.  

Set SS =1
. For any 1>n , set  

 }),(,),(csuch that  *|),{( 1

k SccScCcccS ij

n

jjik

n ∈∈∈∃= −
 (2.3) 

It is obvious that 
nS  will become an empty set when n is large enough. Let h be a number 

large enough such that 
hS is empty. Set  

 
hSSSS ∪∪∪= L21* .  (2.4) 

*S denotes the enclosure of the supplying relation on S . *S  is the relation of “supplying 

directly or indirectly.”  It is obvious that *S  is still an anti-reflexive and anti-symmetric 

relation. It is also obvious that *S  is a transitive relation. i.e., if *),( Scc jk ∈  and 

*),( Scc ij ∈ , then *),( Scc ik ∈ .  

For any site Cc j ∈ , let jD  and jU be the set of down-sites and up-sites of jc , 

respectively. Suppose that jj DD =1
. For any 1>n , set 

 }such that  |{ '

1

' ii

n

jii

n

j ccDccD →∈∃= −
  (2.5) 

 }such that  |{ '

1

' ii

n

jii

n

j ccUccU →∈∃= −
  (2.6) 

The sites belonging to
n

jD  and 
n

jU  are called the n-generation down-sites and up-sites of jc , 

respectively. Clearly, any down-site is the 1-generation down-site, and any up-site is the 1-

generation up-site. It is obvious that 
n

jD  or 
n

jU  may become an empty set when n is large 

enough. Set 

 },,2,1|{* hkDD k
jj L=∪=   (2.7) 

 },,2,1|{* hkUU k
jj L=∪= .  (2.8) 

These are the enclosures of jD and jU , and are called the down-stream and up-stream of jc , 

respectively. 

Proposition 2.1 For any Cc j ∈ , the downstream jD  and the upstream jU  of jc  are 

disjoint. 

Proof Assume jD and jU  are joint, then there is at least a site called ic  belonging to both 

jD and jU  simultaneously. This leads to ji cc ↔ , which is contradicted with the 
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requirement of the anti-symmetric of S*. Thus, the assumption is not true, and it proves that 

jD and jU  are disjoint. 

Proposition 2.1 just ensures that the upstream and the downstream of a site are disjoint. 
Unfortunately, two different generations of up-sites (or down-sites) may be intersected:  

For example, let 1c  be a site supplying sugar, 2c  be a site supplying the cake mix for cakes, 

and 3c  be the site supplying the birthday-cakes. We have that 21 cc → , 32 cc → , and 

31 cc → .  Since 1c  is the up-site of 2c  and 2c  is the up-site of 3c , so that 1c  is the 2-

generation up-site of 3c .  But 1c  is also the first generation up-site of 3c . So that 

φ≠∩ 2

3

1

3 UU . Such situations may bring complexity to the research. 

Definition 2.2 A supply chain (C*, S) is called a simple supply chain if for any site jc  in C, 

 ) and (' '' φφ =∩=∩⇒≠ nnnn UUDDnn   (2.9) 

For a simple supply chain )*,( SC , any site can be in at most one generation of upstream 

and at most one generation of downstream of another site.   
Set 

 }*such that  *|{ ccYcCcB →∈∃∈= , or   (2.10) 

 *}such that  *|{ ccZcCcO →∈∃∈= . (2.11) 

We call a site belonging to B the boundary site and a site belonging to O the root site of C. For 

a boundary site Bcb ∈ , bU  should contain at least an external supplier: 

φ≠∩YU b . If bU  does only contain external suppliers, i.e., YU b ⊆ , then bc is called 

a proper boundary site. For a root site Oc ∈0 , 0D  should contain at least a customer: 

φ≠∩ ZD0 . If 0D  does only contain customers, i.e., ZD ⊆0 , then 0c  is called a 

proper root site.  
We can specify some of the most important cases of simple supply chains as follows: 

Case 1. Linear supply chains: A linear supply chain is a simple supply chain )*,( SC , *C  

contains one supplier-site and one root site 0c , and each site in C has one 1-generation 

down-site and one 1-generation up-site.  
It is obvious that the construction of a linear chain can be drawn as follows: 

 customer supplier 012 →→→→→→ − cccc hb L   (2.12) 

Case 2. Anti-tree supply chains: An anti-tree supply chain is a simple supply chain 

)*,( SC , *C  contains at least two supplier sites and only one root site 0c , each site in C 

has one 1-generation down-site but any number of 1-generation up-sites, and all sites are in 
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the upstream of the only one root site 0c . An anti-tree chain represents a centralized supply 

chain. 

It is obvious that all sites in C can be divided as different up-generations of 0c . If
n

j Uc 0∈ , 

we say that the (generation) code of jc  for 0c  is n, and denoted as njj == 0χχ . Since the 

supply chain is simple so that for any site jc  in C with code n, there is one and only one 

linear chain connecting the site jc and 0c  given by: 

 0)1()1( cccc nj →→→→ − L   (2.13) 

Case 3. Multiple anti-trees supply chains: A multiple anti-trees supply chain is a simple 

supply chain )*,( SC , 
**

2

*

1* mCCCC ∪∪∪= L , and for ),(,1 *

kk SCmk ≤≤  are 

anti-tree supply chains, where )( **

kkk CCSS ×∩= , the constraint of S on 
*

kC . Each root 

site )(0 kc  is a proper root site. A multiple anti-trees chain represents a decentralized supply 

chain. 
Omitting the proof, we can say that a multiple anti-trees supply chain is a combination of 
several anti-tree supply chains. It is obvious that there are several supplier-sites and many 
proper root sites. Each site in C has no limit on the number of 1-generation down-sites and 
1-generation up-sites, but each site should be in the upstream of at least one proper root site. 

It is obvious each site jc  in C has a code 0jχ  for a root-site 0c  if 0cc j → , and has one 

and only one linear chain connecting jc  and 0c .Case 2 is a generalization of case 1, and the 

case 3 is a generalization of case 2. In the rest of the chapter, we will limit our attention to 
case 2 of a simple supply chain.  

For each site jc  in C, let )(tq ji  be the order quantity of jp -part/material from the down-

site ic , which is called the order-away quantity of jc  at time t. While )(tqkj , the kp -

part/material quantity in up-site kc  ordered by jc , is called the order-in quantity of jc  at 

time t. 

The following review period policy is assumed here: For any site jc  in C, the time of ordering 

in the up-parts could not be arbitrary, but limited at jt , jj Tt + , L,2 jj Tt + . These 

timings are called the review times, and 0>jT  is called the review period of jc . To be 

simple, assume that 0=jt  for any jc  in C. 

For any site Cc j ∈ , suppose that ij cc → . Set  

 })1(;|)({)( jjjijj nTtTnCitqnT <≤−∈∃=∑α ,  (2.14) 
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is the number of jp -parts that has been ordered to be sent out to the down-site of jc  

during the last period jj nTtTn <≤− )1(  and is called the passed away number of jp ’s in 

the last period. Set 

 ))()(
1

()( jj

j

jj nT
T

nT αα = . (2.15) 

This is called the order-away rate of jp  at the time t. For a root-site 0c , the passed-away 

number of 0p –products is called the demand number at time t denoted as 

)()( 000 nTnTd α= . Set 

 ))()(/1()( 0 tdTtd = .  (2.16) 

This is called the demand rate of 0p  at the time t.  

Suppose that each ip -product/part is produced by means of jiw  pieces of jp -parts, we 

call jiw  the equivalence of a ip -part for the jp -part. For any site pair Scc ij ∈),( , there is 

an equivalence value jiw , which reflects the production ingredient of down-products by 

means of the up-parts.  

In case 2, for any site jc  in C with code nj=χ , there is one and only one linear chain 

connecting it to its root site 0c  as: 0)1()1( cccc nj →→→→ − L .  Set 

 )0)(1()2)(1()1)(( wwww nnnjj L−−−= .  (2.17) 

This is called the equivalence of a product for the jp -part. The production of each final 

product 0p  needs jw  pieces of jp -parts to supply it. 

The main problem in supply chain analysis is: How to set up the reasonable inventory levels 

in all sites ofC ? Let )(tII jj =  be the real inventory of jp -parts of site jc  at 

time jnTt = . This should be a negative number whenever it is in shortage at the time. We 

do not want a site to be in the shortage, so we want that jI >0; While its value should not be 

too high since then there will be a high inventory maintenance cost; The goal of supply 
chain management is to minimize the supply chain inventory cost and to limit the 
possibility of shortage as much as possible.  

The expected inventory level of the site jc  at the time jnTt =  should be responsible not 

only for supplying the down-site of jc  during the next period ])1(,[ jj TnnT + , but also 
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for a longer time until the birth of the next batch of jp -parts produced from up-parts 

ordered in jc  at the next review time jTnt )1(' += . The length from jnTt =  to the 

mentioned time can be denoted as  

 jjj LTT +=*
. (2.18) 

This is called the looking time of jc ; while jL  is called the replenishment time of jc . The 

concrete expression of jL  is 

 jjjj PGML ++= ,  (2.19) 

where 

}|max{ jkjj UkMM ∈= ;   

}|max{ jkkjj UcGG ∈=
; 

 jjjjjjjj CTnTP /))1()(( ϑϕτα ×+×××= .      (2.20) 

kjM  is the time of transferring the ordered kp -parts from the site kc  to the site jc  at a 

review time jnTt = , called the material lead time from kc  to jc ; kjG  is the time of 

delaying of the transferring of the ordered kp -parts owing to the shortage of kp -parts, 

called the delay time of kp -parts for jc ; jP  is the time of transferring the kp -parts into 

jp -parts at the site jc , called the production time of jc , with the following parameters: jτ  

the cycle time for jp ; jϕ  the estimated number of occurrences of downtime; jϑ , the 

duration of downtime on the production line for jc ; jC the production capacity, the 

working hours per day, allocated for jc . Set 

 )()( jjjjj LTnTS +×=α ,  (2.21) 

which stands for the reasonable inventory level of site jc  at time jnTt = . jS  is called the 

order-up-to level of site jc  at time jnTt = .                          

 )(*

jjkjkj ISwS −×= ,   (2.22) 

which is the real order of  kp -parts from site jc  at time jnTt = . 
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The main task in supply chain analysis is the determination of the order-up-to levels 

{ jS } ),...,1( nj=  in all sites of the chain at a time t. 

3. Fuzzy parameters and their estimation and arithmetic operations 

Since this chapter is a supplement of fuzzy supply chain analysis, we avoid repeating the 
statements on what is fuzziness, what is the different between fuzziness and randomness, 
and so on. But it should be emphasized here again that fuzzy theory is good at imitating the 
subjective experience of human beings.  
When we face an unknown parameter with fuzziness in a supply chain, the natural way is 
representing it by a fuzzy number. There are two key points: First, how to estimate the 
parameters? i.e., how to get a fuzzy number to represent the estimation by experts for a 
parameter? Second, how to make reasonable arithmetic operations on the fuzzy parameters?   

3.1 How to estimate a fuzzy parameter? 

The fuzzy estimation reflects the subjective measurement about a real number by an expert 
(or a group of experts) who has knowledge and experience with respect to the estimated 
parameter. The process of subjective estimation has no general rules as guide; every case has 
its own approach. An expert pointing out the location of an expected number depends on 
his inference, which is based on the experience of grasping the main essential factors in the 
practical situation.  Under some factor-configuration, the expert will make a choice. But 
when the factor-configuration has been changed, the expert will have another choice. To 
acquire an expert’s estimation into a fuzzy number, we could learn from psychological 
statistics. There are many methods that could be adopted. To be simple, the author shortens 
some of the methods and suggests by asking an expert the following questions: 
Question 1: What is the real number in your mind, which is the most acceptable for you to 
represent a fuzzy parameterα ?  

Let a real numbera be the answer, then we say that the fuzzy parameterα  has the 

estimation value a , denoted as )(αma = . 

Question 2: What is the confidence on your estimation forα ? Please place the mark × on a 

proper location in the real number line that represents the confidence interval [0, 1]. The 

expert points out a mark × at the proper position in the interval [0, 1] to represent the degree 
of his confidence on the estimation of the number in question 1. For example, according to 
the location of the mark shown in the Fig. 1, we can get a real numberϕ =0.75, which is 

called as the confidence degree of the expert on his estimation.  

no confidence absolute

0.5 1.00.0

x

0.75
 

Figure 1. The confidence on the parameter estimation  

If the confidence degree equals 1, then the expert must make sure that the estimation value a 

is true absolutely and there is no error in the estimation. If the confidence equals to 0, then 

the expert knows nothing about this estimation. 
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Suppose that there is a group of experts that make estimations of fuzzy parameters within a 

supply chain system. Each expert has a score ]1,0[∈ρ  to represent his skill degree on 

subjective estimation. The closer the score value is to 1 the higher the authority. The score 

can be measured and adjusted by the success rate in practical situations. ρ  is called the 

authority index of the expert. The product of the authority index ρ  of an expert and the 

confidence degree ϕ  of his estimation on a fuzzy parameter represents the subjective 

accuracy of this estimation, denoted as ϕρτ ×= . We call τδ −= 1  the ambiguity degree 

of the estimation. A fuzzy parameter α  can be represented by a pair of two real numbers, 

its estimation value a  and its ambiguity degreeδ :  

 α  = )1( δ±a ,  ( 10 ≤≤ δ ).  (3.1) 

The ambiguity degree of the parameterα  could also be called the estimation error of the 

estimation in α , and denoted as )(αδ e= . The formula (3.1) looks like the representation 

of error in measurement theory.  Yes, they are very similar. The only difference is: The error 

in measurement is caused by the impreciseness of instruments and observation; while the 

ambiguity is caused by the fuzziness in subjective estimation. In the error theory, there are 

two kinds of errors: absolute error and relative error. The ambiguity reflects the error in 

subjective estimation and it is not an absolute error, but a relative error. The relative error 

plays a more essential role. For examples, when we estimate that the height of the wall as 

2.02 ±  units, the estimation value is 2=a units and the absolute error is 2.0=×δa ; 

when we estimate that the length of the street is 2002000 ±  units, the estimation value is 

2000=a units and the absolute error is 200=×δa ; when we estimate that the length 

of an insect is 0002.0002.0 ±  units, the estimation value is 002.0=a and the absolute 

error is 0002.0=×δa .There are differences in the three examples, but the relative error 

is the same 1.0=δ . The estimation errors are invariable on the changing of unit. It reflects 

the intrinsic quality of subjective estimation. 

We represent the membership function of a fuzzy parameter estimation by a triangle fuzzy 

number taking its peak at the estimation value a and its radius as δ×= || ar : 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∞<<+

+≤<
−

−

≤<−
−

+

−≤<∞−

=

xraif

raxaif
r

ax

axraif
r

ax

raxif

x

0

1

1

0

)(αμ   (3.2) 

Since 10 ≤≤ δ , a fuzzy parameter is a special triangle fuzzy number whose radius is 

|| ar ≤ .  
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Figure 2. Example of 10 fuzzy parameters 

In the Fig. 2, we can see a set of fuzzy parameters with estimation value 100=a  have 

membership functions shown as the broken lines 

OTHFTGDTEBTCATA  and,,,, with ambiguity 1 and,75.0,5.0,25.0,0=δ , 

respectively; those fuzzy parameters with estimation value 100' −=a  have membership 

functions shown as the broken lines ''' ATA , ''' CTB , ''' ETD , ''' GTF , and 

''' HTO with ambiguity 1 and,75.0,5.0,25.0,0=δ , respectively. 

Definition 3.1  Given a positive real number 0≤δ*≤1, we call V, the set of fuzzy parameters  

ra ±=α  with *
||

δ≤
a

r
, the *δ -systems of fuzzy parameters. 

For example, suppose that V is a 0.05-system of fuzzy parameters. The fuzzy parameter 

V∉±12  since 05.05.0
||

>=
a

r
. The fuzzy parameter V∈± 05.01  since 

05.0
||
=

a

r
. 

 

Figure 3.  The δ*-system of fuzzy parameters  

In the Fig. 3, the radius of the fuzzy parameter *33 δ±−  is *3δ , the radius of the fuzzy 

parameter *22 δ±−  is *2δ , and the radius of the fuzzy parameter  *1 δ±− is *δ . 

The radius of fuzzy parameter *1 δ± is *δ ; the radius of fuzzy parameter *22 δ± is 

*2δ ; and the radius of fuzzy parameter *33 δ± is *3δ . As we see from figure 3, the 
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estimation values closer to zero, the narrower the membership function width; the 
estimation value farther away from zero, the wider the membership function width. 

However, the ambiguities of the fuzzy parameters in a *δ -system are all restricted by δ*. A 

−δ*
system includes not only those fuzzy parameters whose ambiguities are equal to

*δ , 

but all fuzzy parameters whose ambiguities are less than
*δ .  The −δ*

systems are not 

disjoint but expanded when the parameter 
*δ is increasing:  −δ *

1 system 

⊆1V −δ *

2 system 2V )( 21 δ≤δ . 

Proposition 3.1 Suppose that V is a *δ -system of fuzzy parameters, where 1*0 ≤≤ δ . 

For any non-zero fuzzy parameter Vra ∈±=α , the support of α does not contain zero 

as an inner point. i.e., ),(0 rara +−∉ . 

Proof Assume that ),(0 rara +−∈ . If 0>a , then 
a

r

a

r
+<<− 101 . Then 

01*1 <−≤−
a

rδ , i.e., 1* >δ . This is a contradiction to the requirement of 1* ≤δ . 

Suppose that 0<a , then 
a

r

a

r
+>>− 101 . Since 

a

r

a

r
−=≥ ||*δ , 

*110 δ−≥+>
a

r
, i.e., 1* >δ . This is a contradiction with the requirement of 1* ≤δ . 

According to the reduction to absurdity, the assumption is not true.  So ),(0 rara +−∉ . 

Using Proposition 3.1, we can say that a fuzzy parameter α  is positive if the estimation 

value of α  is positive, and α  is negative if the estimation value of α  is negative. 

Proposition 3.1 constrains the fuzzy parameters in our −δ system in pure sign, i.e., the 

support of any fuzzy parameter does not contain zero. This is not a real constraint in 
practical but reflects such a faith in the thinking process:  Human beings like to do fuzzy 
estimation on “how much” but not fuzzy on the main direction to do it. For example, 
suppose we are telling somebody: “To go to the post office, turn left and go about 150 
meters”. It may be acceptable if the distance is not estimated precisely; the distance is not 
exactly 150 meters, instead it is 164 meters. But it is not acceptable if the direction to turn left 

is wrong. A −δ system is free in use if we put the zero point in such a place from where the 

directions toward West and East are distinguished. 

It is worth noting that the ambiguity δ of a fuzzy parameter α  could be larger than zero 

whenever its estimation value 0=a . In this case, 0|0| ±=δ×±=α aa . Indeed, for a 

fuzzy parameter with estimation value zero, it can have arbitrary ambiguityδ . 

However, we can make an assumption that for a fuzzy parameter with zero estimation 
value, we rewrite its ambiguity as zero no matter how large its ambiguity is. 
The fuzzy parameters we defined here indeed are triangle fuzzy numbers with a little 
constraint. The reason for making a different name for them is not to emphasize the 
constraint, but to emphasize the different definitions of arithmetic operations on them. 
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3.2 Arithmetic operations of fuzzy parameters 

The existing arithmetic operations of fuzzy numbers are based on the extension principle of 
set mappings and in accordance with the operations of interval numbers are: 

 ],[],[],[ dbcadcba ++=+   (1)  

 ],[],[],[ cbdadcba −−=−   (2) 

  }],,,max{},,,,[min{],[],[ bdbcadacbdbcadacdcba =×   (3) 

 }],,,max{},,,,[min{
],[

],[

d

b

c

b

d

a

c

a

d

b

c

b

d

a

c

a

dc

ba
=   (4) 

The operation product ×  in equations (3) has the problem that the range of the interval may 

increase rapidly. For example, consider two interval numbers ]3,2[−=I  and 

]200,100['=I . According to equation (3) the product of I and 'I  is 

]600,400[' −=× II . The range of interval I is 5, the range of interval 'I  is 100. But the 

range of the interval 'II ×  is 1000. This rapid expansion of the range of the interval 'II ×  
is not acceptable. The radius of fuzzy numbers will extend rapidly when performing the 
operations of product and division.  
In the search for new fuzzy arithmetic calculus where the uncertainty involved in the 
evaluation of the underlying operation does not increase excessively, there has been some 
works done in fuzzy set theory. D.Dubois and H. Prade (Dubois & Prade, 1978; Dubois & 
Prade, 1988) have employed the t-norm to extend the operation of membership degrees for 
defining the Cartesian product of fuzzy subsets and then generalized Zadeh’s extension 
principle to t-extension principle. Their work has made an order among different t-norms 
using an inequality according to its effectiveness of restraining the increasing of uncertainty 
involved in the evaluations across calculations. The more the t-norm is to the left of the 

inequality the better the arithmetic operation. The minimum t-norm mT , which corresponds 

to the existing operations related to equations (1) through (4), sits on the right-extreme end 
of the inequality. People then look toward the left of the inequality to search for a t-norm to 
get more reasonable fuzzy calculations along the t-norm ordering. This is a direction 

guiding our research. Especially, people focus attention on the t-norm wT , which sits on the 

left-extreme end of the t-norm ordering inequality. Many worthy works have been 
published recently along this direction (Hong, 2001; Mares & Mesiar, 2002) Mula et al., 
2006).  
The extension principle is a prudent principle in mathematics to define set-operations. It 

considers all possible; no omission! That is why it causes the extension rapidly. Based on the 

extension principle, any definition of the operation ×  for fuzzy numbers could not avoid 

the decreasing of uncertainty, even using the t-norm wT . The operations of random 

variables are indeed defined according to a kind of extension principle, which can carry 

probabilities. Existing arithmetic operations for fuzzy numbers and the operations for 
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random variables are all constructed in an objective approach. However, experts’ estimation 

is a subjective approach. It is a decisive principle: Don’t care about omissions, but do aim at 

the essential point; neglect the unimportant points even though they are possible to occur; 

only concentrate on the most important location. The width (radius) of the membership 

function of a fuzzy parameter does not reflect on any relevant objective distribution, but 

only the subjective accuracy. The arithmetic operations of fuzzy parameters keep the 

operations on the estimated values of the fuzzy parameters. As ordinary real numbers, they 

keep ordinary arithmetic operations. The additional consideration here is the operations of 

their estimation errors. When two fuzzy parameters 1α  and 2α  have the same estimation 

error δ , then the same estimation error δ  is applied to 21 αα ±  or 21 αα ×  , or 

21 αα ÷ ; If they have different estimation errors, then the estimation error of 21 αα ±  or 

21 αα × , or 21 αα ÷  must be between the two original estimation errors. Hence the 

following definition: 

Definition 3.2 Let iiii aa δα ×±= || , )2,1( =i . The arithmetic operations of fuzzy 

parameters are defined as: 

 2121 )( aam +=+αα , 2121 )( δδαα ∗=+e ;   (3.3) 

 2121 )( aam −=−αα , 2121 )( δδαα ∗=−e ;  (3.4) 

 2121 )( aam ×=×αα , 2121 )( δδαα ∗=×e ;  (3.5) 

 2121 )( aam ÷=÷αα , 2121 )( δδαα ∗=÷e .  (3.6) 

Here 

 },max{},min{ 212121 δδδδδδ ≤∗≤ . (3.7) 

For simplicity, we define },max{ 2121 δδδδ =∗  in this work. The inequalities in (3.7) 

could be called the estimation-error-limitation principle. This effectively prevents the rapid 

extension of uncertainty when the arithmetic operations of fuzzy parameters are taken into 

consideration. 

It is not difficult to see that the new arithmetic operation definitions on fuzzy parameters 

and the ordinary arithmetic operation definitions of fuzzy numbers are coincident for the 

operations + and – whenever 21 δδ = . Of course, they are not coincident on the ×  and ÷  

operations.   

4. The application of the new arithmetic operations in supply chains 

We observe that the value of )(tq ji , the order-away quantity of jc  at time t, is not known 

yet. If it is not deterministic, then uncertainties occur when we take estimation on this value. 
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As mentioned earlier, there are two kinds of uncertainties: randomness and fuzziness. If 
there are enough data representing the past values and the conditions related to those data 

are continuing onto the present, then the value )(tq ji could be treated as a random 

variable; otherwise, if there is not enough statistical data available, or if the conditions have 
been changed, it could be better treated as a fuzzy parameter and be estimated as mentioned 
in Section 3. As a supplement to the existing treatments of uncertainty in supply chain 
analysis, this chapter presents a new phase of the uncertainties treatment when we 
encounter randomness and fuzziness simultaneously. Accordingly, no matter whether the 
parameter is a random variable or a fuzzy number, it is always treated as a fuzzy parameter: 

)))((1))((()( tqtqmtq jijiji δ±= ; 

variablerandomais)(whenever))(())(()),(())(( tqtqtqtqEtqm jijijijiji σδ ==  (4.1) 

Here ))(( tqE ji  is the mathematical expectation of )(tq ji  and ))(( tq jiσ  is the root-

mean-square error of )(tq ji . Why does the author treat a random variable as a fuzzy 

parameter? Because the core modeling for fuzzy supply chain analysis is imitating the 
experts’ experiences. Experts responsible for fuzzy supply chain analysis apply their skill at 
two stages: 1. Estimating value of each involved parameter; 2. Choosing of arithmetic 
operations on fuzzy parameters according to the estimation-error-limitation principle. In the 
first stage, if the estimated value is the mathematical expectation of a random variable, then 
the expert could rely on the objective methods in probability theory and get the resulting 
value. That is fine! It could save expert’s time to do subjective estimation. Whenever the 
fuzzy estimations have been input into the second stage, the root-mean-square error has 
been transferred into the estimation error in the fuzzy parameters’ operations. This will not 
involve operations on the probability distributions of random variable. Apart from taking 

the operations ±  on independent variable, there may not be any need to do rigid 
probabilistic operations on random variables’ in the practical applications. 

Similarly, the order-away quantity of jc  at time t, )(ta j , is also a fuzzy parameter no matter 

it is a random variable or a fuzzy number. 

 )))((1))((()( tetmt jjj ααα ±= .  (4.2) 

Here 

 }',|))'(({))(( TtttCitqmtm jij +<≤∈∃=∑α   (4.3) 

 }'))'((max{))(( TtttandCitetae jj +≤≤∈∃= α   (4.4) 

The order-away rate of jp  at the time t , )(tjα , is also a fuzzy parameter no matter it is a 

random variable or a fuzzy number. 
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 )))((1))((()( tetmt jjj ααα ±= ,  (4.5) 

where 

 )))(((
1

)(( tm
T

tm j

j

j αα = ,  (4.6) 

 ))(()(( tete jj αα = .  (4.7) 

For a root-site 0c , the demand number at time t is treated as a fuzzy parameter 

)))((1))((()( tdetdmtd ±= . The demand rate of 0p  at the time t, treated as a fuzzy 

parameter  

 )))((1))((()( tdetdmtd ±= . (4.8) 

The material lead time from kc to jc , kjM , is also to treated as a fuzzy parameter no matter 

it is a random variable or a fuzzy number. 

))(1)(( kjkjkj MeMmM ±=
variablerandomais)(whenever))(())(()),(())(( tMtMtMetMEtMm kjkjkjkjkj σ==  (4.9) 

 ))(1)(( jjj MeMmM ±= ;  (4.10) 

Here 

 }|)(max{)( jkjj UkMmMm ∈=  (4.11) 

 }|)(max{)( jkjj UkMeMe ∈=   (4.12) 

The delay time of kp -parts for jc , kjG , is also to be treated as a fuzzy parameter: 

))(1)(( kjkjkj GGcG δ±= ; 

variablerandomais)(whenever))(())(()),(())(( tGtGtGetGEtDm kjkjkjkjkj σ==   (4.13) 

 ))(1)(( jjj GeGmG ±=   (4.14) 

Where 

 }|)(max{)( jkjj UkGmGm ∈=   (4.15) 

 }|)(max{)( jkjj UkGeGe ∈=  (4.16) 
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Although it is possible along the same line as above, we omit writing the fuzzy parameters 

such as the deterministic quantities: the cycle time jτ , the estimated number of occurrences 

of downtime jϕ , the duration of downtime on the production line jϑ . While the production 

capacity jC  is a deterministic number, it could be also treated as a fuzzy parameter 

provided we take jj CCm =)( and 0)( =jCe . The replenishment time of jc , jL , is also 

treated as a fuzzy parameter  

 ))(1)(( jjj LeLmL ±= ,  (4.17) 

where 

 jjjj PGmMmLm ++= )()()( . (4.18) 

The order-up-to level for site jc  at time t, )(tS j  is a fuzzy parameter, which is the product 

of  )( jj nTα  and )( jj LT + is: 

 )))((1))((()()()( tSetSmLTnTtS jjjjjjj ±=+×=α , (4.19) 

where 

))(())(())(( jjjjj LmTnTmtSm +×= α , 

 ))}()),((max{))(( jjjj LenTetSe α= .  (4.20) 

We note that shortage may occur whenever 

 )()( jjj nTStI < ,  (4.21) 

where )(tLnTtnT jjj +<≤ . It implies that the shortage interval could be roughly 

written as ( jS,∞− ). But since jS  is a fuzzy number, the interval is not a crisp interval. To 

conveniently control the inventory, we need to pick out two thresholds from jS : two real 

numbers 
o

jS  and 
p

jS  called the optimistic and the pessimistic order-up-to levels of site jc , 

respectively. They are determined by the following equations:   

 )()( p

j

o

j SNrS ==Π +
,  (4.22) 

where r  is a given fill rate, A typical value is 95.0=r ; and 

 }|)(max{)( xuux
jS

≤=Π + μ , }|)(max{1)( uxuxN
jS

>−= μ . (4.23) 
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These are called the left possibility function and the necessary function of fuzzy variable jS  

respectively. We have a formula to get the two real order-up-to levels from the fuzzy order-
up-to level: 
4.1  Proposition 

)())()(1( jjj

o

j SmSerSeS ××+−= ;  

 )())(1( jj

p

j SmSerS ××+= .  (4.24) 

Proof The increasing part of the left possibility function is in accordance with the left-wing 

of the membership function of the fuzzy parameter jS . It is obvious that 

))()(/())()()(()()( jjjjj

o

j

o

jS

o

j SeSmSmSeSmSSS
j

××+−==Π + μ . 

From (4.22) we get  

rSeSmSmSeSmS jjjjj

o

j =××+− )()(/))()()((  

)())()(1()()()()()( jjjjjjjj

o

j SmSerSeSmSeSmSeSmrS ××+−=×−+××=
. 

This is the optimistic threshold. Similarly, we can get the pessimistic threshold. 
A key task of fuzzy supply chain analysis is the determination of the optimistic and the 
pessimistic order-up-to levels of all sites in the supply chain. 

5. Stationary strategy 

The roles of a supply chain are transferring raw materials as parts-flow, flowing down along 
the supply chain network, and the quantities of the flow are determined by information-
flow flowing up inversely. There are no mathematical formulae to calculate the order-up-to 
levels for all sites in general supply chains. However, there could be the possibility for 
special simple supply chains, which are stationary supply chains defined as follows: 

Definition 5.1 Suppose that ),( SC  is a simple supply chain. When )()( btadtd ≤≤≡  

where d  is a fuzzy parameter, we say that the simple supply chain is stationary on the 

interval ],[ ba . 

Just as the stationary random process has a stationary distribution, a stationary supply chain 

has a stationary possibility distribution with a constant demand rate d . Of course, the real 

demand from the customers is still a variable. No mater how complex the supply chain 
system is, we can think of it as a network of water flow. In the water flow network, we will 
have a stationary flow whenever the input equals the output at every node. To maintain a 
stationary flow in a supply chain network, the best way is for any site to know how many 
units passed away during the last period; how many units should be ordered back in the 
review time. Here comes the stationary strategy. 
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Stationary Strategy: For a simple supply chain with any site Cc j ∈ , and any 0>n , the 

number of passed away quantity )( jj nTα of jc  is known at the time jnTt = , without 

special note, the default order-in quantities of jc  may be given by the following formula: 

 )()()( jjjkjjkj UknTwnTq ∈×= α .   (5.1) 

Stationary strategy aims to lead the parts-flow within the supply chain network achieving 
the equilibrium between output and input at every site. Even though the equilibrium is not 
synchronous but with a time-delay, the supply chain network will keep constant inventory 
for each site after a while.  

Proposition 5.1 Suppose that a simple supply chain is stationary: dtd ≡)( . Under the 

stationary strategy, the passed-away number for each site jc  in C is also stationary which is 

given by: 

 ,...)2,1()( =×=≡ ndwnT jjjj αα .  (5.2) 

Proof. We use the principle of mathematical induction for the code )( jcn χ= . 

Assume that the Proposition is true for any jc  with code 1)( == jcn χ . Indeed, 

1)( =jcχ  implies that 0cc j → . It is obvious that (5.2) is true for the base case.  

Suppose that (5.2) is true for n, we are going to prove that it is true for 1+n . Suppose that 

ij cc → and nc j =)(χ , then dwt ij ×=)(α . We have that 

dwdwwmTwmT jijiiijijj ×=××=×= )()( αα
 

So (5.2) is true. 
According to (4.20), we have 

))(()())(( jjjj LmTdmwtSm +××=  

 )}(),(max{))(( jj LedetSe =   (5.3) 

Since the chain is in stationary, we can write )( jLm  in detail according to (4.1)-(4.18) and 

get  

)()( dmwSm jj ×=  

)/)))()(1()()((}|)(max{( jjjjjjjkjj CcccTwdmUkMcT ϑϕτ ×+××××+∈+×  

 )}(),(),(),(},|)(max{max{)( jjjjkjj eeedeUkMeSe ϑϕτ∈= .  (5.4) 
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According to (4.24), we get 

...)max{...}()())()(1( ++××××+−= jjjj

o

j TdmwSerSeS
 

 ...)max{...}()())(1( ++××××+= jjj

p

j TdmwSerS   (5.5) 

The likely situations of a simple supply chain system are that: 1. Supply chain is stationary; 
2. the inventory in each site is keeping its order-up-to level. In this situation, the simple 
chain is in the optimal situation and the parts flow is stationary with the minimum 
inventory cost and fulfills the target fill rate on the final products at the root.  
Definition 5.2: A simple supply chain is called optimal if it is in the stationary situation and 
the inventory number equals to the order-up-to level in all the sites of the chain. 
 When a simple supply chain is stationary but the inventory number is not equal to 
the order-up-to level in each site, then we can take the following strategy to push the supply 
chain to attain an optimal situation: 

Optimal strategy: For a simple stationary supply chain at the review time jnTt = on the 

site jc , 

 1. If jk

o

jj TdmwStI ××+≤ )()( , then take ))(()( tISTdmwq j

o

jjkkj −+××=  

 2. If jk

p

jj TdwStI ××+>)( , then take 0=kjq .                                (5.6) 

Here )(tI j  is the inventory of jc  at review time t. We can see that the optimal strategy 

(5.6) is the same as the stationary strategy (5.1) whenever jj StI =)( . It means that 

whenever the inventory equals the order-up-to level, the optimal strategy automatically 
returns to the stationary strategy to keep the inventory at the order-up-to level successively. 

The optimal situation could be conserved until the demand rate d  is changed. 

6. Example 

To apply the theory described above to a problem, an example (Wang and Shu, 2005) is 
adapted in this section. Assume that a supply chain contains one distribution center, the 

root-site 0c and six production facilities: 0c  has one up-site 1c ; 1c  has three up-sites 2c , 

3c , and 4c ; 2c  has an up-site 5c ; and 5c  has one up-site 6c . The site 1c  has also two 

external suppliers 1s  and 2s . The sites 3c , 4c  and 6c  are proper boundary sites: four 

external suppliers 4s , 5s , 6s , and 7s , supply the site 3c , 3s  supplies the site 6c , and 8s  

supplies the site 4c . So that the supply chain for the problem consists of 

},,,,,,{ 6543210 cccccccC =  and },,,,,,,{ 87654321

* ssssssssCC ∪= . The 

graphical representation of the supply chain is shown in Fig. 5. 
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Figure 5. Example of a simple supply chain network 

Assume that the equivalence of a product for jp -parts is 1=jw , )6,,2,1( L=j . The 

supply chain is simple and is assumed stationary and the daily customer demand for the 

finished product at the root-site 0c  is the fuzzy number )5.01(200 ±=d . 

Assume that the review periods (days) are given as: 20 =T , 31 =T , 42 =T , 33 =T , 

34 =T , 45 =T , 56 =T . Let the production cycle times (
210−

times/hr) be given as the 

following with estimations: 

2.4)( 1 =τm , 0.2)( 2 =τm , 0.3)( 3 =τm , 3.3)( 4 =τm , 2.3)( 5 =τm , 

8.2)( 6 =τm  

and degree of ambiguities: 

3.0)( 1 =τe , 25.0)( 2 =τe , 3.0)( 3 =τe , 2.0)( 4 =τe , 1.0)( 5 =τe , 3.0)( 6 =τe . 

Let the downtime frequencies (
310−

times/hr) be given as the following with estimations: 

3.1)( 1 =ϕm , 4.1)( 2 =ϕm , 3.1)( 3 =ϕm , 5.1)( 4 =ϕm , 7.1)( 5 =ϕm , 

5.1)( 6 =ϕm  

and degree of ambiguities: 

15.0)( 1 =ϑe , 14.0)( 2 =ϑe , 12.0)( 3 =ϑe , 2.0)( 4 =ϑe , 13.0)( 5 =ϑe , 

12.0)( 6 =τe . 

Let the downtime (hr/time) be given as the following with estimations:  

0.2)( 1 =ϑm , 2.2)( 2 =ϑm , 3.2)( 3 =ϑm , 9.1)( 4 =ϑm , 0.3)( 5 =ϑm , 

5.2)( 6 =ϑm , 
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and the degree of ambiguities 

15.0)( 1 =ϑe
, 

14.0)( 2 =ϑe
, 

12.0)( 3 =ϑe
, 

2.0)( 4 =ϑe
, 

13.0)( 5 =ϑe
, 

12.0)( 6 =τe
 

Let the capacities (hr/day) be given as: 

161 =C , 162 =C , 403 =C , 324 =C , 405 =C , 406 =C . 

Let the transition time (days) be given as the following with estimations:  

0.2)( 0 =Mm , 0.1)( 10 =Mm , 0.3)( 21 =Mm , 0.2)( 31 =Mm , 0.3)( 41 =Mm , 

0.2)( 52 =Mm , 0.3)( 65 =Mm ,  

and the degree of ambiguities: 

5.0)( 0 =Me , 5.0)( 10 =Me , 0.3)( 21 =Me , 25.0)( 31 =Me , 17.0)( 41 =Me , 

25.0)( 52 =Me , 17.0)( 65 =Me . 

Let the transition time (days) for the external suppliers be given as the following with 
estimations:  

0.4)(
1,1
=sMm , 0.5)(

1,2
=sMm , 0.4)(

6,3
=sMm , 0.3)(

3,4
=sMm , 

0.5)(
3,5
=sMm , 0.4)(

3,6
=sMm , 0.2)(

3,7
=sMm , 0.3)(

4,8
=sMm ,  

and the degree of ambiguities: 

25.0)(
1,1
=sMe , 2.0)(

1,2
=sMe , 25.0)(

6,3
=sMe , 17.0)(

3,4
=sMe , 

2.0)(
3,5
=sMe , 

25.0)(
3,6
=sMe , 25.0)(

3,7
=sMe , 17.0)(

4,8
=sMe . 

According to (5.4), we get that 

++×= )}(),(),(),(),(max{()()(
1,21,141312111 ss MmMmMmMmMmTdmSm          

)/))()(1()()( 11111 CmmmTdm ϑϕτ ×+×××+
1916)16/)20013.01(042.03200}0.5,0.4,0.3,0.2,0.3max{3(200 =×+×××++×=

)}(),(),(),()},(),(),(),(),(max{max{)( 1114131211 1,21,1
ϑϕτ eeedeMeMeMeMeMeSe ss=

 5.0= . 

)/))()(1()()()(()()( 22222252222 CmmmTwdmMmTdmwSm ϑϕτ ×+××××++××=  

1401)16/)2.20014.01(02.042000.24(200 =×+×××++×= ;

5.0)}(),(),(),()},(max{max{)( 222522 == ϑϕτ eeedeMeSe .

)/))()(1()()(

)}(),(),(),(max{()()(

33333

33 3,73,63,53,4

CmmmTdm

MmMmMmMmTdmSm ssss

ϑϕτ ×+×××+

++×=
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1690)40/)3.20013.01(03.03200}0.2,0.4,0.5,0.3max{3(200 =×+×××++×=  

)}(),(),(),()},(),(),(),(max{max{)( 3333 3,73,63,53,4
ϑϕτ eeedeMeMeMeMeSe ssss=  

=0.5 

)/))()(1()()()}(max{()()( 4444444 4,8
CmmmTdmMmTdmSm s ϑϕτ ×+×××++×=   

 1324)32/)9.10015.01(033.032000.33(200 =×+×××++×= ; 

5.0)}(),(),(),()},(max{max{)( 4444 4,8
== ϑϕτ eeedeMeSe s

. 

)/))()(1()()()}(max{()()( 5555555 5,6
CmmmTdmMmTdmSm s ϑϕτ ×+×××++×=   

 1529)40/)30017.01(032.042000.34(200 =×+×××++×= ; 

5.0)}(),(),(),()},(max{max{)( 5555 5,6
== ϑϕτ eeedeMeSe s

. 

)/))()(1()()()}(max{()()( 6666666 6,3
CmmmTdmMmTdmSm s ϑϕτ ×+×××++×=   

 1941)40/)5.20015.01(028.052000.45(200 =×+×××++×= ; 

5.0)}(),(),(),()},(max{max{)( 6666 6,3
== ϑϕτ eeedeMeSe s

. 

Since the root-site 0c  is a non-production site, we have that 

          600))(()()( 1000 =+×= MmTdmSm ;  

          5.0)()( 100 == MeSe .                          

According to (4.24), the optimal and the pessimistic order-up-to levels for the pre-specified 

rate 95.0=r  at the sites 6,,2,1, L=jc j , are given as: 

 868,1)())()(1( 1111 =××+−= SmSerSeS o ; 

 826,2)())(1( 111 =××+= SmSerS p .  

 366,1)())()(1( 2222 =××+−= SmSerSeS o ; 

 066,2)())(1( 222 =××+= SmSerS p .  

 648,1)())()(1( 3333 =××+−= SmSerSeS o ; 

 493,2)())(1( 333 =××+= SmSerS p .  

 291,1)())()(1( 4444 =××+−= SmSerSeS o ; 

 953,1)())(1( 444 =××+= SmSerS p .  
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 491,1)())()(1( 5555 =××+−= SmSerSeS o ; 

 255,2)())(1( 555 =××+= SmSerS p .  

 892,1)())()(1( 6666 =××+−= SmSerSeS o ; 

 .863,2)())(1( 666 =××+= SmSerS p   

At the root site 0c , the optimal and the pessimistic order-up-to levels at 0c  are 

585)())()(1( 0000 =××+−= SmSerSeS o ; 

885)())(1( 000 =××+= SmSerS p . 

Thus the order-up-to levels in all sites of supply chain can be easily calculated. 

7. Conclusion 

As a supplement on fuzzy supply chain analysis, this chapter presents modeling for supply 
chain problems. In particular it answers question such as the following to the readers: 
1. How to estimate parameters with fuzziness in supply chains? How to imitate experts’ 

experiences as an estimation process?  How to change our used subjective approach to 
be an acceptable subjective way?  

2. How to define the arithmetic operations for fuzzy parameters? How to abandon the 
prudent principle of classical mathematics and accept the decisive principle in 
subjective estimation? What is the direction to prevent the uncertainty-increasing 
during performing arithmetic operations on fuzzy parameters? 

3. How to treat fuzzy parameters when the randomness and fuzziness occur 
simultaneously?  

4. How to simplify the complex analysis of supply chain? What is a simple chain? What is 
a stationary supply chain? How to get some formulae to calculate the order-up-to levels 
in a stationary simple chain? How to extend the advantages of pure mathematical 
analysis to the general cases? 

From the answers to these questions presented in this chapter, the reader will find out new 
aspects and new considerations. It will be helpful to reflect by asking this question again: 
Where is the purpose of this chapter in the book? Yes, it is a supplement of fuzzy supply 
chain analysis. But, in some sense, it is also a supplement of non-deterministic supply chain 
analysis. In some other sense, it is also a supplement of the pure mathematical analysis on 
supply chains. 
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