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Chapter

Root Cultures for Secondary 
Products
Le Thi Thuy Tien

Abstract

Plants are source of many high-value secondary compounds used as drugs, food 
additives, flavors, pigments and pesticides. The production of these compounds 
in nature faces to many difficulties because of the dependence on weather, soil … 
Furthermore, these compounds are usually limited by species, periods of growth or 
stress. The utilization of plant cells in vitro for the secondary compounds has gained 
increasing attention over past decades. However, the yield is still low, probably due to 
the degree of cell differentiation. Therefore, root culture is focused on research as an 
alternative to cell cultures to produce secondary compounds because of high rate pro-
liferation, great potential in the production with high and stable yields. Hairy roots 
and adventitious roots have a high ability to biosynthesize secondary compounds 
in vitro with high and fairly stable in yield in comparison with plant cell suspension 
cultures. Nowadays, it is feasible to expand the scale of root cultures in bioreactors, 
which makes it possible to produce secondary compounds on an industrial scale.

Keywords: adventitious roots, Agrobacterium rhizogenes, elicitors, hairy roots, 
secondary products

1. Introduction

Plant secondary products are natural sources of bioactive compounds which 
used in traditional medicine and in industrial applications. In 1976, Farnsworth and 
Morris said that: higher plants-the sleeping giant of drug development [1]. Indeed, 
many chemicals derived from plants are important drugs, which are used as anti-
bacterial and antitumour agents. Furthermore, they are used in antioxidant foods … 
Besides, natural products presented chemical structures, which are very important 
for scientists to pursue new chemical for drugs [2]. In plants, these valuable com-
pounds are usually limited by species, periods of growth or stress and the yield is 
still low. The production faces to many difficulties because of the dependence on 
weather, soil …. So the utilization of plant cell, tissue and organ culture for these 
compounds has gained increasing attention over past decades.

2. Plant primary and secondary products

Plants synthetize efficiently organic compounds via photosynthesis from 
inorganic materials and the pathways involved are metabolic pathways. They are 
primary metabolism and secondary metabolism. Carbohydrates, lipids, proteins 
and nucleic acids are necessary for normal growth, development, and reproduction 
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of plants (primary products). Besides, there is a large, diverse array of organic com-
pounds that have no direct function in growth and development of plants. These 
substances are known as secondary products (secondary compounds, secondary 
metabolites or natural products) [3].

Secondary products are restricted distribution in the plant kingdom, that is 
found in only one plant species or related group of species. For many years, these 
compounds were thought to be simply functionless end products of metabolism or 
metabolic wastes. But now, secondary products have been suggested to have impor-
tant ecological functions in plants. They protect plants against being eaten by herbi-
vores and against being infected by microbial pathogens (Figure 1). Furthermore, 
they serve as attractants for pollinators, seed dispersing animals and as agents in the 
competition of plants [4].

Secondary metabolism is connected to primary metabolism by using inter-
mediate products and biosynthetic enzymes derived from primary metabolism. 
Secondary compounds are synthesized through mevalonate, non-mevalonate (MEP 
(methylerythritol phosphate) shikimate and malonate pathway (Figure 2). These 
metabolisms rely on environmental conditions, physiological states and stages of 
plant growth, and yields are often very low.

There are many ways of classification of secondary products, but in general, 
they are divided into three chemically distinct groups: terpenes, phenolics, and 
nitrogen containing compounds.

The terpenes (terpenoids, isoprenoids) seem to be the largest class of second-
ary products. They are biosynthesized from acetyl-CoA – intermediates of many 
biological reactions. Terpens are widely used in pharmaceuticals, food and cosmet-
ics industries. They possess antitumor, anti-inflammatory, antibacterial, antiviral, 
antimalarial effects, promote transdermal absorption, prevent and treat cardiovas-
cular diseases, and have hypoglycemic activities [5].

The phenolics in plants are a chemically heterogeneous group of nearly 10,000 
individual compounds. Many kinds of phenolics are used as agents of anti-aging, 
anti-inflammatory, antioxidant and anti-proliferative activities. They are used as 
therapy agents for chronic diseases, diabetes, cancers, cardiovascular diseases … 
through the management of oxidative stress [6].

Alkaloids are organic compounds that contain at least one nitrogen atom at any 
position in the molecule, which does not include nitrogen in an amide or peptide 
bond. Alkaloids have a wide range of biological activities such as antiviral, anti-
bacterial, anti-inflammatory, antitumor …. [7]. Many of these compounds possess 

Figure 1. 
The effects of exogenous factors on plants.
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potent pharmacological effects, for example, the well-known plant alkaloids 
include the narcotic analgesics (morphine, codeine, apomorphine (a derivative of 
morphine) used in Parkinson’s disease, the muscle relaxant papaverine, the antimi-
crobial agents sanguinarine and berberine. Also several potent anti-cancer drugs 
have been developed from plant compounds such as vinblastine, vincristine, taxol, 
camptothecin, colchicine … .

3. Plant cell culture for secondary products

Plant cell culture techniques provide a reliable and predictable method for iso-
lating valuable secondary products at high efficiency within a short time comparing 
to the whole plants in vivo. This provides a continuous, stable and economical 
production of secondary products independent of geography and climate [8].

To stabilize the raw materials for pharmaceutical industry, plant cell culture 
is emerging as an alternative bioproduction system. This technology offers an 
attractive potential to produce valuable secondary products such as ajimalicine [9], 
artemisinin [10], ginsenosides [11], taxol [12], resveratrol [13].

A suspension culture consists of isolated cells and cell aggregates dispersed and 
growing in a moving liquid medium. It used to be proved as an effective biosystem 
to produce valuable secondary products for commercialize. However, in most cases, 
for the large scale production, there are some troubles because of the instability and 
non-uniformity of the undifferentiated cells in liquid culture.

Adventitious root cultures show a higher constancy in the production of these 
compounds with more rapid growth than cell suspension cultures [14]. In addi-
tion, bioreactor system for root cultures has emerged as a technology with possible 
commercial applications [15]. In aseptic environment, suitable phytohormone-
augmented medium is demanded for adventitious roots formation and prolifera-
tion. In another way, hairy roots (transformed roots) derived from the infection of 
a plant by Agrobacterium rhizogenes – can strongly proliferation in medium without 

Figure 2. 
A simplified view of the major pathways of secondary-metabolite biosynthesis and their interrelationships with 
primary metabolism [4].
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phytohormone, that is a promised biosystem for producing valuable secondary 
products in large scale [16].

3.1 Adventitious root cultures

Adventitious roots are roots that arises from any part of plant other than the 
radicles or the root axis. The formation of adventitious root needs a combination of 
a complicated molecular process involving numerous of endogenous and exogenous 
factors [17]. Adventitious roots appear in response to stress conditions, such as 
flooding, nutrient deprivation or wounding [18]. In vitro, the formation of adventi-
tious roots responses to wounds and exogenous phytohormones, especially auxin 
(Figure 3) [19]. The induction of adventitious roots is promoted by high auxin and 
low cytokinin levels. There are three phase in adventitious root formation: induc-
tion, initiation and extension [20]. Auxin promotes adventitious root initiation but 
decreases the elongation. Root elongates when auxin concentration decreases. The 
application of auxins strongly increases the number of roots [21].

IBA (indol butyric acid) is most commonly used for rooting in vivo and in vitro. 
The other auxins used commercially are IAA (indol acetic acid) and NAA (naph-
thalene acetic acid) [22]. 2,4-D (2,4-Dichlorophenoxyacetic acid) is rarely used for 
rooting but usually used for callus initiation. The commonly cytokinins used are 
BAP (benzylaminopurine) and kinetin. The appropriate concentration of auxins 
and cytokinins in rooting depends on species, individuals and organs.

There are many scientific articles related to adventitious root cultures have 
been published. There are many factors that effect on rooting such as explants 
(type, age), exogenous phytohormones, light, organic supplements, … The pro-
cess of induction and differentiation of rooting can be controlled by changes in 
endogenous auxin concentrations and exogenous auxins (type and concentration) 
[23]. The rooting of monocotyledons usually need exogenous auxins only, but 
dicotyledons need auxins supplemented with cytokinins. Mineral media, source 
of carbon, light are also important. The requirements of nutrients and exogeneous 
phytohormones depend on species and physiological age of explants in initiation 
and proliferation phase. However, the secondary products biosynthesis phase may 
need a different nutritional and phytohormone requirement.

Figure 3. 
Adventitious roots from the wounds on Catharanthus roseus leaf explants on MS medium with 0.7 mg/L IBA.
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Adventitious roots formed from all kinds of explants of Beta vulgaris seedlings 
even on free phytohormones medium. The response of root explants with auxins was 
better than the others. Hypocotyl explants were more suitable than cotyledon explants 
in adventitious root formation. The numbers of root per explant were different with 
the different kinds and concentrations of auxins. NAA was suitable for the initiation 
of roots hypocotyls and cotyledons. Whereas, IAA at various concentrations were 
suitable for root induction from root explants. Roots on medium with NAA were red 
with many root hairs, roots with IAA treatments appeared with a thicker shape and 
brighter red color (Figure 4). However, callus could be observed in hypocotyl and cot-
yledon explants and shoots formed from any treatments in hypocotyl explants [24].

The advances in plant cell, tissue and organ culture have resulted in the produc-
tion of high amounts of high value secondary products [25]. Due to the rapid growth 
and stability in secondary metabolites production, adventitious root cultures are 
considered as the most promising method for biomass production [26]. Root cultures 
show better biosynthetic ability than plant cell suspension cultures, in a suitable 
phytohormone supplemented medium, with stable yield of secondary products [27]. 
So, adventitious roots are interested in order to increase biomass in vitro especially 
medicinal plants to produce bioactive compounds. Plant roots are the main raw 
materials of herbal drugs (about 60% of herbal medicinal plants applied for ethno-
medicine needs). As a result of which, adventitious roots cultures have the potential 
to be developed as a strategy for large-scale bioactive compound production [28]. 
Establishing adventitious roots by liquid cultures would accelerate large-scale bio-
mass and conservation in addition to supplementing pharmaceutical products [29].

Secondary products biosynthesis in vitro is effected by many factors: phytohor-
mones, carbon sources, mineral elements, light … In liquid cultures, an important 
factor that effected on the growth of roots must be tested: initial inoculum density. 
The initial inoculum density effected on biomass and betalains accumulation of 
B.vulgaris L. roots in liquid culture. The inoculum density 3 g/L seemed be so low 
that did not sufficiently maintain betalains biosynthesis while 5 g/L and 7 g/L 
inoculum density almost showed more appropriate for root proliferation as well as 
betalains accumulation (Figure 5) [24].

The optimal condition for initiation and proliferation of adventitious roots from 
young Aloe vera leaves were 0.5 mg/L NAA and 0.2 mg/L BA in Murashige and 
Skoog (MS) medium. But aloe-emodin concentration was higher on B5 medium 
(133.08 ± 0.12 μg/g) than on MS medium (3.56 ± 0.26 μg/g) [30].

Figure 4. 
Adventitious roots from Beta vulgaris root explants after 3 weeks of culture on MS medium with auxins 
(a) NAA 0.5 mg/L; (b) NAA 1.0 mg/L; (c) NAA 2.0 mg/L; (d) IAA 0.5 mg/L; (e) IAA 1.0 mg/L; (f) IAA 
2.0 mg/L.
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Andrographis paniculata adventitious roots were induced directly from leaf 
segments of on solid MS medium with 5.3 μM NAA but grew well and accumulated 
andrographolide in MS liquid medium with 2.7 μM NAA within four weeks. Fresh 
biomass increased seven-fold along with 3.5-fold higher andrographolide compared 
to natural plants [31].

Adventitious roots from Morinda citrifolia leaf explant were initiation on 
medium with 1.0 mg/L IBA. The highest number of roots were induced under 
red light, followed by blue light and lowest under far-red light. In the other hand, 
catalase and guaicacol peroxxidase activities were highest under red light, followed 
by fluorescent light and lowest under red + blue light. Moreover, superoxide dis-
mustase activity was not influenced by light sources [32].

To enhance the production of valuable secondary products from adventitious 
cultures, many strategies were approached: optimization of medium and physi-
cal factors, carbon source, elicitation, precursor feeding, permeabilization and 
immobilization. Among them, elicitation seems to be the best solution to enhance 
secondary metabolites productivity in plant cell and organ cultures. Elicitor is a 
substance which initiates or enhances secondary biosynthesis of a living cell system 
when introduced in small concentration [33].

In plants, elicitor molecules attach to special receptors located on plant cell 
membranes. These receptors can recognize the molecular pattern of elicitors and 
activate intracellular defense via signal transduction pathway (Figure 6). The 
response results are enhancing the synthesis of metabolites which reduce damage 
and increase resistance to pest, disease or environmental stress [34]. Elicitors can be 
divided into two types abiotic and biotic according to basic nature. Abiotic elicitors 
include of substances that are of nonbiological origin, they are grouped in physical 
(thermal stress, salt tress, drought, osmotic stress) chemical (heavy metals, minerals 
salts, gaseous toxins) and hormonal (methyl jasmonate, salicylic acid) factors. Biotic 
elicitors are the biological origin substances of that comprise polysaccharides from 

Figure 5. 
Beta vulgaris L. adventitious roots in liquid culture. A, B and C: Initial inoculum density at 3 g/L, 5 g/L and 
7 g/L respectively.

Figure 6. 
Model of elicitor signal transduction leading to secondary production.
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plant cell walls (e.g. chitin, pectin, and cellulose), yeast extracts, fungal or bacterial 
extracts, microorganisms or saliva of insects or herbivores [35]. Methyl jasmonate is a 
potent elicitor in plant cell, tissue and organ culture for secondary compounds [36].

The effects of elicitors on secondary productivities depend on:

• Elicitor concentration

• Duration of elicitor influencing

• Cell lines

• Time course of elicitation

• Growth stage of culture system

• Phytohormone

• Nutrient composition [37].

Many kinds of elicitor (yeast extract, methyl jasmonate, AgNO3 and sorbitol) 
were investigated to adventitious roots cultures of Perovskia abrotanoides Karel. 
Biomass and production of cryptotanshinone and tanshinone IIA were estimated. 
Elicitors had no significant effect on biomass (dry weight). The highest concentra-
tions of cryptotanshinone and tanshinone IIA were achieved with 200 mg/l YE and 
25 μM AgNO3, respectively. MJ moderately promoted tanshinone accumulation. 
Sorbitol was almost ineffective in enhancing tanshinone content. Cryptotanshinone 
formation was stimulated more significantly by elicitation than tanshinone IIA [38].

Root cultures of Datura stramonium were treated with copper and cadmium salts 
as elicitors. With the concentration at 1 mM, both Cu2+ or Cd2+ have been found 
to induce the rapid accumulation of high levels of lubimin and 3-hydroxylubimin 
(sesquiterpenoid). These compounds were undetectable in unelicited cultures. 
However, no change was seen in the alkaloid content (tropane alkaloid) of the 
system when treatment with Cu2+ or Cd2+ [39].

Adventitious roots of Glycyrrhiza uralensis were cultured MS liquid medium for 
the accumulation of secondary metabolites and salicylic acid has been used as an 
elicitor. The addition of 1 mg/L salicylic acid significantly enhanced the concentra-
tions of glycyrrhizic acid (0.31 mg/g), glycyrrhetinic acid (0.14 mg/g) and polysac-
charide (159.29 mg/g) in the adventitious roots and the contents were 2.58-fold, 
1.27-fold, and 2.07-fold respectively over the control. Furthermore, the concentra-
tion of total flavonoid (9.40 mg/g) was observed with 2 mg/L salicylic, which was 
2.68-fold higher than the control [40].

Aspergillus niger, Alternaria sp., Fusarium monoliforme and yeast extract were 
added to leaf-derived root cultures of Datura metel L., established on B5 medium 
with 1.2 μ M IAA, to study the influence of biotic elicitors on the growth and produc-
tion of hyoscyamine and scopolamine. Besides, salicylic acid, AlCl3, CaCl2, NaCl and 
Na2SO4 were used as abiotic elicitors. The hyoscyamine and scopolamine concentra-
tions were 1.39 mg/g dw and 0.069 mg/g dw, respectively in control cultures. The 
highest hyoscyamine (4.35 mg/g dw) and scopolamine (0.28 mg/g dw) accumulation 
was obtained in cultures treated with 500 μM salicylic acid. 3.17 mg/g dw hyoscya-
mine and 0.16 mg/g dw scopolamine were observed in treatment with 0.75 g/L yeast 
extract and 2.49 mg/g dw hyoscyamine and 0.11 mg/g Dw scopolamine were in 
treatment with 250 μM AlCl3 [41]. Many kinds of elicitors were tested in adventitious 
root cultures. The effects depended on species and other factors (Table 1).
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The regulation of metabolic processes in plants is highly dependent on carbon 
source, so plant cells and tissue are quite sensitive to sugar concentration in nutri-
ent medium [54]. In vitro plant cells are heterotroph, although in many cases they 
canlive as mixotroph thanks to artificial lighting and chloroplasts. Therefore, the 
supplement of sugar is necessary. Saccharose is the most common sugar, which 
accelerates the growth of biomass, which is commonly used in the concentrations of 
2 to 5%, but also depends on the purpose of culture [55].

In broccoli (Brassica olearacea var. capitata) adventitious root cultures, the 
proliferation of roots enhanced with the increasing of saccharose from 20 to 40 g/L 
and decreased with saccharose 50 g/L. The color of roots was white with saccharose 
20 and 30 g/L and pale yellow with saccharose 40 and 50 g/L (Figure 7) [56].

The role of saccharose can be explained by the effect on tubulin, one kind of 
protein presents throughout the growth and development of the cell. Tubulin 
controls the cell shape, cell division and intracellular transport via genes tual and 

Species Elicitors Secondary products References

Datura stramonium Cu2+, Cd2+ Lubimin, 3-hydroxylubimin [39]

Capsicum annuum Cellulase Capsidiol [42]

Datura metel L. Salicylic acid, yeast 
extract, NaCl

Hyoscyamine and scopolamine [41]

Valeriana amurensis 
Smir. ex Kom

Methyl jasmonate, 
salicylic acid, 
chitosan

Valtrate [43]

Morinda citrifolia (L.). Chitosan Anthraquinone, phenolics and 
flavonoids

[44]

Aloe vera Salicylic acid Aloe emodin and chrysophanol [30]

Panax ginseng Casein hydrolysate Ginsenoside [45]

Perovskia abrotanoides 
Karel

Yeast extract, AgNO3 Cryptotanshinone, tanshinone IIA [38]

Psoralea corylifolia L Methyl jasmonate Psoralen [46]

Glycyrrhiza uralensis Salicylic acid Glycyrrhizic acid glycyrrhetinic 
acid polysaccharide

[40]

Glycyrrhiza uralensis 
Fisch

Protein fragment of 
more than 10 kDa

Flavonoids, glycyrrhizic 
acid, glycyrrhetinic acid and 
polysaccharide

[47]

Oldenlandia umbellata 
L.

Pectins Anthraquinones [48]

Gynura procumbens 
(L.). Merr

Yeast extract, CuSO4 
1 mg/L

Quercetin, kaempferol [49]

Talinum paniculatum 
Gaertn.

Methyl jasmonate Saponin [50]

Panax vietnamensis Ha 
et Grushv.

Methyl jasmonate Saponin [51]

Hybanthus enneaspermus 
(L.) F. Muell.

Salicylic acid L-Dopa [52]

Hypericum perforatum Uv-B
4°C

Hypericin [53]

Table 1. 
The application of elicitors on secondary products of adventitious root cultures.
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incw1. These genes are only exhibited with the presence of saccharose [57]. When 
the concentration of saccharose in medium is too high, it’s difficult for cell to absorb 
nutrients so the proliferation will decrease.

Beside the role in biomass proliferation, carbon source also effects on second-
ary products biosynthesis. According to Miao et al., glucose is also an inducer of 
glucosinolate biosynthesis. Glucosinolate biosynthesis is mediated indirectly by 
XK1 (hexokinase 1) and/or RGS1 (G1 protein regulatory signal) through MYB28 
and MYB29 translation factors, both of them are induced by glucose. As a signal-
ing molecule, glucose can regulate growth, development, metabolism and resis-
tance to environmental stress of cells [58]. Glucose is released from the saccharose 
during autoclaving as well as by invertase which takes part to glucosinolate 
biosynthesis [59].

3.2 Hairy roots

Hairy roots derived from the infection of plant by Agrobacterium rhizogenes, a 
Gram-negative soil bacterium. Hairy roots can be obtained from a wide variety of 
plants and be well interested because of the ability of valuable secondary metabo-
lites production. Hairy roots can produce and secrete complex active glycoproteins 
and organic compounds from a wide variety of plants. Nowaday, hairy roots have 
positioned as effective biological systems in pharmaceutical industry due to the 
development of fully controlled large-scale bioreactors [60].

Agrobacterium sp. are agents of disease in plants. Agrobacterium tumefaciens 
cause crown gall disease and Agrobacterium rhizogenes cause abnormal roots (root-
mat disease) in dicotyledonous plants. Hairy roots induced by Agrobacterium 
rhizogenes are very similar to wild-type roots in structure (Figure 8) except 
some characteristics: lateral branching, root hairs are longer, more numerous, 

Figure 7. 
Adventitious roots from broccoli cotyledons in liquid MS medium with variable saccharose concentration  
(a) 20 g/L; (b) 30 g/L; (c) 40 g/L; (d) 50 g/L.

Figure 8. 
Carrot root discs after four weeks on mineral medium with Agrobacterium rhizogenes [61].
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have an agravitrpic phenotype and genetic stability (Figure 9). In especially, the 
ability of hairy roots is growing quickly in vitro in the absence of exogeneous 
phytohormones.

Agrobacterium are Gram-negative soil, aerobic, rod-shaped (0.6–1.0 x 
1.5–3.0 μm) bacteria, of the family Rhizobiaceae. They can move by 1-4 peritrichous 
flagella (Figure 10).

The mechanisms for crown gall or hairy root formation are very similar, depend 
on Ti-plasmid (tumor inducing plasmid) and Ri-plasmid (root inducing plasmid) 
respectively. In Agrobacterium, a portion of Ti-plasmid or Ri-plasmid, T-DNA 
(region bounded by 25 bp direct oligonucleotide repeats- right border and left 
border) is transferred to the plant cell, randomly integrated into the host genome 
and expressed. Vir genes are very important to the infection of this bacterium to the 
plant cell (Figure 11).

There are two kinds of Ri-plasmid: agropine and mannopine based on the 
compounds that are synthesized by the transgenic plant tissue [64]. Agrobacterium 
recognizes some signal molecules (phenolic compounds) excreted by the wound 
in plant and attached to it. In the Agropine, Ri-plasmids consist of two copies: left 
T-DNA (TL-DNA) and right T-DNA (TR-DNA), each copy is transferred inde-
pendently (Figure 12). Encoding genes in T-DNA are bacterial origin but they can 
express in infected plant cells because of eukaryotic regulatory. Genes of auxins 
synthesis are ascribed to the TR-DNA. The right T-DNA of Ri-plasmid contains two 

Figure 9. 
Transformed roots of Ocimum basilicum with many hairy roots [62].

Figure 10. 
Agrobacterium rhizogenes [63].
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genes in the role of auxin synthesis referred to as tms1 and tms2 (aux1 and aux2). The 
TR-DNA also contains genes for agropine synthesis (ags). The TL-DNA has been 
sequenced and a total of 18 open reading frames (ORF1–ORF18) have been identified 

Figure 11. 
Ri-plasmid of Agrobacterium rhizogenes. T-DNA: transfer DNA, RB: Right T-DNA border (25 bp), LB: Left 
T-DNA border (25 bp), Vir genes: Virulence genes, ori: Origin of replication.

Figure 12. 
Ri plasmid (T-DNA with two copies: Left T-DNA and right T-DNA).
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[65]. For the formation of the hairy roots, four rol genes (rolA, rolB, rolC, and rolD) 
are very important. These genes correspond to reading frames ORF10, ORF11, ORF12 
and ORF15 [66]. The products of rol genes have specific functions in the hairy roots 
formation; among them, rolB gene seems to be the most relevant in the induction. 
Also the rol-genes have a big influence on the phenotype of hairy roots [67]. RolA 
protein is suggested as a transcription factor that has been proposed to participate in 
the metabolism of gibberellins. The rolA gene is also reported to be responsible for 
changes in polyamine metabolisms. The rolB gene is important in the mechanism of 
adventitious root formation in plants. The adventitious roots induced by the rolB gene 
produce lateral roots in cell plant cultures, that indicates that the rolB protein has an 
effect on the formation of both lateral and adventitious roots. The rolC gene effects on 
the plant size and architecture, these include height decreasing, internode elongation, 
male fertility, apical dominance and increasing number of flowers. Other effects are 
the changes in leaf size, color and shape that increasing their ornamental value. The 
RolD is suggested to exert a positive effect on flowering by inducing a striking earli-
ness in the flowering process and increasing the number of flowers [68].

Hairy roots grew more rapidly and produce higher levels of secondary products 
than the adventitious root obtained by hormonal control. One of the final goals of 
hairy root cultures is to produce valuable plant secondary products in large-scale 
bioreactors [69].

Hairy roots have different shapes depends on the Agrobacteroum rhizogenes 
strain that infected. Hairy roots were established by the infection of six different 
Agrobacterium rhizogenes strains to two varieties of Catharanthus roseus. Fourty 
seven hairy root clones were recorded. Growth rate and morphological appearance 
of hairy roots were wide showed (Figure 13) [70].

Hairy roots from root discs of Panax ginseng C.A. Meyer were obtained after the 
infection of Agrobacterium rhizogenes A4. Hairy roots displayed three phenotypes 
(three lines): the first lines showed the characteristic traits of hairy roots (HR-M), 
the second were callus-like (C-M) and the third were thin, without branching 
(T-M) (Figure 14). HR-M and C-M root phenotypes presented the highest biomass. 
The highest ginsenoside production was achieved by HR-M root lines, followed by 
C-M and the lowest yield was found from T-M root phenotype [71].

Hairy roots were induced from Rhaponticum carthamoides leaf explants by the 
transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. A4 strain 
was more appropriate than ATCC 15834 in the formation of transformed roots. 
Hairy roots systems were established in liquid media (WPM, B5, SH) with full and 

Figure 13. 
Hairy root cultures of Catharanthus roseus showing the diversity in the growth between different clones derived 
from the same variety.
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half-strength concentrations of macro- and micronutrients. Two different lighting 
conditions (light or dark) were tested on the biomass of hairy root line (RC3). The 
highest biomass was obtained in WPM medium under periodic light. The content of 
caffeoylquinic acid and their derivatives was raised in hairy roots grown in the light. 
Besides, the biosynthesis of flavonoid glycosides such as quercetagetin, quercetin, 
luteolin, and patuletin hexosides was detectedin the light. Chlorogenic acid, 3,5-di-
O-caffeoylquinic acid and tricaffeoylquinic acid derivative were found as the major 
compounds present in the transformed roots [72].

Hairy roots from petiols of Isatis tinctoria L were induced by Agrobacterium 
rhizogenes strain LBA9402 to investigate eight bioactive flavonoid constituents (rutin, 
neohesperidin, buddleoside, liquiritigenin, quercetin, isorhamnetin, kaempferol 
and isoliquiritigenin). Many basal salt media were used (Chu (N6), Nitsch & Nitsch 
(NN), Gamborg (B5), Schenk & Hildebrandt (SH), White, (Murashige & Skoog) 
MS and ½ MS) for the biomass and flavonoid accumulation. Other factors were 
studied such as: carbohydrate sources and initial pH. ½ MS medium, 3% sucrose and 
pH 5.8 were suitable for either biomass or flavonoid accumulation as the results. The 
total flavonoid concentration after 24 days of culture (438.10 μg/g DW) was higher 
than 2 year-old natural plants (341.73 μg/g DW) [73].

The efficiency of transformation depends on many factors: type and age of 
explant, the strain, density and growth stage of Agrobacterium rhizogenes, aceto-
syringone concentration, the pre-culture time, the infection time...

Plant secondary production by hairy roots process:

1. Hairy roots induction and proliferation.

2. Hairy roots in liquid phase: nutrient medium optimization, several strategies 
can be used to improve the yields of target compounds.

3. Bioreactor stage: batch / fedbatch or continuous culture. Optimization airflow 
rate, temperature, pH….

Figure 14. 
Three phenotypes of Panax ginseng C. (a). Meyer hairy roots. Hairy root morphology (HR-M), (b) callus 
morphology (C-M), (c) thin morphology (T-M).
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To improve the yield of valuable secondary products in hairy root cultures, elici-
tation seems to be the most effective strategy. Hairy root cultures are preferred for 
the application of elicitation because of their stable genetics and biosynthesis and 
high growth rate in non-phytohormone medium. Elicitors act as signals that were 
recognized by elicitor-specific receptors on the plant cell membrane and stimulate 
defense responses during elicitation. The results are the increasing of synthesis and 
accumulation of secondary metabolites. The effects of elicitation depend on elicitor 
type, concentration, duration of exposure and treatment schedule (Table 2).

Panax ginseng C.A. Meyer hairy roots from roots, stems, and leaves induced by 
the infection of Agrobacterium rhizogenes (KCTC 2703) were propagated in 5-liter 
cone type bubble bioreactors containing MS media supplemented with 2.0 mg/L 
NAA and 30 mg/L sucrose. Jasmonic acid in various concentrations was added to 
the culture system after 30 days of culture to increase ginsenoside concentration. 
Total ginsenoside concentration increased with the increasing of jasmonic acid 
concentration, but the root growth was inhibited with high concentration. Total 
productivity was greatest at 2.0 mg/L jasmonic acid but there was the difference in 
groups of ginsenoside. Ginsenosides in the Rb group mainly increased, while those 
in the Rg group did not. High concentrations (5 and 10 mg/L) of jasmonic acid 
decreased Rg1 content but significantly increased the Rb1. In the Rb group, the Rb1 
content increased more than Rb2, Rc, and Rd. [88].

Species Elicitors Secondary 

products

References

Azadirachta indica A. 
Juss

Jasmonic acid, Salicylic acid Azadirachtin [74]

Silybum marianum (L.) 
Gaertn.

Ag+ Silymarin [75]

Plumbago indica Jasmonic acid Plumbagin [76]

Glycyrrhiza inflata Chitosa
Methyl jasmonate, Yeast extract

Glycyrrhizin [77]

Artemisia annua L. Methyl jasmonate, fungal elicitors 
(Alternaria alternate, Curvularia 
limata, Fusarium solani, and 
Piriformospora indica)

Artemisinin [78]

Valeriana officinalis L CaCl2 Valerenic acid [79]

Salvia miltiorrhiza Salicylic acid Tanshinone [80]

Astragalus 
membranaceus

Methyl jasmonate Isoflavonoid [81]

Rauwolfia serpentina 
and Solanum khasianum

NaCl, cellulase from Aspergilus 
and mannan from Saccharomyces 
cerevisiae

Ajmaline, 
solasodine and 
α-solanine

[82]

Psoralea corylifolia Methyl jasmonate Daidzin [83]

Datura metel B. cereus and S. aureus Scopolamine [84]

Panax quinquefolium Yeast extract Ginsenosides [85]

Ocimum tenuiflorum L Yeast extract, Methyl jasmonate, 
Salicylic acid

Ursolic acid and 
eugenol

[86]

Scutellaria bornmuelleri Methyl jasmonate + chitosan Chrysin, wogonin 
and baicalein

[87]

Table 2. 
The application of elicitors on secondary products of hairy root cultures.
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In another experiment, peptone and jasmonic acid were used as elicitors to pro-
mote ginsenosides accumulation in Panax ginseng C.A. Meyer hairy roots induced 
by the infection of Agrobacterium rhizogenes (KCTC 2703) to root explants. Root 
system was cultured in phytohormone-free Murashige and Skoog liquid medium. 
Jasmonic acid in the range 1.0–5.0 mg/L strongly improved total ginsenoside 
production. Peptone (300 mg/L) showed good effects on ginsenoside concentra-
tion but weaker than that of jasmonic acid. The Rb group of ginsenoside content 
was increased remarkably by jasmonic acid, while Rg group ginsenoside content 
changed slightly compared to controls. However, jasmonic acid also strongly 
inhibited hairy root growth [89].

Node explants of Vitis vinifera subsp. sylvestris were used as materials for the 
hairy root induction by Agrobacterium rhizogenes ATCC 15834. Hairy roots were 
immerged in ½ B5 medium without phytohormone. Methyl jasmonate and other 
elicitors were used to enhance resveratrol biosynthesis of hairy roots. The result 
showed that the resveratrol production of hairy roots was higher than natural roots. 
Especially, the production of resveratrol increased with the present of elicitors. 
There was a significant difference in inducing resveratrol production between the 
elicitors. The treatment with 3 mM acetic acid led to the highest resveratrol content 
and methyl jasmonate seemed to be less effective than the others [90].

4. Conclusion

Adventitious roots and hairy roots are promising materials for the production of 
valuable secondary compounds of plants which are used in pharmaceutical, food 
and cosmetic industry. The chemical characteristics of these compounds are the 
same as that in natural plants but the yields are proved higher. Furthermore, there 
are many investigations which focused on improving bioreactor for root cultures to 
raise their quality and productivity.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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