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Chapter

Ubiquitination and 
Deubiquitination in Melanoma 
Research and Clinically Relevant 
Outcomes
Jia Guo and Jianglin Zhang

Abstract

Malignant melanoma is one of the most invasive tumors with increasing 
mortality, low overall survival rates and limited effective therapeutic strategies. 
Ubiquitination is a post-translational protein modification, which is regulated by a 
series of ubiquitination-associated enzymes. Ubiquitination plays a critical role in 
diverse pathophysiological activities of cellular and participates in the pathogenesis 
of various cancers, including melanoma. This study aims to provide a conclusive of 
ubiquitination and deubiquitination, and their potential clinical application value in 
melanoma in the following aspects: melanoma pathogenesis-related components and 
processes in the ubuiquitin-proteasome system (UPS), ubiquitination in melanoma 
immunological microenvironment modulation, ubiquitination of key transcription 
factors in melanoma and melanoma therapeutic strategy via targeting the UPS.

Keywords: ubiquitination, deubiquitinating enzymes, melanoma, pathogenesis, 
application

1. Introduction

Malignant melanoma is one of the most invasive tumors with increasing 
 mortality, low overall survival rates, and limited effective therapeutic strategies 
[1]. Although melanoma is the third most prevalent skin cancer, the two other skin 
malignancies, basal cell and squamous cells, are the malignant [2]. A variety of 
factors, including genetic mutations, sun exposure, and poor lifestyle habits, are 
involved in the development of melanoma [3].

There is a dynamic protein balance in cells to maintain homeostasis for cell 
and organism. Intracellular protein degradation by two pathways, autophagy 
and lysosomal degradation pathway and the ubiquitin-proteasome pathway, is 
primarily involved in tumor growth. Ubiquitination is one of post-translational 
modifications of most vital proteins. Ubiquitin, a closely conserved small protein 
composed of 76 amino acids, is link with the ubiquitin-activating enzyme (E1), the 
ubiquitin-conjugating enzyme (E2), and the ubiquitin ligase (E3) [4]. Specifically, 
mono-ubiquitination was considered as only one single ubiquitin bond to the lysine, 
while poly-ubiquitination was considered as ubiquitin chains attached to the lysine 
[5]. Then the ubiquitinated proteins are transported to the 26S proteasome for 
degradation. Ubiquitination is involved in the development of different tumors 



Ubiquitin - Proteasome Pathway

2

by regulation important genes or signaling pathways. However, the ubiquitination 
process can be reversed by the deubiquitinating enzymes (DUBs) via cleaving 
ubiquitin chains from substrates to prevent protein degradation, which participates 
in a wide range of cellular signaling pathways, such as the apoptosis, cell cycle, 
autophagy, DNA damage, inflammation signaling, and protein downregulation [6]. 
Up to date, there were reported over 600 E3 ubiquitin ligase and 100 DUBs [7].

A significant number of studies have confirmed that ubiquitination and de-
ubiquitination play a critical role in melanoma pathogenesis, and have indicated 
that the key molecular goal of the mechanism may be the therapeutic strategies 
for the treatment of melanoma. Here, we provide a conclusive introduction about 
protein ubiquitin modification in relative genes, signaling pathways, and in immune 
system in melanoma pathogenesis, which concludes the latest DUB studies in 
melanoma. Besides, we summarize potential therapeutic targets of ubiquitination 
and de-ubiquitination in melanoma.

2. Melanoma pathogenesis related components and processes of the UPS

2.1 Fbxw7

The F-box/WD repeat-containing protein 7 (Fbxw7) belongs to the F-box protein 
family, which is the component of an SCF E3 ubiquitin ligase [8]. Fbxw7 is considered 
to be a tumor suppressor gene [9]. The degradation of Fbxw7 results in accumulation 
of its substrates, leading to oncogenesis. In a study, the mutation prevalence was found 
to be 8.1% FBXW7 in melanoma through exome sequencing in a cohort of 103 melano-
mas. A potential therapeutic approach for melanoma could be the loss and mutation of 
FBXW7 in melanoma contributing to prolonged activation of NOTCH and targeting 
NOTCH signaling [10]. FBXW7 deficiency can also unleash heat shock factor 1 (HSF1) 
and then result in melanoma invasion and metastasis [11]. Meanwhile, FBXW7 can 
regulate the melanoma metastasis through activating the MAPK/ERK signaling [12]. 
The microphthalmia-associated transcription factor (MITF) is a key regulator of 
melanocyte development, differentiation, and melanoma biology [13, 14]. FBXW7 is 
recognized as a regulator of MITF via post-transcriptional mechanisms [15].

2.2 SKP2

S-phase kinase-associated protein 2 (Skp2), also be called FBXL1 or p45, is 
also a member of the F-box proteins [16]. Skp2 is characterized as a cancer-related 
protein. In general, in primary melanoma and metastasis melanoma, SKP2 is 
significantly up-regulated, which is related to the prognosis, as it is reported that 
nuclear Skp2 expression is strongly associated with a lower survival rate during 
melanoma [17, 18]. In tumorigenesis, Skp2 stabilizes the MTH1 expression via K63-
linked polyubiquitination, and then promotes melanoma cell survival by protecting 
DNA integrity upon pharmacologic oxidative stress [19]. Meanwhile, skp2 has a 
direct interaction with melanoma antigen-A11 (MAGE-A11), which may boost 
Skp2-mediated degradation of cyclin A [20].

2.3 HACE1

HECT domain and ankyrin repeat-containing E3 ubiquitin protein ligase 1 
(HACE1), has been showed to act as a tumour suppressor gene in various kinds of 
cancers [21]. There is a significantly downregulation of HACE1 in colorectal cancer 
(CRC), and the decreased expression is highly associated with poor clinical features of 
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patients. HACE1 inhibits YAY1 signaling and then can reverse EMT in CRC [22]. Loss 
of HACE1 activates RAC-family GTPases to mediate oxidative stress that increases 
genotoxic cellular ROS generation and then results in lung tumor formation [23]. Even 
though HACE1 behaves as an anti-oncogene in most reports, its function in melanoma 
may be cell-specific tumorigenesis. HACE1 plays a pro-oncogenic role in melanoma by 
regulating fibronectin (FN) secretion and K27 ubiquitination of FN [24].

2.4 ITCH

ITCH, a member of HECT-type ubiquitin E3 ligases, plays a significantly role 
in regulating cell growth and apoptosis [25]. In melanoma, ITCH mediates BRAF 
polyubiquitination through the K27-linkage result in sustained activation of BRAF/
ΜEK/ERK signaling, which leads to the survival of melanoma cells [26]. Moreover, 
ITCH can be regulated by microRNAs (miRNAs), such as miR-10b and miR-520f, 
and then be involved in the melanoma proliferation and metastasis [27, 28].

2.5 UBE2C

UBE2C belonging to the E2 family is operating in combination with the anaphase-
promoting complex/cyclosome (APC/C) E3 ligase. It regulates the cell cycle through 
mitosis via destructing mitotic cyclin B1 [29]. Silence of UBE2C induces G2/M phase 
arrest of melanoma cells by suppressing both the level and the activity of M- phase-
promoting factor (MPF), a complex consisting of CDK1 and cyclin B1 [30, 31].

2.6 UBE2S

Ubiquitin-conjugating enzyme E2S (UBE2S) belongs to the E2 protein family, 
and is involved in development of various cancers. Recently, it has been shown 
that UBE2S plays a vital role in regulating DNA damage-induced transcriptional 
silencing, by catalyzing Lys11-linkage ubiquitination [32]. Another recent research 
showed that UBE2S is overexpressed in melanoma, and the expression was signifi-
cantly related to the cancer staging and grading, with a higher magnitude found for 
tumor node metastasis staging T4. Moreover, silence of UBE2S may cause mela-
noma cell proliferation inhibition via inducing cell cycle G1/S phase arrest, and cell 
apoptosis. In BALB/C nude mice, shUBE2S can suppress tumor growth and inhibit 
epithelial-mesenchymal transition (EMT) [33].

2.7 MKRN2

Makorin ring finger protein 2 (MKRN2) is known as a novel ubiquitin E3 ligase, 
and is capable of targeting the p65 subunit of NF-κB [34]. Research indicates that 
there is a greater expression of MKRN2 in melanoma cell lines relative to normal 
skin cell lines. The silence of MKRN2 can inhibit melanoma cell growth in a P53-
dependent manner. Moreover, MKRN2 can interact with ubiquitylated P53 [35]. This 
study suggests that MKRN2 may be a potential therapeutic target for melanoma.

2.8 Ub-like proteins

There are also several ubiquitin-like proteins (UBLs) in addition to Ub, such 
as NEDD8 (neural precursor cell expressed, developmentally down-regulated8), 
SUMO (small ubiquitin-like modifiers), and ISG15 (interferon-stimulated gene 15).

NEDD8 mediates the stabilization of various proteins, and plays a significant 
role in the incidence and development of malignant melanoma. NEDD8 is a 
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ubiquitin-like protein composed of 81 amino acids, with around 60% of the sequence 
that is the same as ubiquitin [36]. The covalent binding of NEDD8 to substrates is 
known as neddylation. Similar to the ubiquitination, an enzyme cascade is needed 
for this progression. Neddylation is involved in protein ubiquitination, and is closely 
associated with the degradation of certain proteins in the cell cycle and apoptosis-
related factors [37]. Cullin is one of the most researched neddylation substrates [38]. 
Besides, studies have also investigated that NEDD8 substrates are diverse. Some 
proteins can be modified by NEDD8, including p53 [39], MDM2 [40], and VHL [41]. 
UBA3, as the subunit of NEDD8-activating enzyme, plays a critical role in the linkage 
of NEDD8 with cullin proteins. Previous studies have shown that in highly prolifera-
tive cell lines, NEDD8 conjugation is up-regulated and increased in melanoma cell 
lines [42]. After knockdown of UBA3, the proliferation of M14 melanoma cells was 
suppressed both in vitro and in vivo. Hence, interference of the neddylation might 
offer a hopeful method for melanoma therapy [43].

SUMO has been described to alter protein interactions rather than directly involv-
ing in protein degradation [44]. Sumoylation involves a 3-step pathway analogous 
to the ubiquitination pathway. Dysregulation of sumoylation has been implicated 
in multiple cancers, including melanomas. Ubc9, the single SUMO E2 conjugating 
enzyme, is overexpressed in advanced-stage melanomas where it protects melanoma 
cells from chemotherapy-induced apoptosis [45]. Moreover, SUMOylation-defective 
MITF germline mutation may be more susceptible to melanoma [46].

ISG15, a ubiquitin-like modifier, is implicated in both tumor oncogenic and sup-
pressive programs [47]. It is activated by a three steps enzymatic cascade consisting 
of a specific E1-activating enzyme (UBE1L), E2 conjugating enzyme (typically 
UBCH8) and E3 ligase (commonly HERC5A), which promotes ISG15 transfer to 
protein substrates [48]. Previous study shows that ISG15 can be removed from its 
target proteins by USP18 and then the effects of ISGylation was reversed [49, 50]. A 
study identifies PTEN as a new substrate of the ISGylation post-translational modi-
fication pathway and USP18 can regulate PTEN stability. Inhibition of ISGylation 
may be a therapeutically relevant in melanoma [47].

2.9 Deubiquitinating enzymes (DUBs)

To date, several DUBs have confirmed to be consistent with melanoma tumori-
genesis and metastasis. USP54 is overexpressed in intestinal stem cells, and is 
defined to promote cancer progression and regulate embryonic development and 
normal growth of adult mice. USP54 upregulates in melanoma, the loss of USP54 
is dispensable for metastasis of melanoma cells [51]. An IFN stimulated to regulate 
type-I IFN signaling in the anti-viral immune response has been reported to be 
USP18 [52]. It is also reported that IFN-γ can stimulate USP18 protein expression 
in melanoma cells. Through IFN-γ-induced USP18 expression in melanoma cells 
and -regulated CTL CD8 + immune cell activity in the tumor microenvironment, 
endogenous IFN-γ signaling influences melanoma tumorigenesis [53]. In 2014, 
Harish Potu et al. reported that USP5 mediates the change in ubiquitinylated protein 
content and unanchors Ub chains in BRAF mutant cells treated with vemurafenib. 
BRAF can activate USP5, contributing by suppressing p53 and FAS induction, to 
inhibit cell cycle checkpoint regulation and apoptosis [54]. In 2018, USP4 upregula-
tion in melanoma, especially in metastatic melanoma, was discovered by Weinan 
Guo et al. The archive of TCGA skin cutaneous melanoma (SKCM) confirms this 
finding. USP4 can protect melanoma cells from cisplatin-induced apoptosis in a 
p53-dependent manner. Moreover, USP4 up-regulation plays an important role in 
melanoma invasion and migration by promoting EMT [55]. The USP15 knockdown 
lowers the expression of MDM2 in melanoma cells, and then leads to upregulation 
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of p53 and MDM2 target genes p21 and Puma. Moreover, Usp15−/− melanoma mice 
models have an increased frequency of CD8+ effector T cells tumor-infiltrating [56].

Ubiquitin specific peptidase 9, X-linked (Usp9x), a member of the USP family, is 
upregulated in many cancers, which has a positive and negative impact on tumori-
genicity depending on the various forms of cancer [57–59]. A study shows that the 
growth of melanoma cells can be inhibited by Usp9x loss. The Ets-1 proteasomal, 
abased site-specific de-ubiquitination, is inhibited by Usp9x, which leads to Ets-1 
aggregation and increases tumorigenicity of melanoma [60]. Moreover, in malignant 
melanoma, about 15–20% of NRAS mutations have been identified [61]. Harish Potu 
et al. also revealed that inhibition of BRAF and/or MEK kinase pathway can increase 
Ets-1 expression. The increased Ets-1 expression upregulates NRAS levels by 
activating the NRAS promoter. In all, Usp9x plays a critical role in Ets-1 regulation 
and melanoma tumorigenicity through mediating NRAS transcription [60]. UCHL1 
(ubiquitin C-terminal hydrolase 1) belongs to the ubiquitin carboxy terminal hydro-
lase family of DUBs. It catalyzes hydrolysis of C-terminal ubiquitin esters to regulate 
protein degradation [62]. Eun Young Seo et al. have investigated that UCHL1 influ-
ences melanogenesis by regulating stability of MITF in human melanocytes, which 
provides a framework for the further researches to evaluate potent therapeutic 
approaches for melanoma and other dyspigmentation disorders [63]. BAP1 (BRCA1-
associated protein-1) belongs to the UCH subfamily of DUBs, and is known as a 
tumor suppressor gene [64, 65]. BAP1 mutations were first identified in a small 
number of lung and breast cancer samples, and have recently been described as 
leading to the pathogenesis of melanoma [66, 67]. The germline mutations in BAP1 
are more prone to malignant melanoma [68]. In 2010, a study reported that 84% of 
inactivating somatic BAP1 mutations were identified in metastasizing uveal melano-
mas, including 15 premature protein termination mutations, and six affecting their 
ubiquitin UCH domains, which were associated with a decrease in BAP1 mRNA level 
[69]. However, in cutaneous melanoma, the germline mutations in BAP1 were less 
than 1% and its effect was unknown [70]. A recent study reported that low BAP1 
mRNA predicted a better OS in older than 50 years cutaneous melanoma patients 
after adjusting for ulceration or Breslow depth [71]. The different function of BAP1 
in cutaneous melanoma and uveal melanoma needs to be studied further.

3.  Ubiquitination in melanoma immunological microenvironment 
modulation

Tumor microenvironment (TME) is consisted of cancer cells, cancer-associated 
fibroblasts, immune cells, and stromal cells. TME emerges as a key mechanism that 
mediate tumor progression [72]. A previous study reported that protein ubiquity-
lation plays a critical role in modulating immune responses and TME [73].

The Cbl proteins are a family of ubiquitin ligases (E3s). Cbl-b, a member of the 
family, functions as a negative regulator that regulates CD8 T cells costimulatory 
pathway and natural killer cell function [74]. In recent years, Cbl-b prone to be one 
of the hotspot targets of tumor immunotherapy because Cbl-b deletion can cause 
spontaneous or induced autoimmune call, and Cbl-b overexpression can result in the 
tumor immune tolerance in infiltrated lymphocytes in TME [75]. A study shows that 
NK cells knocking down of Cbl-b, or targeting its E3 catalytic activity, inhibit the pro-
gression of melanomas and distant melanoma metastases. Moreover, compared with 
WT T cells, Cbl-b−/− CD8+ and CD4+ T cell proliferation are highly suppressed by 
a recombinant PD-L1 Ig, and IFN-γ production is significantly less suppressed. Cbl-b 
deficiency in mice seems to cause a functional resistance of NK cells and T cells to 
PD-L1/PD-1-mediated immune suppression [76]. Adoptive cell therapy (ACT) with 
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autologous T cells can enforce the immune-mediated tumor cell killing, and show a 
promising result in various types of cancer treatments [77, 78]. However, the thera-
peutic efficacy of ACT is still limited because of the tumor-bearing host immune-eva-
sion mechanisms, such as the secretion of transforming growth factor beta (TGFβ) or 
accumulation of Treg cells, both of which severely dampen the activation, expansion, 
and tumor homing of CD8+ T cells [79]. Another study reveals that silencing cbl-b 
reduces TGFβ sensitivity in vitro and enhances anti-tumor effects in vivo. Adoptive 
transfer of Cbl-b-silenced CD8+ T lymphocytes augments tumor vaccine to suppress 
tumor growth and prolong the survival in a B16F10 melanoma model [80].

FBXO38 belongs to the SCF family of E3 ubiquitin ligase of PD-1, and medi-
ates Lys48-linked poly-ubiquitination and substrate proteasome degradation [81]. 
Previous research investigates that FBXO38 mediates PD-1 ubiquitination and 
maintains the anti-tumour activity of T cells in melanoma cells [82]. It offers an 
alternative method to block the PD-1 and highlights the clinical potential of the 
regulation of anti-tumour immunity through ubiquitination of FBXO38.

SIAH2, potent E3 RING finger ubiquitin ligases, mediates the cell cycle, apopto-
sis, and DNA repair regulation through targeting subsequent related proteins [83]. 
Previous study finds that hypoxia activates Siah2 E3 ligase, and then enhances the 
Warburg effect and pro-tumor immune response via degrading nuclear respiratory 
factor 1 (NRF1) through ubiquitination on lysine 230 [84]. A recent study reveals 
the effect and mechanism of Siah2 on the T cells and immune therapy. As is shown 
in this article, in the one way, Siah2-deficient mice suppress melanoma growth, 
increase the infiltration of T effector cells, and decrease number of FOXP3+ 
Treg cells. Inhibition of Siah2−/− melanoma cell proliferation is p27 dependent. 
Moreover, Siah2−/− BM-transplanted mice inhibit the melanoma growth, which 
may be a clinical potential of new adoptive cell therapy. On the other hand, loss of 
Siah2 exhibits synergy with anti-PD1 therapy in melanoma.

In addition to Ub, lots of Ub-related proteins display an immune regulation func-
tion in melanoma. A family of Toll-like receptors (TLRs) involves in the recognition 
of microbial components and regulates innate immune responses [85, 86]. TNFAIP3 
(TNF-α induced protein 3), an ubiquitin-editing enzyme, can negatively regulate 
the TLRs via function as an ubiquitin-editing molecule [87]. E3 ligase NEDD4 medi-
ates the function of immune regulation. Silence of NEDD4 inhibits FOXP3+ Treg 
cells through mediating GITR degradation, and then contributes to melanoma pro-
gression [88]. A previous study finds that USP15 was highly expressed in immune 
cells through analysis of the BioGPS database. In naïve CD4+ T cells, loss of USP15 
stimulates the TCR + CD28 to produce cytokines, such as interleukin 2 (IL-2) and 
interferon-γ (IFN-γ). Moreover, USP15 inhibits the naïve CD4+ T cell activation and 
suppresses TH1 differentiation. MDM2, which is recognized as substrate protein of 
USP15, targets a T cell transcription factor, NFATc2, and negatively regulates T cell 
activation, which was independent of p53. Later, the author testifies the function of 
USP15 in B16F10 melanoma models. This study investigated that USP15−/− mice 
increase IFN-γ + CD4+ T cell infiltration to the tumors, and deficiency of USP15 
reduces melanoma tumors size and tumor-induced lethality [89].

4. Ubiquitination of key transcription factors in melanoma

4.1 Ubiquitination of p53

The tumor suppressor protein p53 is a transcription factor that can affect cell 
proliferation by regulating the expression of its target protein [90]. P53 interacts with 
E3 ligase MDM2 in the nucleus, and is transferred from the nucleus to the cytoplasm 
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following ubiquitin, resulting in proteasome degrading [91]. In 2003, Leonard Girnita 
et al. discovered that inhibition of p53 leads to ubiquitination and down-regulation 
of the IGF-1R in human malignant melanoma cells. This impact was independent of 
the p53 status (wild type or mutated) but can be rescued by coinhibition of MDM2. 
Mdm2 serves as a ligase in ubiquitination of the IGF-1R [92]. Unlike other solid 
tumors, malignant melanomas retain the expression of wild-type p53 and typically 
lack p53 mutations [93, 94]. Adil Anwar et al. reveal that the wild-type p53 is the 
target for the ubiquitin-proteasomal pathway (UPP) degradation. The residues 
serine 15 and serine 20 are also essential for the binding of MDM2, which control 
p53 destruction via UPP pathway. In this article, p53 stabilization mediated by UPP 
inhibitors is independent of phosphorylation at residues serine 15 and serine 20 of p53 
in melanoma cells [95]. MKRN2 is recognized as a novel ubiquitin E3 ligase target-
ing the p65 subunit of NF-κB to negatively regulate inflammatory responses [96]. A 
recent study indicates that the MKRN2 expression increases in the human melanoma 
cell lines, and silence of this gene leads to the suppression of melanoma proliferation 
by upregulation of p53. To investigate the mechanism of this effect, authors take 
co-immunoprecipitation and glutathione S-transferase pulldown assays to confirm 
the interaction of MKRN2 with p53 and take in vitro ubiquitination assays to study the 
ubiquitination of p53 by MKRN2. The result shows that MKRN2 interacts with p53, 
and ubiquitylates p53, leading to the influence of melanoma cell proliferation [97].

4.2 Ubiquitination of c-Myc

The transcription factor c-Myc plays an important role in cell proliferation and 
differentiation, cell cycle, metabolism, and apoptosis [98]. C-Myc is a protein that 
is very unstable and vulnerable to degradation in a proteasome-dependent manner. 
Research has identified the E3 ligase of c-Myc in melanoma. Also, c-Myc can be 
specifically bound by the E3 ligase SKP2 [99].

5.  Melanoma therapeutic strategy via targeting the  
ubiquitin-proteasome system (UPS)

In protein degradation and melanoma pathogenesis, the UPS plays a crucial role, 
as shown above. The pathogenesis of malignant melanoma leads to genetic changes, 
irregular expression, or dysfunction [100]. Hence, targeting the UPS may be a poten-
tial therapeutic strategy for melanoma. Currently, many small molecule inhibitors 
targeting different components of the UPS, including the proteasome, E3 ligases, E1 
enzymes, E2 enzymes, ubiquitin-like proteins, and DUBs, have been developed [101].

Bortezomib is the first proteasome inhibitor approved by FDA, which was 
originally used for multiple myeloma treatment [102]. However, due to the clini-
cal safety, the study in other cancer researches, including melanoma, has been 
discontinued. Compared to the proteasome inhibitor bortezomib, drugs targeting 
a particular E3 ubiquitin ligase are expected to have better selectivity with less 
associated toxicity relative to the proteasome inhibitor bortezomib [103]. MDM2 is 
an E3 ubiquitin ligase with the ability to regulate tumor suppressor p53 and poten-
tiate Notch signaling by degrading Numb [104, 105]. Nutlin-3a, an imidazoline 
compound, has been generally known as a MDM2 inhibitor. Nutlin-3a can suppress 
melanoma and other cancers, including retinoblastoma, leukemia, and neuro-
blastoma [106]. Meanwhile, WIP1 inhibitor (WIP1i), GSK2830371, can enhance 
p53-mediated tumor suppression by MDM2–p53 inhibitors, nutlin-3, RG7388, and 
HDM201 in cutaneous melanoma [107]. Therefore, more findings from the phase I 
clinical trials are needed to evaluate whether there exist any significant side effects.
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Besides, Siah2 is known as a RING finger E3 ubiquitin ligase. Inhibition of Siah2 
activity using a peptide is reported to be able to weaken its effect on hypoxia, effec-
tively leading to melanoma metastasis inhibition, while suppression of Siah2 activi-
ties prevents the tumorigenicity of melanoma by disrupting Ras/MAPK signaling 
pathways [108]. Menadione (MEN), also known as vitamin K3, is a quinone used for 
cancer chemotherapeutic agents. A recent research identifies MEN as a novel Siah2 
inhibitor, which attenuates hypoxia and MAPK signaling, and blocks melanoma 
tumorigenesis [109]. This study revealed that targeting Siah2 by MEN may be a new 
therapeutic strategy in melanoma treatment.

Cullin-RING ligases (CRLs) are a subgroup of the E3 ligases, and play an 
important role in the degradation of oncology relative proteins. It is activated by the 
neddylation pathway, such as NEDD8 conjugation [110]. The NEDD8-activating 
enzyme (NAE) is a critical regulator of the neddylation pathway [111]. Pevonedistat 
(TAK-924/MLN4924) is reported as a first-in-class, small-molecule inhibitor 
of NAE. Previous preclinical studies reveal that Pevonedistat is associated with 
tumor growth inhibition of a range of cell lines and primary human cancer cells 
derived from solid tumors, including malignant melanoma [112, 113]. A phase I 
study of Pevonedistat about patients with advanced solid tumors was undertaken. 
The results find that, in nine melanoma patients, one achieved a partial response 
(PR) while another 8 patients achieved stable disease (SD) lasting 6 months [114]. 
In addition, another phase I study (NCT01011530) was conducted to assess the 
safety, pharmacokinetics (PK), pharmacodynamic (PD), and antitumor activ-
ity of Pevonedistat in metastatic melanoma patients. The maximum tolerated 
dose (MTD) is reported as 209 mg/m2. Most patients have a well toleration to 
Pevonedistat, only 16% patients experience drug-related serious adverse event 
(SAE), such as drug-related grade 4 acute renal failure, grade 3 myocarditis, and 
grade 3 small intestinal obstruction. At the end of the research, the research results 
show that one patient achieves a partial response, and stable disease is reported in 
15 patients with lasting for 6.5 months or more in 4 patients [115].

As mentioned, ubiquitination removes the process of Ub and plays an important 
role in genomic instability regulation and tumorigenesis processes. Thus, several DUB 
inhibitors have been developed and identified as potential anticancer agents [116]. G9 
is described as small molecule Usp9x inhibitor suppressing Usp9x activity [117]. G9 can 
inhibit NRAS mutant melanoma growth by decreasing Ets-1 protein content and NRAS 
expression. G9 also has a synergistic effect with PD0325901, a MEK inhibitor [60]. For 
specific Usp9x inhibitors such as G9 targeting two other DUBs, namely Usp24 and Usp5, 
more drug testing is needed [117, 118]. In addition, Spautin-1 is recognized a potent 
USP10/13 deubiquitinating activity antagonist. A recent study revealed that Spautin-1 
plays an anti-tumor role in melanoma suppression via DNA damage by increasing ROS 
levels and has a synergistic effect with Cisplatin [119]. Targeting USP10/13 by Spautin-1 
may be a new therapeutic strategy in melanoma patient treatment.

6. Conclusions

Melanoma has a low 5-year survival rate due to being susceptible to invasion and 
metastasis. Recently, growing evidence identified the critical role of ubiquitina-
tion and de-ubiquitination in malignant melanoma progression, which may be the 
novel targets for cancer therapy. In this article, we make a brief conclusion that the 
misregulated expressions of the E2 ubiquitin conjugating-enzymes, E3 ubiquitin 
ligases, and DUBs lead to aberrant oncogenic signaling in malignant melanoma 
(Figure 1). The ubiquitination plays a vital role in melanoma not only through ubiq-
uitination of key transcription factors or key cell signaling but also immunological 
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microenvironment modulation. We also make a conclusion of the target UPS 
components, the corresponding therapeutic drugs or potential therapeutic targets, 
and the molecular mechanism (Table 1). Understanding of ubiquitination and 

Figure 1. 
Important UPS components and therapeutic targets toward melanoma pathogenesis.

Reference UPS 

component

Potential 

therapeutic 

targets or 

drugs

Experimental 

model

Molecular 

mechanism

Clinical trial

[10] Fbxw7 Targeting 

NOTCH 

signaling

Human and 

cells

Inhibiting NOTCH 

activation, 

unleashing HSF1, 

and activating 

the MAPK/ERK 

signaling

None

[19] SKP2 None Human and 

cells

Stabilizing the 

MTH1 expression 

via K63-linked 

polyubiquitination, 

and mediating 

degradation of 

cyclin A

None

[22, 24] HACE1 Targeting 

HACE1

Human and 

cells

Inhibiting YAY1 

signaling, and 

activating RAC-

Family GTPases, 

and regulating K27 

ubiquitination of FN

None

[26] ITCH None Cells Mediating BRAF 

polyubiquitination

None

[30, 31] UBE2C None Cells Suppressing both the 

level and the activity 

of MPF

None
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Reference UPS 

component

Potential 

therapeutic 

targets or 

drugs

Experimental 

model

Molecular 

mechanism

Clinical trial

[32] UBE2S Targeting 

UBE2S

Human, animal 

and cells

Catalyzing 

Lys11-linkage 

ubiquitination, and 

inhibiting EMT

None

[35] MKRN2 Targeting 

MKRN2

Cells Interacting with 

ubiquitylated P53

None

[50] USP54 Targeting 

USP54

Animal and 

cells

Unknown None

[52] USP18 Targeting 

USP18

Animal and 

cells

Bing stimulated by 

IFN-γ, and regulating 

CTL CD8+ immune-

cell function

None

[53] USP5 Targeting 

USP5

Cells Blocking p53 and 

FAS induction, and 

then suppressing cell 

cycle checkpoint and 

apoptosis

None

[54] USP4 Targeting 

USP4

Cells Promoting EMT None

[55] USP15 Targeting 

USP15

Animal and 

cells

Downregulating 

MDM2 expression, 

and increasing 

frequency of CD8+ 

effector T cell 

tumor-infiltrating

None

[62] UCHL1 Targeting 

UCHL1

Cells Regulating stability 

of MITF in human 

melanocytes

None

[67, 68] BAP1 Targeting 

BAP1

Human, animal 

and cells

Unknown None

[105, 106] MDM2 Nutlin-3a Human, animal 

and cells

Inhibiting MDM2 

and cyclin B1/CDK1-

phosphorylated 

nuclear iASPP

None

[107, 108] Siah2 Menadione Cells Attenuating hypoxia 

and MAPK signaling

None

[59, 116] Usp9x G9 Cells Decreasing Ets-1 

protein content and 

NRAS expression, 

and having a 

synergistic effect 

with PD0325901

None

[111–113] NEDD8 Pevonedistat Human, animal 

and cells

Inhibiting the activity 

of cullin E3 ligases 

and then stabilizing 

cullin substrates

NCT01011530

[118] USP10/13 Spautin-1 Animal and 

cells

Inducing DNA 

damage by increasing 

ROS levels, and 

having synergistic 

effect with Cisplatin

None

Table 1. 
Summarization of the target UPS components.
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de-ubiquitination mechanisms and their regulation in melanoma will help us to 
better understand the pathogenesis of this cancer, and develop effective therapeu-
tic approaches, which lets us see a promising future for the application of these 
advancements owing to the prosperity and success of drugs targeting ubiquitination 
and de-ubiquitination in melanoma.
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Acronyms and abbreviations

ACT  Adoptive cell therapy
BAP1  BRCA1-associated protein-1
CRC  Colorectal cancer
DUB  Deubiquitinating enzymes
E1  The ubiquitin-activating enzyme
E2  The ubiquitin-conjugating enzyme
E3  The ubiquitin ligase
EMT  Epithelial-mesenchymal transition
Fbxw7  F-box/WD repeat-containing protein 7
FN  Fibronectin
HACE1   HECT domain and ankyrin repeat-containing E3 ubiquitin protein 

ligase 1
HSF1  Heat-shock factor 1
ISG15  Interferon-stimulated gene 15
MAGE-A11 Melanoma antigen-A11
MEN  Menadione
miRNAs MicroRNAs
MITF  Microphthalmia-associated transcription factor
MKRN2  Makorin ring finger protein 2
MPF  M-phase-promoting factor
NEDD8  Neural precursor cell expressed, developmentally down-regulated8
NRF1  Nuclear Respiratory Factor 1
Skp2  S-phase kinase-associated protein 2
SUMO  Small ubiquitin-like modifiers
TLRs  Toll-like receptors
TME  Tumor microenvironment
UBE2S  Ubiquitin-conjugating enzyme E2S
UBLs  Ubiquitin-like proteins
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