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Chapter

Fronto-Temporal Analysis of EEG
Signals of Patients with
Depression: Characterisation,
Nonlinear Dynamics and
Surrogate Analysis
Subha D. Puthankattil

Abstract

The recent advances in signal processing techniques have enabled the analysis of
biosignals from brain so as to enhance the predictive capability of mental states.
Biosignal analysis has been successfully used to characterise EEG signals of unipolar
depression patients. Methods of characterisation of EEG signals and the use of
nonlinear parameters are the major highlights of this chapter. Bipolar frontopolar-
temporal EEG recordings obtained under eyes open and eyes closed conditions are
used for the analysis. A discussion on the reliability of the use of energy distribution
and Relative Wavelet Energy calculations for distinguishing unipolar depression
patients from healthy controls is presented. The potential of the application of
Wavelet Entropy to differentiate states of the brain under normal and pathologic
condition is introduced. Details are given on the suitability of ascertaining certain
nonlinear indices on the feature extraction, assuming the time series to be highly
nonlinear. The assumption of nonlinearity of the measured EEG time series is
further verified using surrogate analysis. The studies discussed in this chapter
indicate lower values of nonlinear measures for patients. The higher values of signal
energy associated with the delta bands of depression patients in the lower frequency
range are regarded as a major characteristic indicative of a state of depression. The
chapter concludes by presenting the important results in this direction that may
lead to better insight on the brain activity and cognitive processes. These measures
are hence posited to be potential biomarkers for the detection of depression.

Keywords: depression, relative wavelet energy, wavelet entropy, approximate
entropy, Hurst exponent, largest Lyapunov exponent and fractal dimension,
surrogate analysis

1. Introduction

Depression refers to a state of mental disorder accompanied by mood variations
that affect the thought process, social and physical well-being of an individual.
World Health Organisation reports that more than 264 million people under all age
group suffer globally from this leading cause of disability. Depression may also
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sometimes lead to cognitive impairment. History demonstrates that depressive
disorders have been with human civilization from the very beginning of the man-
kind. Unlike many other ailments that affect the health of an individual, an early
diagnosis of this mental disorder is highly challenging. Timely medical intervention
has been proved to be very effective in arresting the progression of this disorder.
Automated diagnosis using EEG signals of the brain would be highly beneficial in
the effective clinical intervention and thereby assisting the psychiatrists in the
assessment of mental state.

EEG signals contain information about the state of the brain. The variations in
the biosignals, indicating certain symptoms, are highly subjective and may appear
at random in time scale. The electroencephalogram has been used as a tool for
investigating the brain electrical activity in different physiological and pathological
states for several decades. The identification of neurophysiological events, different
behavioural states and the localisation of the areas involved constitute a relevant
task in the EEG analysis.

Electroencephalogram (EEG) is the recording of electrical activity along the
scalp produced by the firing of neurons within the brain. It is a tool which helps in
diagnosing various disorders of the brain and also helps in studying the functional
state of the brain. EEG recording is most commonly done by placing the electrodes
on the scalp while localised measurement of potentials is done subdurally or from
the cerebral cortex. Electrode placement for recording EEG is based on the Interna-
tional 10–20 electrode placement system. The amplitude of the EEG signal is
slightly less than 10 μV to slightly more than 100 μV p–p and the frequency ranges
from 0 to slightly greater than 100 Hz. Earlier, the analysis of EEG has been based
on the assumption that the EEG signals are generated by a highly complex linear
system, but later they have been interpreted as the output of a deterministic system
of relatively low complexity but containing nonlinear elements. Thus applying the
concept of deterministic chaos to the EEG, it can be characterised by various
parameters [1]. EEG studies of depression patients have been proven worthwhile
for quantitative analysis that will lead to the development of automated clinical
diagnostic tools.

In this chapter we discuss the method to characterise and compare frontopolar-
temporal EEG signals of depression patients and normal controls using signal
processing and nonlinear methods. An 8-level Multiresolution decomposition of the
time -frequency analysis, which decomposes a mixed signal into signals at different
frequency bands, is attempted. Energy at different resolution levels has been calcu-
lated using Parseval’s theorem. Relative Wavelet Energy (RWE) is used to charac-
terise the EEG signal energy distribution of healthy subjects and depression patients
at different frequency bands. Wavelet Entropy calculations are performed to assess
the degree of order associated with the acquired signals. All the aforementioned
measures posit better quantitative measures in the comparative study of brain
activity and complexity in depression patients and normal controls.

2. Materials and methods

2.1 Measurement protocol

The real time data was recorded from 30 medication free outpatients under the
age group of 20–50 years comprising of 16 female and 14 male patients from the
Psychiatry department of Medical College, Calicut, Kerala, India (female mean age:
33; male mean age: 35). The measurement was done on unipolar depression patients
who did not have any history of substance abuse and no significant medical illness.
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Similarly 30 age and sex matched healthy controls also participated in the study
who were free of medical illness. None of them reported of a history of any central
nervous system disorder. Bipolar EEG recordings using a 24-channel EEG measur-
ing instrument was carried out at locations FP1-T3 (left half) and FP2-T4 (right
half) of the brain. The electrodes were placed, based on the International 10–20
electrode placement system. An ear clip electrode attached to the right earlobe
served as an isoground connection. The EEG recordings were done by placing the
electrodes on the frontopolar-temporal regions both on the left and right half of the
brain for duration of 5 minutes each, under eyes closed and eyes open condition in a
resting state. The sampling frequency of the signal is 256 Hz and is notch filtered at
50 Hz to remove the power line interference. Statistical analysis was performed by
One-way ANOVA to test for differences among the two classes of EEG signals
recorded. Informed written consent was obtained from all the subjects who partic-
ipated in the study and medical ethical committee approval was taken prior to the
study. Figures 1 and 2 show a typical EEG signal of normal and depression patient
respectively.

2.2 Preprocessing

Artefacts such as eye movements, eye blinks, head movements, cardiac and
muscle activation artefacts, tongue movements and power line noise pose a problem
for the proper EEG interpretation and analysis. Other artefacts that disrupt the EEG
signal include instrument artefacts (faulty electrodes), sweat artefacts, impedance
fluctuations, cable movements, pulse artefacts etc. Power line interferences are
removed from the EEG signal by using a 50 Hz notch filter. Eye movement and
muscle movement artefacts are manually removed from the signal with the help of
an expert by visual inspection. In this work, the high frequency components present
in the acquired EEG signals are denoised using Total Variation Filtering (TVF) [2].

The TVF employed in this work is based on the algorithm developed by
Chambolle [3]. A dual formulation approach is used to minimise the objective

Figure 1.
EEG signal of a normal control.
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function of the Total Variation (TV) denoising problem. So the TV denoising
problem amounts to minimising the following discrete function [4]:

J xð Þ ¼ y� xk k22 þ λ Axk k1 (1)

where A is a matrix of size M � N. Smoothing of the signal is controlled by λ,
which is known as the regularisation parameter. Since the amount of high frequency
noise present in the EEG signal recorded from depression patients using the 24-
channel equipment was already low, the optimal value of λ for denoising was found
to be 0.9.

2.3 Selection of wavelet

From an array of discrete orthogonal wavelets, Daubechies-1(D1) to D10,
Coiflet-1 to Coiflet- 5 and Symlet 1 to Symlet 8, the task is to identify the wavelet
which suits well with the individual EEG signal recorded from depression patients.
This is necessitated as it is found that there is extreme patient variability and also
variability of the signals with respect to the location on the scalp from person to
person. All the above 23 wavelets were tested on all the 30 patient records under
four categories namely eyes open and eyes closed conditions recorded from the left
and right half of the brain.

The best wavelet is chosen based on the highest value of correlation coefficient
which indicates a better match of the characteristics of the EEG signal of depression
patient with the wavelet selected. Of the 30 cases considered in this experimental
study described here, for 85% of the cases, Coiflet 5 emerged as the best suited
wavelet. Hence Coiflet 5 is used for analysis.

2.4 Wavelet Transforms

Wavelet Transforms are efficiently used in many of the signal processing appli-
cations as it gives more accurate time and frequency representation of the signal.

Figure 2.
EEG signal of a depression patient.
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Wavelet Transforms help in the extraction of wavelet coefficients of discrete time
signals. An important feature of Wavelet Transform is that it gives good frequency
resolution over a large window while good time resolution at high frequencies. This
feature has been of great interest to biomedical applications, as most of the
biosignals contain high frequency components in a short span and low frequency
components over large span. Wavelet Transforms are thus highly useful for the
analysis of nonlinear, nonstationary signals as it gives an excellent time–frequency
resolution.

In this method, the signal is decomposed into a set of basis functions called
wavelets by the Wavelet Transform. These basic functions are obtained by dila-
tions, contractions and shifts of a unique function called wavelet prototype. Con-
tinuous wavelets are functions generated from one single function by dilations and
translations of a unique mother wavelet ψ (t):

Ψa,b tð Þ ¼
1
ffiffiffiffiffiffi

aj j
p Ψ

t� b

a

� �

(2)

where a is the scale parameter, b, the shifting parameter and t, the time. The
function set Ψa,b tð Þð Þ is called the wavelet family. The Wavelet Transform usually
used in engineering application is the Discrete Wavelet Transform (DWT). It uses
the discrete values of the scaling and the translational parameters given by,

a ¼ a
j
0 and b ¼ kb0a

j
0 where j and k are integers. Then we get:

Ψ j,k tð Þ ¼ a
�j=2
0 Ψ a

�j
0 t� kb0

� �

(3)

where j indicates frequency localization and k indicates time localization. Dyadic
scheme implementation is the basis for Multiresolution Analysis (MRA) in Discrete
Wavelet Transforms. Any time series can be decomposed in terms of coarse
approximations provided by scaling functions and the detail information by the
wavelet functions [5]. The scaling function is associated with low-pass filters (LPF)
and the wavelet function is associated with the high pass filters (HPF). The decom-
position of the signal into the different frequency bands is obtained by successive
convolution with high-pass and low pass filtering of the time domain signal.

The approximations are the low frequency components and the details are the
high frequency components of the time series. The detail coefficients and approxi-
mation coefficients at level 1 (CD1 and CA1) are obtained by decimating the out-
puts from both the filters by 2. The procedure is then repeated by sending the
approximation coefficients to the second stage. This is continued till the signal is
decomposed at the expected level. In this work, an eight level decomposition is
carried out. The EEG signal acquired from the depression patients are sampled at a
frequency of 256 Hz. The multiresolution decomposition offers a time-frequency
decomposition of the signal involving not only its energy but also the morphological
aspects that are relevant for signal recognition and understanding [6]. Each of the
wavelet scales corresponds to a specific frequency band given by

f ¼
2n�m f s
2n

(4)

where, f is higher frequency limit of the frequency band represented by decom-
position level m, fs is sampling frequency and 2n is the number of data points in the
signal. CD1 (64-128 Hz) and CD2 (32-64 Hz) correspond to gamma band, CD3
(16-32 Hz) corresponds to beta band, CD4 (8-16 Hz) corresponds to alpha band,
CD5 (4-8 Hz) corresponds to theta band while CD6 (2-4 Hz), CD7 (1-2 Hz), CD8
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(0.5-1 Hz) and CA8 (0–0.5 Hz) correspond to delta band. The DC level of the signal
corresponding to eighth level approximation coefficient (CA8) is also considered in
this work. The signals are reconstructed from the wavelet coefficients for each scale
by applying inverse transform. The reconstructed signal coefficients obtained from
eight levels of details and from the eighth level of approximation are further used
for energy calculations.

2.5 Calculation of energy

After multilevel decomposition, Parseval’s theorem is employed to calculate the
energy of the reconstructed signal coefficients at the detail and approximation
levels. It helps in identifying the energy distribution in different frequency bands of
gamma, beta, alpha, theta and delta [7]. Parseval’s theorem is mathematically
expressed as [8]:

XN

n¼1

x nð Þj j2 ¼
XN

n¼1

a j nð Þ
�
�

�
�
2
þ
Xm

j¼1

XN

n¼1

d j nð Þ
�
�

�
�
2

(5)

where x(n) is the time domain discrete signal, N is the total number of samples

in the signal,
PN

n¼1 x nð Þj j2 is the total wave energy of the signal x(n),
PN

n¼1 a j nð Þ
�
�

�
�
2
is

the total energy concentrated in the level ‘j’ of the approximated version of the

signal.
Pm

j¼1

PN
n¼1 d j nð Þ

�
�

�
�
2
is the total energy concentrated in the detail version of

the signal, from level 1 to m and m is the maximum level of wavelet decomposition.
Energy distribution calculations are done on all recordings of eyes open and eyes

closed conditions, acquired from both the left (FP1-T3) and right (FP2-T4)
frontopolar-temporal regions of the brain for both the normal controls and depres-
sion patients. Energy distribution associated with the various bands of frequency,
for different levels of detail are plotted in Figures 3–7, for a single case of measure-
ment recorded (from the left half of the brain under eyes closed condition). Similar
variations are also observed for measurements with the other recording protocols.

It is observed that there exists a clear difference in the energy levels of EEG
signals of both normal and depression patients in the Gamma band (D1) (Figure 3).
Values of energy obtained for normal controls are always higher than that of
depression patients, covering all age groups. These differences in energy levels tend
to narrow down as we move from Gamma band D1 to alpha band D4 through D2
and D3. It is interesting to note that normal subjects register higher energy distri-
bution levels for cases considered up to theta band D5. This trend appears to get

Figure 3.
Energy distribution in gamma band (D1) of normal controls and depression patients.

6

Electroencephalography - From Basic Research to Clinical Applications



reversed beyond theta band D5 (see Figure 7 for Delta band D8). The energy
distribution of depression patients in theta band (D5-Figure 6) is almost at par with
that of normal controls. But the energy distribution of depression patients has
crossed the threshold of normal subjects and is higher than normal in all cases of
delta band from D6-D8 and A8. It gives a clear indication that the brain activity of
depression patients in gamma, beta and alpha band is lower when compared to
healthy controls. Similar is the trend for all other measurements taken from the
right side of the brain under eyes closed and open condition and also for measure-
ments from the left half of the brain for eyes open condition.

Figure 4.
Energy distribution in Beta band (D3) of normal controls and depression patients.

Figure 5.
Energy distribution in alpha band (D4) of normal controls and depression patients.

Figure 6.
Energy distribution in theta band (D5) of normal controls and depression patients.
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2.6 Relative Wavelet Energy (RWE)

Relative Wavelet Energy (RWE) gives information about the relative energy
associated with the frequency bands and it can detect the degree of similarity
between segments of a signal [9, 10]. It is also known from previous studies that
RWE is a good tool for detecting and characterising specific phenomenon in time
and frequency planes [11].

The energy wavelet coefficients dj,k represent the detail signal energy at each
resolution level, j given by,

E j ¼
X

k

d j,k

�
�

�
�
2

j ¼ 1…N (6)

The energy scaling coefficients Ck is defined as the energy at decomposition
level N + 1 given by

ENþ1 ¼
X

k

ckj j2 (7)

Thus the total energy of the signal for all levels is given by

Etotal ¼
XNþ1

j¼1

E j (8)

and hence the Relative Wavelet Energy (RWE) is defined as

ρ j ¼
E j

Etotal
j ¼ 1,…:,N þ 1 (9)

Clearly
P

jρ j ¼ 1 and the distribution {ρ j} can be considered as a time scale

density. This provides information to characterise signal energy distribution at
different frequency bands.

RWE calculations are carried out on the different frequency bands to understand
the variations in healthy subjects and depression patients. Wavelet energy in the
gamma band, particularly D1 is negligible, while D2 is negligibly small for depres-
sion patients in comparison to normal controls. The RWE levels associated with
beta (D3–18.5%) and alpha (D4–22%) bands for normal controls are approximately
25% higher than the corresponding values for depression patients with D3 being
1.9% and D4–4.3% (Figures 8 and 9). RWE of theta band also shows similar trend

Figure 7.
Energy distribution in delta band (D8) of normal controls and depression patients.
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with normal controls having values slightly lower than twice the values associated
with depression patients. RWE associated with delta band (D6–19.5%, D7–23.5%,
D8–17.1% and A8–23.7%) show appreciably higher values for depression patients
when compared to normal controls. The feature worth noting is that RWE of
approximation level has the highest percentage in depression patients to that of
normal controls. From the results of RWE calculations, it may be observed that the
RWE is more prominent in depression patients in the frequency bands, 1-2 Hz and
0–0.5 Hz. Hence depression may be classified as a very low frequency phenomenon.

RWE values plotted in Figures 8 and 9 represent the calculations carried out on
the frequency bands of normal and patient EEG signals recorded from the left half
of the brain under eyes open condition. RWE calculations are also carried out on the
frequency bands of the EEG signal acquired from the left half of the brain under
eyes closed condition and on the EEG signals from the right half of the brain both
under eyes open and eyes closed conditions. The observation from all the protocols
reveals a high value of RWE in alpha band (D4) of normal controls indicating high
activity in the thought process of healthy subjects. Also a high value of RWE in 8th
level approximation followed by detail level D7 is observed in depression patients.
Hence from all the four cases, it may be concluded that depression phenomenon is
confined to the lower frequency bands especially in delta band of 0–4 Hz. In order
to analyse the statistical nature of the measurement among the two broad classes of
EEG signals recorded, One-way ANOVA is carried out which gave a statistical
significant difference (p < 0.005).

2.7 Wavelet Entropy (WE)

The degree of order/disorder associated with a multifrequency signal response
is characterised by Wavelet Entropy (WE). The time evolution of WE was also

Figure 8.
RWE of all frequency bands of normal controls from the left half of the brain under eyes open condition.

Figure 9.
RWE of all frequency bands of depression patients from the left half of the brain under eyes open condition.
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calculated which gave information about the dynamics in the EEG records. It was
observed that in contrast to spectral entropy, WE is capable of detecting changes in
a nonstationary signal due to the localisation characteristics of the Wavelet Trans-
form. The computational time of WE was significantly shorter since the algorithm
involved the use of fast wavelet transform in a multiresolution framework. The
results demonstrated that WE could differentiate between specific physiological
brain states under spontaneous or stimulus-related conditions. The time evolution
of the WE is calculated to give information about the dynamics in the EEG records.
A signal generated by a totally random process can be taken as representative of a
very disordered behaviour.

The Shannon Wavelet Entropy (WE) as a function of time is calculated [10] as:

WE ¼ �
Xm

j¼1

ρ j ln ρ j

� �

(10)

where m is the wavelet decomposition level from level 1 to level m.
WE may be considered as a meaningful indicator since it is able to differentiate

physiological brain states under normal and depression conditions. Figure 10
represents the Wavelet Entropy calculated for the EEG signals recorded from the
left half of the brain under eyes open condition from normal and depression
patients. Significant decrease in theWE is observed in the EEG signals of depression
patients under all the four recording protocols, indicating a more rhythmic and
ordered behaviour of the EEG signal [12, 13]. Being independent of the amplitude or
the energy of the signal, the WE gives additional information about EEG signals in
comparison to those obtained by using frequency analysis or other standard
methods. The use of such quantifiers based on time-frequency methods can
contribute to the analysis of brain responses and may also lead to a better
understanding of their dynamics.

2.8 Nonlinear measures

Reduction in complexity in patients with disease is the main hypothesis that is
checked in most of the research work. Here we analyse the EEG signal complexity
and irregularity of the frontopolar-temporal regions of the brain of controls and

Figure 10.
Wavelet entropy calculated for the EEG signals recorded from the left half of the brain under eyes open
condition from normal and depression patients.
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patients with unipolar depression under resting states of eyes open and closed
conditions. The analysis is carried out using Approximate Entropy, Fractal
Dimension and Largest Lyapunov exponent.

2.8.1 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is a statistic quantifying regularity and complexity
which has potential application to a wide variety of physiological and clinical time
series data. ApEn is a statistical parameter that measures the predictability of the
current amplitude values of a physiological signal based on its previous amplitude
values. Approximate Entropy is the is the probability difference of the pattern
similarities of the connected straight lines of the m adjacent points and m + 1
adjacent points of time sequence data [14]. The more complex the sequence data,
higher is the probability that new pattern appears and larger the corresponding
ApEn. ApEn measures the (logarithmic) likelihood that runs of patterns that are
close remain close on next incremental comparisons.

For a time series of N data points, {u(i):1 ≤ i ≤ N}, form vector sequences x(1)
through x(N-m + 1), defined by x(i) = [u(i),..., u(i + m-1)]. These vectors represent
m consecutive u values, commencing with the ith point. m is the length of compared
runs. The distance d[x(i), x(j)] between vectors x(i) and x(j) is defined as the
maximum difference in their respective scalar components. Let Bi be the number of
vectors x(j) within r of x(i) for a window length m and let Ai be the number of
vectors x(j) within r of x(i) for a window length m + 1, where r is the tolerance for
accepting matches. The function Cm

i rð Þ is defined as:

Cm
i rð Þ ¼

Bið Þ

N �mþ 1ð Þ
(11)

In calculating Cm
i rð Þ, the vector x(i) is called the template and the instance where

a vector x(j) is within r of it is called a template match. Cm
i rð Þ is the probability that

any vector x(j) is within r of x(i). It measures within a tolerance r, (r = k*standard
deviation) the regularity, or frequency, of patterns similar to a given pattern of
window length m. The function Φm rð Þ is defined as:

Φm rð Þ ¼
1

N �mþ 1

XN�mþ1

i¼1

lnCm
i rð Þ (12)

where, Φm rð Þ is the average of the natural logarithms of the functions Cm
i rð Þ.

For finite data sets,

ApEn m, r,Nð Þ ¼ Φm rð Þ �Φmþ1 rð Þ (13)

The parametres N, m and r must be fixed for each calculation and r effectively
works as a filter. The values of m and k adopted in this work are 1 and 0.2
respectively.

The column plot of Figure 11 represents the ApEn values calculated for the EEG
signals of healthy controls and patients, acquired from the left half of the brain
under eyes open condition. The results of ApEn calculated for from the left part of
the brain under eyes closed conditions and from the right part of the brain both
under eyes open and closed conditions indicate that normal controls have a higher
value of ApEn than depression patients. A low value of ApEn indicates predictabil-
ity and regularity in a time series, whereas a high value of ApEn indicates
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unpredictable and random variation. The results of ApEn indicate that the com-
plexity of the brain is high in normal controls while the signals from depression
patients are less complex.

2.8.2 Fractal Dimension (FD)

FD analysis is frequently used in biomedical signal processing, including EEG
analysis. Fractal Dimension can be used to quantify the complexity and the self-
similarity of an object. The EEG FD can expected to be always between 1 and 2 since
the dimension of a plane is equal to 2 and the dimension of a line is equal to 1. FD
can be calculated using Higuchi’s method, Katz algorithm, box counting approach
and so on. FD analysis provides a fast computational tool to track complexity
variations of biosignals. FD analysis used in this work is based on Higuchi’s
algorithm [15]. The algorithm is based on the measure of the mean length of the
curve L(k) by using a segment of k samples as a unit of measure.

Consider x(1), x(2),… , x(N) be the time series to be analysed. The algorithm

constructs k new time series xkm, defined as

xkm : x mð Þ, x mþ kð Þ, x mþ 2kð Þ, ::……, x mþ ⌊
N �m

k
⌋k

� �

for m ¼ 1, 2,…:, k (14)

where m and k are integers indicating the initial time and the interval time
respectively. ⌊a⌋ means the integer part of a. For each of the curves or time series

xkm constructed, the average length Lm kð Þ is computed as

Lm kð Þ ¼

P⌊N�m=k⌋
i¼1 x mþ ikð Þ � x mþ i� 1ð Þkð Þj j N � 1ð Þ

⌊N�m
k ⌋k

(15)

where N is the total length of the data sequence x and N�1ð Þ

⌊ N�mð Þ=k⌋k
is a normalisation

factor.
An average length is computed for all time series having the same delay

(or scale) k, as the mean of the k lengths Lm kð Þ for m = 1,....,k. This procedure is

Figure 11.
Approximate entropy values calculated for the EEG signals of normal and depression patients acquired from the
left part of the brain under eyes open condition.
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repeated for each k ranging from 1 to kmax, yielding a sum of average lengths L(k)
for each k as indicated in Eq. (16).

L kð Þ ¼
Xk

m¼1

Lm kð Þ (16)

The total average length for scale k, L(k) is proportional to k�D, where D is
the FD by Higuchi’s method. In the curve of ln(L(k)) versus ln(1/k), the slope of the
least squares linear best fit is the estimate of the FD. The kmax values depends on
the dimension D, on the signal’s length N and on the specific class of fractal signals.
The value of kmax chosen for the analysis of EEG signals is 6. Figure 12 shows the
plot of Fractal Dimension values calculated from the EEG signals of normal and
depression patients acquired from the left part of the brain under eyes closed
condition.

FD based on the algorithm followed is a quantifier evaluated directly in the time
domain. Similar to the plot in Figure 12, the plots of FD for the rest of the recording
protocols show that the values of FD are higher for normal controls indicating
higher complexity in EEG signals of normal controls [16, 17]. It may be concluded
that the value of FD increases with the increase in the degree of the cognitive
activity. Lower values of FD indicate a low degree of cognitive activity for
depression patients.

2.8.3 Largest Lyapunov Exponent (LLE)

Lyapunov exponents provide a qualitative and quantitative characterisation of
dynamical behaviour. To discriminate between chaotic dynamics and periodic
signals, Largest Lyapunov Exponent (λ) is often used. Lyapunov exponents are the
average exponential rates of divergence or convergence of nearby orbits in phase
space. It is a quantitative measure of the sensitive dependence on the initial
conditions. The rate of separation between the nearby orbits in phase space is
characterised by the Largest Lyapunov Exponent λ, mathematically written as:

Figure 12.
Fractal dimension values of EEG signals of normal and depression patient from the left part of the brain under
eyes closed condition.
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Xτ � Yτk k≈ X0 � Y0k keλτ (17)

where X0 and Y0 are two initial conditions close together, and Xτ and Yτ are
their respective time evolutions after τ time units. The approach of Wolf et al. [18]
was used for constructing the algorithm for calculating the Largest Lyapunov
Exponent (LLE) in this work.

Let x0
�! tð Þ denote a reference trajectory passing through x0

�! 0ð Þ at time t = 0 and
let x1

! tð Þ denote a trajectory passing through x1
! 0ð Þ at time t = 0. The Largest

Lyapunov Exponent λ x0
�!	 


is defined with respect to the reference orbit x0
�! by

λ x0
�!	 


¼ lim
t!∞

lim

Δx 0ð Þ
��!�

�
�

�
�
�!0

1

t
log

Δx tð Þ
��!�

�
�

�
�
�

Δx 0ð Þ
��!�

�
�

�
�
�

(18)

where Δx 0ð Þ
��!�

�
�

�
�
� is the Euclidean distance between the trajectories x0

�! tð Þ and

x1
! tð Þ at an initial time t = 0 and Δx tð Þ

��!�
�
�

�
�
� is the Euclidean distance between the

trajectories x0
�! tð Þ and x1

! tð Þ at a later time t. In this definition x1
! tð Þ can be any

trajectory that is initially infinitesimally close to x0
�! 0ð Þ at time t = 0. The corre-

spondence between sensitivity to initial conditions and a positive Lyapunov expo-
nent is obvious in equation number 17. An embedding dimension of 10 and a delay
of 1 were used for calculating LLE. Figure 13 shows the values of LLE calculated for
normal and depression patients from the left half of the brain under eyes closed
condition.

Larger values of LLE observed for all the recording protocols for normal controls
are indicative of higher brain activity [16, 17]. Therefore LLE can be effectively
used for discriminating the EEG signals of normal controls and depression patients.

2.9 Surrogate data analysis

The method of using surrogate data in time-series analysis was introduced by
Theiler et al. to validate that a given time-series is nonlinear. Nonlinear indices such

Figure 13.
LLE values of EEG signals acquired from normal controls and depression patients from the left part of the brain
under eyes closed condition.
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as FD and LLE are computed for several surrogate data series. Their values are
compared with that of the nonlinear index computed for the original data. The lack
of any statistically significant difference is interpreted as the deviation from a linear
process. Surrogate data is constructed by phase randomising the original time series
and has the same linear features like mean, variance, histogram and power spec-
trum as the original data. This method of generating surrogate data is based on the
amplitude adjusted Fourier transform method, which yields the same distribution
of amplitudes but randomises the phases from the spectral aspect [19]. Tentative
surrogate data are obtained by inverse Fourier transform.

To test for a statistical significance of difference in FD and LLE between the
original and the surrogate data, 10 surrogate data series were generated to match
each original signal. Let LLE (D) be the LLE of the original data, and let LLE (Si) be
the LLE of the 10 surrogate series (i = 1, … , 10). The mean and standard deviation,
SD of LLE (Si) (i = 1, … , 10) are estimated as LLE (S) and SD(LLE(Si)). The
statistical significance measure σ then is computed as follows:

σ ¼
LLE Dð Þ � LLE Sð Þj j

SD LLE Sið Þð Þ
(19)

It follows a Student t test distribution with 9 degrees of freedom (�t9[1-α/2]). For
α = 0.05, the critical value of t is 2.26. Accordingly, when the σ> 2.26, the null
hypothesis is rejected at the 5% probability level, and the original data are consid-
ered to contain nonlinear features.

Nonlinear indices (FD and LLE) are computed for several surrogate data series
and their values are compared with the ones computed for the original series. The
demonstration of significant difference in nonlinear indices between the original
and surrogate data is supportive of the presence of nonlinearity in the original data.
Tables 1 and 2 show the calculation of the statistical significance measure for both
the normal controls and depression cases for the nonlinear indices, FD and LLE. The
results prove that the original data contain nonlinear features since the statistical
significance measure is greater than 2.26.

Protocol Fractal dimension Largest Lyapunov exp.

Original data Surr. data Stat. sig. Meas. Original data Surr. data Stat. sig. Meas.

L:EC 1.1659 1.1889 65.22 0.552 0.5059 3.87

L:EO 1.159 1.1803 50.14 0.538 0.6066 2.84

R:EC 1.1663 1.1875 63.75 0.529 0.6177 5.25

R:EO 1.6556 1.1876 76.04 0.485 0.5251 3.85

Table 1.
Surrogate data analysis of normal controls.

Protocol Fractal dimension Largest Lyapunov exp.

Original data Surr. data Stat. sig. Meas. Original data Surr. data Stat. sig. Meas.

L:EC 1.0368 1.0604 57.07 0.3978 0.4808 7.36

L:EO 1.0441 1.0615 35.63 0.4811 0.5201 2.45

R:EC 1.1220 1.1536 62.23 0.3767 0.4782 4.43

R:EO 1.0638 1.0827 47.95 0.5420 0.4775 4.93

Table 2.
Surrogate data analysis of depression patients.
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3. Conclusions

The characteristics of frontopolar-temporal EEG signals of depression patients
are investigated using signal processing techniques and nonlinear parameters. EEG
signals for the analysis were acquired from 30 unipolar depression patients and 30
age and sex matched healthy controls. Bipolar EEG recording using a 24-channel
EEG machine was carried out at locations FP1-T3 (left half) and FP2-T4 (right half)
of the brain for a duration of 5 minutes each, under eyes closed and eyes open
condition in a resting state. Total variation filtering was found to be effective in
removing the high frequency noise while the eye blink and eye movement artefacts
were removed by visual inspection. Wavelet analysis is performed and signal
features having significant influence on the signal waveforms of depression and
normal controls have been identified. Coiflet 5 is used for the wavelet analysis. An
8-level decomposition was carried out and Relative Wavelet Energy was calculated
on the reconstructed signal coefficients. Wavelet Entropy calculations revealed the
degree of disorder associated with the EEG signals. The nonlinear measures like
Approximate Entropy (ApEn), Fractal Dimension (FD) and Largest Lyapunov
Exponent (LLE) are calculated. Nonlinearity of the EEG signal under study was
confirmed by surrogate data analysis.

Depression effects are reflected mainly in the lower frequency range indicating a
reduced brain activity. The multiresolution decomposition characterised the various
frequency bands of EEG signals. The wavelet energy distribution in different
frequency bands indicated higher levels of brain activity for normal controls in
gamma, beta and alpha bands. It also showed lower brain activity in the delta bands
of depression patients. The results from the calculations of RWE confirm the fact
that, mental activity as reflected in the EEG signals of depression patients is con-
fined to the lower frequency range especially in the delta band of 0-4 Hz. The
quantitative evaluation of nonlinear parameters like ApEn, FD and LLE confirmed
higher brain activity for normal controls compared to depression patients. Lower
values of these nonlinear parameters indicate the fact that complexity of EEG is
reduced in depression which effectively helped in discriminating EEG signals of
depression patients and healthy controls. The quantitative assessment of signal
characteristics and nonlinear parameters from the present study may be of
significant use in the analysis of brain dynamics.
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