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Chapter

Bulk and Nanocatalysts 
Applications in Advanced 
Oxidation Processes
Luma Majeed Ahmed

Abstract

Advanced oxidation processes (AOPs) are considered to be vital methods 
for treating the contaminations produced mainly by the human activations. In 
present-day, UV light or solar light, bulk and nano- photocatalysts are often used to 
enhance this technology by creating the highly reactive species such as the hydroxyl 
radicals. Extreme hydroxyl radical is considered as a key to start the photoreaction. 
Photoreaction is widely used in treatment of Lab and industrial contaminations, 
preparation of compounds and produced the renewable energy, so it’s classified as 
green technique. In order to improve the efficiency of this reaction with fabrication 
the surface of the used photocatalyst such as metal doped, sensitized and produced 
a composite as bulk catalyst or nano catalyst.

Keywords: nanocatalysts, bulk catalyst, advanced oxidation processes,  
wastewater treatment, photocatalysis, Fenton reaction, photo-Fenton

1. Introduction

In this section, the advanced Oxidation Processes concepts will be related to use 
of the bulk and the nano- catalysts as vital materials for easily generating a highly 
oxidizing species and reactive oxygen species (ROSs) such as in aqueous or alco-
holic solution [1]. ROSs are contains three primary kinds: superoxide anion (O2

•−), 
hydrogen peroxide (H2O2) and the hydroxyl radical (HO•) [2], which produced 
from reaction of adsorbed oxygen molecule on catalyst’s surface with one electron 
in conductive band under illumination by light as UV, or visible or solar light, this 
mechanism is useful to reduce the recombination process and increased the life time 
of hole in valance band [3, 4]. As explained in Figure 1.

The ROSs are having the electron configurations as tabled in Table 1 [5–8].

2. Advance oxidation process applications

In the last few years, several researches have predominated in many universi-
ties and research centers on the scientific ventures to mainly treat the contamina-
tions that produced by textile factories [9–11], reduced the degradation of food’s 
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dye [12], decolorization of colored organometallic complexes [13], degradation 
of toxic cyclic compounds [14] and produced a hydrogen from alcohol as renew-
able energy [15]. The effective materials for all above mention research are 
generated the hydroxyl radical in aqueous solution with maximum oxidation 
power equals to 2.8 V [1]. Based on to the AOPs, the common sources for creation 

Figure 1. 
Essential mechanism for generating the ROSs under illumination of photo-catalyst particles [1].

Table 1. 
Electronic configurations and chemical formulas for the ROSs types.
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of.OH in AOPs are illustrated in Figure 2, which regards as power to star the dark 
or photo reactions [1, 16–19].

Fortunately, the benefits of AOPs are more than those of drawbacks. The 
benefits of AOPs are summarized up as [1, 20] follows to:

1. Create a large number of free radicals species.

2. Have the appropriate potential to depress the hazardous organic pollutants by 
complete their mineralization and producing CO2 and H2O.

3. Reduce the time of dark or photoreaction.

4. Have low economic cost.

Whereas, the drawbacks of AOPs [1, 21] are quenching the reaction rate with 
increasing the scavenger contains (mostly peroxide ion) and may be generated the 
undesirable hazardous products that prevented the complete of mineralization 
process, hence, the altered of pH or using further cost steps may be essentially to 
treat their problems.

3. Bulk and nano-catalysts

In general, the catalysts may be metal or alloy or semiconductor. Semiconductor 
is wide used as catalyst and can be element or compound as amorphous or crystal-
line or rock salt crystal. Because of semiconductors have intermediate properties 
between metal and insulator, which has given them rescannable electronic and 
structural properties, hence, semiconductor is classified as a better-known kinds, as 
mentioned in Figure 3 [22–24].

The usages of the bulk and nano catalysts are increment with increasing the 
development of life activations. The catalysts were known for the long time to 
increase the rate of reaction with decreasing the time of reaction and the activa-
tion energy in dark reaction or photoreaction. In order to use the catalyst in 

Figure 2. 
Schematic diagram of common sources of.OH in advanced oxidation processes.
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photoreaction as photo catalyst, must have a band gap with raged about 1.1 eV to 
5.0 eV [1, 24]. Referring to Figure 4, several band gap energy positions of some 
common photo catalysts can be displayed [1, 25–27].

The mainly problem in bulk and nano catalyst is recombination process, 
which results in diminishing the efficiency of used photocatalyst by returning the 
photoelectron from conductive band to valance band and reacting with photohole 
immediately. The recombination includes four kinds can be followed in Table 2 
and Figure 5 [1, 28–30].

In order to improve the activity of photocatalysts must depress the recombi-
nation with modify their surfaces with three main methods: surface sensitiza-
tion, metalized photocatalyst surface and coupled for two or more photocatalysts 
as Composite. The details of these modification methods are mention in Table 3 
and Figure 6 [40].

Figure 4. 
Band gap energy positions of different photo-semiconductor at pH = 1.

Figure 3. 
Better-known kinds of semiconductors.
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Kinds Other name Info Type of 

photocatalyst

Direct 

recombination

Band-to- band 

recombination

In this kind, the transition occurrs 

as a radiative transition in direct 

band gap semiconductor. It is created 

when the Free photo electron in CB 

drops directly into free photo hole 

(an unoccupied state) in the VB and 

associated together. Note Figure 5(A).

ZnO have a direct 

band gap.

Volume 

recombination

Centers 

recombination 

or Trap-assisted 

recombination

This case obtains, when defect of 

semiconductor by impurities that given 

a new levels (as traps of photoelectron 

and photohole). It leads to liberate 

heat as phonon in indirect band gap 

semiconductor. Note Figure 5(B).

Pure TiO2 and 

defect of TiO2 by 

metal, which had 

given an indirect 

band gap.

Surface 

recombination

Recombination 

of an exciton

This case occurs at low temperature, 

when the traps at or near the surface or 

interface of the semiconductor, capture 

the photo electron- hole as exciton. 

That attitude to dangling bonds caused 

by the sudden discontinuation of the 

semi-conductor crystal with energy 

just below the band gap value. Note 

Figure 5(C).

It happed in solar 

cells and light 

emitting diode 

(LED) containing 

shallow levels.

Auger 

recombination

— This recombination involves three 

carriers: Free photo electron, free photo 

whole recombine, and the emitting 

the energy as heat or as a photon 

(non-radiative process). The transition 

of energy deals with as intra-band 

transitions, which resulting when 

either electron elevates in higher levels 

of conduction band or hole deeper 

push into the valence band. Note 

Figure 5(D).

This case can be 

obtained wit short 

lifetime when 

heavy doping 

defects (like Ag) 

in direct-gap 

semiconductors 

under present 

sunlight.

Table 2. 
The most common recombination types concepts.

Figure 5. 
The schematic diagram of the most common recombination kinds.
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Table 3. 
The description of the methods for modifying photocatalysts [31–39].
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Figure 6. 
Schematic diagram for modification of photocatalyst surface [40].

Application field Type of used AOPs Efficiency References

Textile dye

Reactive red 2 dye

O2/UV-A(250 W)/ZnO/

H2O2

89.8% (Photodecolorization)

(5 mmole/L) of H2O2

(T = 25°C), (pH = 10)

[41]

Textile dye

direct orange dye

O2/UV-A(250 W)/ZnO 92.7%

(Photodecolorization)

(T = 35°C), (pH = 6.68)

[42]

Textile dye

reactive yellow 14 

dye

O2/UV-A(250 W)/ZnO 91.41%

(Photodecolorization)

(T = 38°C), (pH = 6.75)

[43]

Industrial dye

Chlorazol black 

BH dye

O2/UV-A/ZnO 99.07%

(Photodecolorization)

(T = 15°C), (pH = 7.63)

[44]

Industrial dye

Acid Red 87(Eosin 

(Eosin Yellow) dye

O2/UV-A(125 W)/ZnO

O2/UV-A(250 W)/ZnO

O2/Solar/ZnO

74.4.5%

(Photodecolorization)

(T = 38°C), (pH = 8.6)

98.5%

(Photodecolorization)

(T = 38°C), (pH = 8.6)

96.5%

(Photodecolorization)

(T = 42°C), (pH = 8.6)

[32]

Textile dye

Dispersive yellow 

42 dye

O2/UV-A(125 W)/ZnO

O2/UV-A(125 W)/ZnO/Fe2+

O2/UV-A(125 W)/ZnO/

Fe2++1% H2O2

94.40%

(Photodecolorization)

(T = 20°C), (pH = 7.7)

60.86% (Photodecolorization)

(T = 20°C), (pH = 7.7)

16.44% (Photodecolorization)

(5 x 10−4 mole/L) of Fe2+

(T = 20°C), (pH = 7.7)

[10]
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Application field Type of used AOPs Efficiency References

Drug dye

Cobalamine(Vit 

B12)

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 

K2S2O8

O2/UV-A(250 W)/ZnO/ 

0.025% H2O2

O2/UV-A(250 W)/ZnO/ 

K2S2O8 + 0.025% H2O2

79.33%

(Photodecolorization)

(T = 30°C), (pH = 6.5)

88.75%

(Photodecolorization)

(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)

90.80%

(Photodecolorization)

(T = 30°C), (pH = 6.5)

95.85%

(Photodecolorization)

(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)

[19]

Food dye

Carmoisine (E122) 

dye

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 

0.1% H2O2

O2/UV-A(250 W)/ZnO/ Fe2+

73.11%

(Photodecolorization)

(T = 18°C), (pH = 7.55)

62.58%

(Photodecolorization)

(T = 18°C), (pH = 7.55)

36.99%

(Photodecolorization)

(1 x 10−5 mole/L) of Fe2+

(T = 18°C), (pH = 7.55)

[12]

Lab materials

Co(II) Complex of 

Schiff Base

O2/UV-A(250 W)/ZnO 99.11%

(Photodecolorization)

(T = 38°C), (pH = 7.55)

[13]

Industrial dye

Methyl green dye

O2/UV-A(400 W)/ ZnO 

NPS

O2/UV-A(400 W)/Ag(2%) 

ZnO NPs

37%

(Photodecolorization)

(T = 25°C), (pH = 5.4)

87.37%

(Photodecolorization)

(T = 25°C), (pH = 5.4)

[35]

Liberated of 

hydrogen from 

Methanol as 

renewable energy

Ar/UV-B(1000 W)/ (0.5 Pt) 

TiO2 NPS

Ar/UV-B(1000 W)/ (0.5 

Au) TiO2 NPS

8.8%

(Photo hydrogen production)

(T = 25°C), (pH = 7.3)

4.5%

(Photo hydrogen production)

(T = 25°C), (pH = 7.3)

[14]

Industrial dye

Light Green SF

Yellowish (Acid 

Green 5) Dye

O2/UV-A(400 W)/ TiO2

O2/UV-A(400 W)/ TiO2 

NPS

90.2%

(Photodecolorization)

(T = 20°C), (pH = 7.3)

88.1%

(Photodecolorization)

(T = 20°C), (pH = 7.3)

[45]
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Application field Type of used AOPs Efficiency References

Industrial dye

Safranine O Dye

O2/UV-A(125 W)/ TiO2 NPS

O2/UV-A(125 W)/ TiO2 

NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 

NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 

NPS/ 0.1% H2O2

O2/UV-A(125 W)/ TiO2 

NPS/ 0.1% H2O2+ Fe2+

90.2%

(Photodecolorization)

(T = 30°C), (pH = 6)

85.92%

(Photodecolorization)

(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)

92.73%

(Photodecolorization)

(T = 30°C), (pH = 6)

98.83%

(Photodecolorization)

(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)

[34]

Industrial dye

Acid Red 87 (Eosin 

Yellow) dye

O2/UV-A(250 W)/ TiO2 NPS

O2/UV-A(250 W)/ TiO2 

NPS+ H2O2

O2/UV-A(250 W)/ WO3 

NPS

O2/UV-A(250 W)/ WO3 

NPS+ H2O2

O2/UV-A(250 W)/ (0.5) 

WO3-TiO2 nanocomposite

O2/UV-A(250 W)/ (0.5) 

WO3-TiO2 nanocomposite+ 

H2O2

63.58%

(Photodecolorization)

(T = 25°C), (pH = 6.09)

50.44%

(Photodecolorization)

(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)

27.84%

(Photodecolorization)

(T = 25°C), (pH = 6.09)

21.54%

(Photodecolorization)

(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)

25.11%

(Photodecolorization)

(T = 25°C), (pH = 6.09)

73.88%

(Photodecolorization)

(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)

[16]

Industrial dye

Methyl green dye

O2/UV-A(250 W)/ZrO2

O2/UV-A(250 W)/

ZrO2 + Fe2+

O2/UV-A(250 W)/

ZrO2 + 1.5% H2O2

O2/UV-A(250 W)/

ZrO2 + K2S2O8

92.31%

(Photodecolorization)

(T = 30°C), (pH = 5.4)

39.93%

(Photodecolorization)

(1 x 10−4 mmole/L) of Fe2+

(T = 30°C), (pH = 5.4)

98.78%

(Photodecolorization)

(T = 30°C), (pH = 5.4)

74.62%

(Photodecolorization)

(1 x 10−4 mmole/L) of K2S2O8

(T = 30°C), (pH = 5.4)

[46]

Lab materials

Fe(II)-(4,5-

DIAZAFLUOREN-9-

ONE 11) COMPLEX

O2/UV-A(400 W)/ Mn3O4

O2/UV-A(400 W)/ 

(1)Mn3O4- (4) ZrO2 

nanocomposite

22.64%

(Photodecolorization)

(T = 15°C), (pH = 4)

40%

(Photodecolorization)

(T = 17°C), (pH = 4)

[47]
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4. Used of bulk or nano catalyst in AOPs

There are many common application of AOPs in environment fields by using 
the white photocatalyst or its modified such as ZnO, TiO2 ZrO2, ZnS, WO3, CdS and 
Mn3O4. The efficiencies with used these photocatalysts are altered with using AOPs 
methods. The efficiency of the photoreaction depends mostly on the concentration 
of colored material, initial pH which affected on the surface of photocatalyst and 
the temperature. As shown in Table 4.

5. Conclusions

This chapter focuses on the source of hydroxyl radical which produces via the 
advance oxidation process. Indeed, this process interests in the forming the different 
species, which in the final step generates a hydroxyl radical. The photocatalyst enhances 
the generating of hydroxyl radicals (2.8 V) in aqueous solution under Uv- light or vis-
ible or solar. The photoexitation of photocatalyst leads to jump of electon to conductive 
band then return to valance band and liberates a hot this process called recombination. 
It is depressed the efficiency of photoreaction. However, some procedures used to 
modify the photocatalyst surface.

Acknowledgements
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Application field Type of used AOPs Efficiency References

Textile dye

Reactive blue 5 dye

O2/UV-A(400 W)/ ZnS NPs

O2/UV-A(400 W)/ Cr-ZnS 

NPs

59%

(Photodecolorization)

(T = 15°C), (pH = 6.3)

94%

(Photodecolorization)

(T = 17°C), (pH = 4.1)

[36]

Industrial dye

Congo red dye

O2/UV-A(400 W)/ ZnS NPs

O2/UV-A(400 W)/ CdS-ZnS 

nanocomposite

95%

(Photodecolorization)

(T = 30°C), (pH = 7.5)

98%

(Photodecolorization)

(T = 30°C), (pH = 7.5)

[39]

Table 4. 
Some applications of bulk and nano photocatalydts in AOPs, with environment chemistry and green chemistry.
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