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Chapter

Fourier Transform Infrared 
Spectroscopy of the Animal 
Tissues
Vineet Kumar, Shruti D. Vora, Foram A. Asodiya, 

Naveen Kumar and Anil K. Gangwar

Abstract

Animal tissues are extensively used as scaffolds for tissue engineering and 
 regenerative therapies. They are typically subjected to decellularization process to 
obtain a cell-free extracellular matrix (ECM) scaffolds. It is important to identify 
chemical structure of the ECM scaffolds and Fourier transform infrared (FTIR) 
appears to be a technique of choice. In this chapter, FTIR spectra of native and 
decellularized buffalo aortae, buffalo diaphragms, goat skin, and native bovine 
cortical bone are presented. The transmittance peaks are that of organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups in 
both native and decellularized aortae, diaphragms and skin. In bone, the transmit-
tance peaks are that of inorganic ν1, ν3 PO4

3−, OH− in addition to organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups. 
These important transmittance peaks of the tissue samples will help researchers in 
defining the chemical structure of these animal tissues.

Keywords: buffalo aorta, buffalo diaphragm, bovine bone, goat skin,  
Fourier transform infrared spectroscopy

1. Introduction

The extracellular matrix (ECM) scaffolds primarily composed of structural 
collagen protein are widely used in tissue engineering and regenerative medicine 
[1–15]. These are usually prepared from animal tissues by decellularization process. 
Decellularization is the process of removal of native cells from animal tissue, leaving 
behind a three-dimensional network of ECM proteins while preserving the bioactivity 
and mechanics of the tissue. In the decellularization process, animal tissues are sub-
jected to physical, enzymatic and chemical treatments. Physical methods of decellu-
larization include freezing, direct pressure, sonication, and agitation [16]. Enzymatic 
techniques of decellularization include the use of protease (trypsin) [1–5, 8, 10, 12–15], 
endonucleases and exonucleases. Chemical methods of decellularization include the 
use of acids and alkalis (acetic acid, peracetic acid, hydrochloric acid, sulfuric acid, 
ammonium hydroxide), nonionic detergents (Triton X-100), ionic detergents (sodium 
dodecyl sulfate, sodium deoxycholate, Triton X-200) [1–15], zwitterionic detergents 
(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, sulfobetaine-10, 
sulfobetaine-16), organic solvent (Tri(n-butyl)phosphate) [3, 10], hypertonic and 
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hypotonic solutions [2, 3, 8, 10, 13, 15], and chelating agents (EDTA). These reagents 
at higher concentrations extensively disrupt the structural proteins of ECM scaffolds 
and make it impossible to analyze by routine techniques [17]. Fourier transform 
infrared (FTIR) spectroscopy is one of the preferred technique for identification of 
biomolecules through the study of their characteristic vibrational movements [11, 13, 
14, 18]. This technique is simple, reproducible, nondestructive to the tissue, and only 
small amounts of tissue (micrograms to nanograms) with a minimum preparation 
are required. In addition, this technique also provides molecular-level information 
allowing investigation of functional groups, bonding types, and molecular conforma-
tions. The characteristic peaks in FTIR spectra are molecule specific and provide direct 
information about biochemical composition. This chapter highlights the application 
of FTIR spectroscopy for characterization of native and decellularized buffalo aortae, 
buffalo diaphragms, goat skin, and native bovine cortical bone.

2. Materials

2.1 Chemicals and reagents

Sodium dodecyl sulfate (SDS), Trypsin, Sodium chloride (NaCl), Phosphate-
buffered saline (PBS), Ethylene diaminetetraacetic acid (EDTA), Sodium azide 
(NaN3), Gentamicin, Potassium bromide (KBr) powder. All the chemicals and 
reagents used were of the high purity and obtained from Sigma-Aldrich (St. Louis, 
MO, USA) unless mentioned otherwise. All solutions were prepared fresh using 
deionized water and analytical grade chemicals at room temperature (unless 
indicated otherwise).

2.2 Equipments

Magnetic stirrer (C-MAG HS7, IKA, USA), Analytical digital lab balance 
(Citizen Enterprises, Delhi, India), Fourier transform infrared spectrophotometer 
(FTIR 8400 s Shimadzu Corporation, Tokyo, Japan), Bard Parker blade number 24, 
Autoclaved sterile dissecting scissors, Autoclaved sterile jar (Borosil, India), Sterile 
measuring cylinders (Borosil, India), Dishes (Borosil, India) and Protective equip-
ment such as surgical gloves and surgical autoclaved instruments were used.

2.3 Tissue samples

Fresh cadaver buffalo aorta (Figure 1A), buffalo diaphragm (Figure 1B) and 
goat skin (Figure 1C) collected in chilled (4°C) sterile 1X PBS (pH 7.4) containing 
0.016% gentamicin (antibiotic), 0.0205% EDTA (proteolytic inhibitor) and 0.1% 
NaN3 (antimycotic) were our study materials. A cortical bone collected from the 
anterior diaphysis of the right femur of an adult cadaver Gir cow was also used.

Figure 1. 
Gross images of buffalo aorta (a), buffalo diaphragm (B), and goat skin (C).
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3. Methods

3.1 Fourier transform infrared spectroscopy of the buffalo aorta

The aorta, an elastic artery, has a trilaminar structure consisting of a tunica 
intima, media, and adventitia. The media comprises cellular elements (including 
smooth muscle cells) and structural proteins (notably collagen and elastin) that 
form the ECM. Before being used in regenerative therapies, cellular elements of the 
aorta should be removed by decellularization process. The decellularization of fresh 
posterior aorta from deceased donor buffalo was completely achieved by treatment 
with 1% SDS for 24 hours followed by 0.25% trypsin for 2 hours and again by 1% 
SDS for 24 hours [19]. Both the native and decellularized aortae were characterized 
by FTIR spectroscopy [14]. Herein, one milligram of each freeze-dried tissues were 
mixed with pure dry KBr powder in 1:10 ratio, and pelleted. The FTIR spectra were 
recorded by an infrared spectrophotometer in the 500–4000 cm−1 wave number 
spectral range with a spectral resolution of 2 cm−1 and 45 scans. Figure 2 illustrates 
the FTIR spectra of native and decellularized aortae. The transmittance peaks 
indicated the presence of organic collagen amide A, amide B, amide I, amide II and 
amide III chemical functional groups in both native and decellularized aortae. The 
amide A band (3294 cm−1) is associated with H-bonded N-H stretching [11, 13, 20] 
and was found at 3282.95 cm−1 for native aorta and 3280 cm−1 for decellularized 
aorta. The amide B band (2953 and 2928 cm−1) is related to CH2 asymmetric stretch-
ing [11, 13, 21] and was observed at 2958.9 cm−1 for native aorta and 2954.08 cm−1 
for decellularized aorta. The amide I band (1641–1658 cm−1) is associated with C=O 
hydrogen bonded stretching [11, 13, 22] as recorded at 1658.84 cm−1 for native aorta 
and 1658.84 cm−1 for decellularized aorta. The amide II (1539–1546 cm−1) is associ-
ated with C-N stretching and N-H in plane bending from amide linkages, including 
wagging vibrations of CH2 groups from the glycine backbone and proline side-
chains [11, 13, 23] in native aorta and decellularized aorta appeared at 1526.71 cm−1 
and 1529.60 cm−1, respectively. The amide III (NH bend) band was found at 
1282.55 cm−1 for NA and 1230.69 cm−1 for decellularized aorta [11, 13, 24].

3.2 Fourier transform infrared spectroscopy of the buffalo diaphragm

The diaphragm is a dome shaped structure, composed of muscle surround-
ing a central tendon, which separates the thoracic and abdominal cavities. Before 

Figure 2. 
FTIR spectra showing transmittance peaks of native aorta (NA) at 1282.55, 1526.71, 1658.84, 2958.9 and 
3282.95 cm−1; and decellularized aorta (DA) at 1230.69, 1529.60, 1658.84, 2954.08 and 3280 cm−1.
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the clinical application, fresh tendinous portion of diaphragm from deceased 
donor buffalo was decellularized using 2% SDS solution for 48 hours and FTIR 
spectroscopic characterization was performed [11]. Herein, one milligram of 
each freeze-dried native and decellularized diaphragms were mixed with pure 
dry KBr powder in 1:10 ratio, and pelleted. The FTIR spectra were recorded by an 
infrared spectrophotometer in the 500–4000 cm−1 wave number spectral range 
with a spectral resolution of 2 cm−1 and 45 scans. The FTIR spectra of native and 
decellularized diaphragms are illustrated in the Figure 3. The transmittance peaks 
indicated the presence of organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups in both native and decellularized dia-
phragms. The amide A band is associated with H-bonded N-H stretching [20] and 
was found at 3386.15 cm−1 for native diaphragm and 3343.71 cm−1 for decellularized 
diaphragm. The amide B band is related to CH2 asymmetric stretching [21] and was 
observed at 2955.04 cm−1 for native diaphragm and 2954.08 cm−1 for decellularized 
diaphragm. The amide I band is associated with C=O hydrogen bonded stretching 
[22] as recorded at 1657.87 cm−1 for native diaphragm and 1649.19 cm−1 for decellu-
larized diaphragm. The amide II is associated with C-N stretching and N-H in plane 
bending from amide linkages, including wagging vibrations of CH2 groups from the 
glycine backbone and proline side-chains [23] in native diaphragm and decellular-
ized diaphragm appeared at 1535.39 cm−1 and 1534.11 cm−1, respectively. The amide 
III band was found at 1238.34 cm−1 for native diaphragm and 1220.02 cm−1 for 
decellularized diaphragm confirming presence of hydrogen bonds [24].

3.3 Fourier transform infrared spectroscopy of the goat skin

The goat skin consists of two layers; superficial epidermis, composed of strati-
fied squamous keratinized epithelium and underlying dermis, composed of dense, 
irregular connective tissue mainly collagen fibers. Skin appendages such as hair 
follicles, sebaceous and sweat glands were found in the dermis. The deepithelializa-
tion of fresh goat skin was completely achieved by treatment with 0.25% trypsin 
in 4 mol/L NaCl for 8 hours. Further treatment with 2% SDS for 48 hours demon-
strated complete decellularization of the cellular dermis [13]. Native, deepithelial-
ized and decellularized goat skins were characterized by FTIR spectroscopy [13]. 
One milligram of each freeze-dried native, deepithelialized and decellularized 
skins were mixed with pure dry KBr powder in 1: 10 ratio, and pelleted. The FTIR 
spectra were recorded by an infrared spectrophotometer in the 500–4000 cm−1 

Figure 3. 
FTIR spectra showing transmittance peaks of the native diaphragm (ND) at 1238.34, 1535.39, 1657.87, 2955.04 
and 3386.15 cm−1; decellularized diaphragm (DD) at 1220.02, 1534.11, 1649.19, 2954.08 and 3343.71 cm−1.
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wave-number spectral range with a spectral resolution of 2 cm−1 and 45 scans. The 
FTIR spectra of native, deepithelialized and decellularized skins are illustrated in 
the Figure 4. The transmittance peaks indicated the presence of organic collagen 
amide A, amide B, amide I, amide II and amide III chemical functional groups in 
native, deepithelialized and decellularized skins. The peaks at 3288.74 cm−1 for 
native skin, 3289.70 cm−1 for deepithelialized skin and 3306.10 cm−1 for decellular-
ized skin corresponds to the amide A band (3294 cm−1) of collagen is due to N-H 
stretching vibrations when the N-H group of the peptide is involved in hydrogen 
bonds [20]. The peaks at 2936.72 cm−1 for native skin, 2953.12 cm−1 for deepithelial-
ized skin and 2953.12 cm−1 for decellularized skin corresponds to the amide B band 
(2953 and 2928 cm−1) is due to asymmetric stretching of the CH2 stretching vibra-
tion [21]. The peaks at 1657.87 cm−1 for native skin, 1658.84 cm−1 for deepithelial-
ized skin and 1666.55 cm−1 for decellularized skin corresponds to the amide I band 
(1641–1658 cm−1) is due to the stretching vibration of the peptide carbonyl group 
(-C=O) along the polypeptide backbone [22]. The peaks at 1546.96 cm−1 for native 
skin, 1530.57 cm−1 for deepithelialized skin and 1547.93 cm−1 decellularized skin 
corresponds to the amide II (1500–1560 cm−1) which arises from the N-H bending 
vibration coupled to C-N stretching [23]. Amide III band was found at 1236.41 cm−1 
for NCS, 1238.34 cm−1 for DCS, 1238.34 cm−1 for CADM, and 1238.34 cm−1 for BSC 
confirming the presence of hydrogen bonds [24].

3.4 Fourier transform infrared spectroscopy of the bovine bone

Bone is a composite biomaterial mainly composed of organic collagen fibers 
(chiefly type I collagen) and inorganic hydroxyapatite [Ca10(PO)6(OH)2] crystals. 
Both the components of bone have specific chemical signatures and, consequently, 
distinctive infrared spectra at the molecular level [18]. The FTIR spectroscopy of 
the bovine bone tissue was described in a recent study in which one milligram of 
powdered native cortical bone was mixed with pure dry KBr powder in 1:10 ratio, 
and pelleted. The FTIR spectrum was recorded by an infrared spectrophotometer 

Figure 4. 
FTIR spectra showing peaks of native goat skin (NS) at 1236.41, 1546.96, 1657.87, 2936.72, 3288.74 cm−1, 
deepithelialized goat skin (DS) at 1238.34, 1530.57, 1658.84, 2953.12, 3289.70 cm−1 and decellularized goat skin 
(AS) at 1238.34, 1547.93, 1666.55, 2953.12, 3306.10 cm−1.
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Figure 5. 
FTIR spectrum of the native cortical bone showing transmittance peaks at 931.65, 1032.92, 1235.45, 1530.51, 
1671.37, 2877.89, 2966.62, 3079.46, 3281.99, 3615 cm−1.

in the 500–4000 cm−1 wave number spectral range with a spectral resolution of 
2 cm−1 and 45 scans [18]. The FTIR bone spectrum can be roughly separated into 
two regions where the organic and inorganic components have distinct peaks 
(Figure 5). The peak at 931.65 cm−1 assigned to the ν1 phosphate band [25–27] is 
due to the symmetric stretching vibration of the apatitic phosphate ion (PO4

3−) of 
hydroxyapatite [27, 28]. The peak at 1032.92 cm−1 corresponds to the ν3 phosphate 
band [29, 30] is due to the asymmetric stretching vibration of the PO4

3− [27, 31]. The 
ν3 phosphate peak at 1032.92 cm−1 is coming from the nonstoichiometric hydroxy-
apatite which may contain CO3

2− or HPO4
2− or both in the apatite [27, 31]. With 

age, the concentration of CO3
2− increases during apatite maturation, the amount 

of labile HPO4
2− decreases, keeping the Ca/(C + P) atomic ratio almost constant 

[32]. The peaks at 1235.45 cm−1, 1530.51 cm−1 and 1671.37 cm−1 correspond to the 
amide group, and they originate from the collagen [27]. The peak at 1235.45 cm−1 
corresponds to the amide III results from mixed C-N stretch and N-H in-plane bend 
with additional contributions from C-C

α
 stretch [29]. The peak at 1530.51 cm−1 cor-

responds to the amide II which arises from the combined effect of C-N stretch and 
N-H in-plane bending [27, 31]. The peak at 1671.37 cm−1 corresponds to the amide 
I is due to the stretching vibration of the peptide carbonyl group (-C=O) along the 
polypeptide backbone [27]. The peak at 2879.82 cm−1 is asymmetric CH2 stretch and 
it arises from the organic component [27]. The peak at 2965.82 cm−1 corresponds to 
the symmetric CH2 and asymmetric CH3 stretch of the organic component [27]. The 
peak at 3079.46 cm−1 corresponds to the amide B is due to asymmetric stretching of 
the CH2 stretching vibration and the absorption due to the CH2 alkyl chain [27]. The 
weak intensity peak at 3281.99 cm−1 corresponds to the amide A band of collagen 
is due to N-H stretching vibrations when the N-H group of the peptide is involved 
in hydrogen bonds [27]. The broad peak at 3536.60 cm−1 is attributed to the pres-
ence of the OH− group [27, 33]. The transmittance peaks indicated the presence of 
inorganic ν1, ν3 PO4

3−, OH− in addition to organic collagen amide A, amide B, amide 
I, amide II and amide III chemical functional groups in the bovine cortical bone 
(Figure 5).



7

Fourier Transform Infrared Spectroscopy of the Animal Tissues
DOI: http://dx.doi.org/10.5772/intechopen.94582

Author details

Vineet Kumar1*, Shruti D. Vora2, Foram A. Asodiya2, Naveen Kumar3  
and Anil K. Gangwar4

1 Department of Veterinary Surgery and Radiology, College of Veterinary 
and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and 
Technology, Meerut, Uttar Pradesh, India

2 Department of Veterinary Surgery and Radiology, College of Veterinary Science 
and Animal Husbandry, Junagadh Agricultural University, Junagadh, Gujarat, India

3 Division of Surgery, ICAR-Indian Veterinary Research Institute, 
Izatnagar, Uttar Pradesh, India

4 Department of Surgery, College of Veterinary Science and Animal 
Husbandry, Acharya Narendra Deva University of Agriculture and Technology, 
Ayodhya, Uttar Pradesh, India

*Address all correspondence to: bharadwaj374@gmail.com

4. Conclusions

The FTIR spectra of native and decellularized buffalo aortae, buffalo 
 diaphragms, goat skin, and native bovine cortical bone are presented. The trans-
mittance peaks are that of organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups in both native and decellularized aortae, 
diaphragms and skin. In bone, the transmittance peaks are that of inorganic CO3

2−, 
ν1, ν3 PO4

3−, OH− in addition to organic collagen amide A, amide B, amide I, amide II 
and amide III chemical functional groups. These important transmittance peaks of 
the tissue samples will help researchers in defining the chemical structure of these 
animal tissues.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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