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Chapter

A Wavelet Threshold Function for
Treatment of Partial Discharge
Measurements

Caio F.F.C. Cunha, Maviane R. Petraglia,
André T. Carvalho and Antonio C.S. Lima

Abstract

Based on the wavelet transform filtering theory, the chapter will describe the
elaboration of a wavelet threshold function intended for the denoising of the partial
discharge phenomenon measurements. This new function, conveniently named
Fleming threshold, is based on the logistic function, which is well known for its
utility in several important areas. In the development is shown some variations in
the application of the Fleming function, in an attempt to identify the decomposition
levels where the thresholding process must be more stringent and those where it
can be more lenient, which increases its effectiveness in the removal of noisy
coefficients. The proposed function and its variants demonstrate excellent results
compared to other wavelet thresholding methods already described in the
literature, including the famous Hard and Soft functions.

Keywords: wavelet transform, threshold function, partial discharge,
signal denoising

1. Introduction

The analysis of the Partial Discharges (PD) phenomenon, which manifests itself
in the existing imperfections into the insulation of high voltage equipment have
received global acceptance as an important tool for the predictive diagnosis of the
operational conditions of these, allowing taking measures that can safeguard both
the material and the power supply quality of the electrical system.

PD are short duration impulsive signals and, consequently, these can be detected
in a wide frequency range, from a few kHz to GHz. Normally, there is a direct
relationship between the frequency range where there is a higher incidence of PD
pulses and the type of high-voltage equipment evaluated, e.g. transformers and
generators usually emit pulses from a few tens of kHz up to about 30 MHz [1],
whereas Gas Insulated Substations (GIS) are affected by very fast pulses ranging
from 300 MHz to 3 GHz and for cables the spectrum covers frequencies from
300 MHz to 1 GHz.

Figure 1 shows two examples of measured PD pulses in two different HV
equipment, a GIS and a hydro generator. Note the marked white noise presence.
The pulses normally have an exponentially damped oscillatory shape or only an
exponentially damped shape [2].
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Figure 1.
PD pulses measured in: (a) GIS; (b) Hydro generator.

The proper diagnosis of equipment is closely related to the peak amplitude and
shape of the pulses detected. Therefore, it is important to preserve the amplitude
characteristics of the signal (especially the peaks), providing higher Signal to Noise
Ratio (SNR) and lower Amplitude Error (EA).

The application of FFT and STFT filtering is not as effective in the treatment of
non-stationary, transient, and stochastic signals as the PD [3], since these transforms
do not allow a location in the time and frequency domain in the same way as the
wavelet transform does [4, 5] (with better resolution in frequency and worse resolu-
tion in time for the low frequency components of the signal; and worse resolution in
frequency and better resolution in time for the high frequency components of the
signal). Therefore, the performance of these methods becomes limited in comparison
with the wavelet denoising, which presents a capacity of self-adaptation to the signal.

Partial discharges, almost entirely, are electrically detected and quantified, expos-
ing them to the extensive noise interferences that may compromise the PD signals
measurement, limiting the diagnosis accuracy. Different signal processing tools have
been used to extract the PD signals from these noise sources; among them, it is possible
to highlight the Wavelet Transform (WT). The filtering by wavelet processing is
recommended in the extraction of PD signals immersed in Gaussian noise [1, 6].

An efficient application of wavelet processing depends on the careful selection
of the parameters that will concentrate the coefficients on the most suitable
decomposition levels to minimize the PD signal information loss. Among these, we
have the applied WT, the number of decomposition levels, the wavelet functions
used in each of these levels, the method of estimating the threshold value of the
obtained coefficients and the threshold function.

The choice of most of these parameters has already been widely explored in
several works meant to PD processing [2, 6-13]. However, with respect to threshold
functions, most studies do not focus on PD signals denoising but on audio signals
[14-18], Electrocardiogram (ECG) [19-21] or images [22-28]. Therefore, there is a
lack of a dedicated threshold function to improve the PD pulses denoising, in order
to increase the precision in the diagnosis of High Voltage (HV) equipment.

Based on the WT filtering theory, this chapter will be described the development
of a wavelet threshold function aiming to improve the noise reduction in PD mea-
surements. The logistic function serves as an inspiration to this new function [29],
which is well known for its usefulness in numerous areas. Since it is customary to
associate functions of this type with something that refers them to the name of their
developers (e.g., [25]), it was designated as Fleming threshold function.

The denoising performance of the proposed threshold function was compared
with the traditional Hard and Soft functions and with twelve other thresholding
functions. For a fair analysis of the filtering results, were used 2064 simulated and
measured PD pulses contaminated with uniform white noise, Gaussian white noise,
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and Amplitude Modulated (AM) noise. The results showed that our proposal is able to
overcome, qualitatively, and quantitatively, all the confronted functions.

2. Wavelet domain detection

Noise degrades the accuracy and precision of analysis, in addition to reducing
the detection limit of the instrument applied in the PD measurements. Often the
WT is a tool designed to attenuate continuous random noise (white noise), because
after the decomposition of a signal in the wavelet domain can be noted that the
average density of the coefficients is inversely proportional to the dyadic scale 1/2/
(j indicates the level of decomposition), i.e., half of the number of extreme local
coefficients do not spread from a 1/2/ scale to the next 1/27/%! scale, distributing it
uniformly across the scales. As the wavelet coefficients distribution pattern of the
PD signal (which tends to have its energy concentrated in few decomposition
levels) differs from the noise pattern, it becomes easy to identify and separate the
PD signals from the noise [30-32]. However, in wavelet denoising, the noise atten-
uation occurs not only to the white noise but also to the noise with frequency
components that do not match the frequency components of the PD pulses.

Basically, the wavelet shrinkage denoising process involves three steps [13, 31]:

1. Determine the WT decomposition tree (discrete WT, wavelet packet
transform, stationary WT or dual-tree complex WT) to be applied, the
number of decomposition levels J and the wavelet function that will be
employed on each of thej levels (where j = 1,2, -:-,]), and then perform the
decomposition of the analyzed signal into its wavelet coefficients;

2.Calculate the threshold values using one of the threshold selection rules, which
depend on statistical estimation of the noise level present in the signal. Apply the
calculated value in a threshold function to thus reduce the coefficients of the noise
figure and preserve the signal coefficients of interest, in our case the PD pulse;

3.Reconstruct the signal by applying the Inverse Wavelet Transform
(corresponding to the decomposition tree selected in the first step) in the
threshold coefficients, to obtain the filtered signal in the time domain.

Signal

(pre-processed erne)
Wavelet Transform
(Decomposition Tree)
Number of Decomposition Wavelet
Levels J Decomposition

[ Wavelet Function of each }/
Level I Threshold Value of each ]

Level j

Coefficients

Thresholding Threshold Function ]

of each Level j
Inverse Wavelet
Transform
Denoised Signal

Figure 2.
Signal denoising steps by wavelet transform.
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Figure 2 illustrates each of these steps involved in the wavelet denoising
processing of a digitalized signal.

As several parameters are involved, they should be carefully selected according
to the signal characteristics, in order to maximize their wavelet coefficients above
the noise level. Thus, filtering performance is closely related to each of these
parameters and some of these will have a greater influence on the quality of
the result. The determination of these parameters shows to be an optimization
challenge [33]. In this chapter, we will focus our attention on the improvement of
the threshold function applied in the second step.

3. Fleming threshold function

In most of the wavelet denoising literature, especially those focused in the
treatment of PD signals, the choice of the threshold function normally falls between
the Hard and the Soft functions. Moreover, it is well known that for PD pulse
filtering the Hard function tends to preserve more of the signal information, pro-
viding a higher SNR and a lower Amplitude Error (AE). However, the Hard esti-
mate has discontinuities, being not differentiable, which ends up causing instability
problems and sensitivity to small changes in the data pseudo-Gibbs effect. The Soft
function is weakly differentiable and produces a high attenuation of the coefficients
and, therefore, the reduction of the amplitude in the resulting signal.

In an attempt to get around these problems, many alternatives are being pro-
posed. The main idea is to generate a high-derivative order thresholding function,
which contributes to its use in optimization algorithms that look for the optimal
parameters to be applied in the thresholding of each signal [34]. Therefore, the
function becomes adaptable to the signal to be processed, improving the quality of
the denoised signal.

When analyzing the threshold functions applied, whether in the area of PD,
audio, ECG, or image processing, it is remarkable that those seek improvements by
combining both, the preservation properties of the coefficients and magnitudes
provided by the Hard function, as well as the differentiation and smoothness pro-
vided by the Soft function. In image processing, the smoothness property is inter-
esting so that the resulting image shows more pleasant contours. In signal
processing, such as audio, ECG, and PD pulse processing, it is important to achieve
better preservation of signal magnitude (peak) and signal noise ratio.

For this reason, many authors have explored functions that correspond to an
interpolation of the Soft and Hard alternatives. As an example, it is possible to
mention functions such as: the Garrote described by Nasiri et al. in [19]; the Non
Negative Garrote described in [12]; the Adaptive Shirinkage showed by Partha Ray
in [35]; the Liu developed by Shan Liu in [16]; the Hui presented in [36]; Stein and
Semi-Soft shown in [12]; and the functions described by Zhang et al. in [37, 38].
However, the majority of the functions cannot adapt to the different signals due to
the fixed transition curve on the threshold value. In these functions, there is still a
greater tendency to smooth the coefficients than to preserve them, not realizing
that for PD signals it is appropriate for the function to be closer to the Hard them to
the Soft threshold function, but still preserving some of the smoothness (differen-
tiability) in the transition of the threshold value, which will allow an improvement
in the EQM and CC.

Following this line of reasoning, we propose a new threshold function similar to
the Hard but being differentiable for higher orders and being able to adjust to each
signal. This proposal is based on the well-known logistic function, shown in
Figure 2, widely used in artificial neural networks, demography, economics,
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probability, statistics, chemistry, etc. Eq. (1) represents the logistic function, where
H is the maximum value of the curve, a controls the slope of this curve and x
corresponds to the value of x at the midpoint of the sigmoid curve dictated by the
numerator value (Figure 3). When the x value tends to +oo the curve approaches H
and when it tends to —oo it approaches to zero.

- H
1 + g—alx—xo)

fx) 1)

Eq. (1) enabled us to develop the threshold function for filtering signals in such a
way that it circumvents the problems previously described. As the objective in the
thresholding process is to preserve the coefficients above the threshold value, it is
easy to see that the maximum value H will be the decomposed wavelet coefficient
wj, (which corresponds to the variable x). Thus, the function will maintain sym-
metry when we vary the inclination constant ¢ of the curve. Finally, it is necessary
to move the function along the abscissa axis so that the graph shown in Figure 2
leaves the ordinate axis and stays over the threshold value, this is done by
subtracting the variable x from the value where we want to move the function (xo),
i.e., the value of the coefficients w;, must be subtracted from the threshold value 4.
By making these adaptations, we obtain the following threshold function:

W - W
14e (@) 14 (ot

Nf (@ 4 €) = (2)

For a more efficient implementation, in which it is not necessary to worry about
the fact that the coefficient wj is positive or negative, Eq. (2) can be rewritten

using the signum (sign) function, which returns +1 if the value is positive and —1 if
the value is negative. Thus, we have:

Wjj
1 4 ¢ ((—sign (@) <) +4)

Ny (@ips ) = (3)

With high ¢ values, the curve inclination on the threshold point is such that it
approaches the Hard function, but with a smoother (differentiable) transition. For
low ¢ values, the inclination of the function will act with less intensity on the
coefficients below the threshold value and with greater intensity on the coefficients
above this value, i.e., a large part of noisy coefficients may pass and there will be
information losses on those coefficients that represent the signal of interest, in our
case the PD pulse. With the appropriate choice of the ¢ value for each processed
signal, it is possible to obtain a significant improvement in the result of the PD
wavelet denoising in relation to the Hard and the Soft functions.

Considering a threshold value 4 = 1, Figure 4 shows the behavior of the pro-
posed threshold function (called the Fleming function) for different ¢ values (3, 10,
20, 30, 50, 80, 100 e 200). With very low values of ¢ there is the possibility of

H

Jix)

Figure 3.
Logistic function.
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Behavior of the Fleming threshold function to A = o, 05.

passing a large number of noisy coefficients, so it is indicated that the value of the
constant be greater than or equal to 5.

In a PD evaluation, most measurements provide signals with amplitude around
mV. Thus, if the WT technique is applied to filter the signals, its decomposed
coefficients will also be in the mV range and by using a threshold rule (in our case
scaledep) the threshold value 1 will be small and usually smaller than 1, mainly for
coefficients that contain more noise than the PD components. When we evaluate
the threshold function for a small threshold value (e.g., 4 = 0, 05), the accuracy
with which the coefficients are attenuated becomes lower, as illustrated in Figure 5.
Note that even for ¢ = 200, most of the noisy coefficients can pass, different than
what was seen for the threshold value 1 = 1.

One solution to overcome this problem was to adapt Eq. (3) according to the
threshold value when it is considered small (understand as small as 1< 0, 5), by
simply changing the ¢ constant that controls the inclination proportionally to the 4
threshold values. With this, we can rewrite Eq. (3) as follows:
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thus, when 1< 0, 5 the lower the 4 threshold value, the greater the rigor in
discarding the coefficients (closer to the Hard function), with a significant
improvement in the function’s behavior, as shown in Figure 6.

Therefore, in Eq. (4) we have a function capable of adapting to different types of
wavelet coefficients, varying between the Soft and the Hard threshold functions
according to the ¢ inclination value defined. Thus, there is a need to define how
(and which) the inclination value should be applied to the coefficients.

3.1 Relevant wavelet coefficient identification

From the idea of identifying the most important coefficients to form the PD
signal, used for the SNRBWS method, we were able to perform a variant on the
threshold function. In this case, we chose to use kurtosis (K,) as a statistical
measure of the probability distribution’s flatness [39] of the w;;, wavelet coefficient,
because the tapered this curve, the farther from the Normal probability distribution
(Gaussian), which is characteristic of the white noise presence. Therefore, kurtosis
will serve as an indicator to know if we have noisy coefficients (kurtosis close to 3)
or PD components (high kurtosis >3).

Figure 7 shows the detail coefficients at level j = 1 and the detail coefficients at
level j = 6 with their respective histograms. Notice that in Figure 7(a), formed
almost exclusively by noise components, the histogram is very close to the Normal
probability distribution, a fact that is confirmed by the kurtosis value equal to
2.9687; in the Figure 7(b) the coefficients have significant information about the
PD pulse and the histogram is more tapered (leptokurtic), moving away from the
Normal distribution, as indicated by the kurtosis value of 9.9612.

Then, to fulfill the task of identifying the most relevant coefficients to form the
PD signal, it is enough to assume the following the condition regarding the kurtosis
value: if the kurtosis of the coefficient is greater than 4, it must be considered
important and the threshold function will make use of a lower ¢ inclination
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Wavelet coefficients and histograms of a real PD pulse: (a) first detail coefficient (kurtosis = 2.9687); (b) sixth
detail coefficient (kurtosis = 9.9612).

constant, allowing the passage of more coefficients, otherwise it will be considered
as noisy coefficients and a much higher inclination constant must be assigned (in
case ¢ = 10%), eliminating a greater amount of noise, which approximates our
function of the Hard. In equational terms, we have the Eq. (5):

( 2 f K <4
1 +61020((_5@"(01]‘,k)><wj,k)+/1) l.f u(a)j,k) =
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4. Fleming threshold function

In order to perform the evaluation of the Fleming thresholding functions, we
took 2064 signals and submitted to the wavelet denoising processes. Among these
signals, we included real PD measurements from HV equipment and PD simulated
with different levels of uniform white, Gaussian white and AM noise (created of the
same way described in [40]). For each data, we compare the performance of our
proposal against the classical Hard and Soft thresholding, along with 12 other
thresholding functions mentioned in the Section 4.

In addition to thresholding, the wavelet shrinkage process also requires the
choice of the decomposition tree, the mother wavelet, the decomposition levels
number and the threshold value (1) estimation method. As our goal is to evaluate
only the thresholding functions performance, we change only these and keep fixed
the other wavelet parameters necessary to the signal filtering. We chose to use the
FWT structure, due to the ease of its implementation and because it is widely
applied in the treatment of PD signals. We use the SNRBWS method to select the
mother wavelet and the NWDLS method to find the decomposition levels number.
In the threshold value estimative, we chose the scaledep method [3, 40, 41].

Since the Fleming function depends on an ¢ inclination constant, which controls
how the decomposed wavelet coefficients are eliminated or attenuated, we also
compare the results for different values of this constant.

The comparisons were done using statistical parameters as Absolute Mean Error
(AME), Mean Square Error (MSE), Root Mean Square Error (RMSE), Correlation
Coefficient (CC), Normalized Correlation Coefficient (NCC), Energy Difference
(EnD), Signal to Noise Ratio (SNR), Signal to Noise Ratio Difference (DSNR),
Noise Level Reduction (NLR), kurtosis difference (Ak); and local similarity criteria
that involve maximum Magnitude Error (MEmax), minimum Magnitude Error
(MEmin), maximum Peak Time Variation (PTVmax), minimum Peak Time Varia-
tion (PTVmin) and Rise Time Variation (RTV'). Some of these parameters are used
to form a fitness function (J,,,), composed by global similarity criteria (cs;) and

local similarity criteria (cs;), that can determine the best filtering result. All these
criteria were described in [42].

4.1 Investigating the better inclination value ¢

In a first analysis, it was investigated, through the ], fitness criterion, what is
the best ¢ inclination value to be used in each alternative of the Fleming
thresholding. Table 1 evinced that ¢ = 5 produces the highest amount of best results
per threshold function. In Table 2 both methods produce best results with a lower
constant, in case ¢ = 10 to Fleming and ¢ = 5 to Fleming 2. In this way, it is possible
to recommend not to use inclination values higher than 10.

Function Best ] 5, results percentage

Inclination constant ¢

5 10 30 50 100 200 300 500 1000
Fleming 47,09 25,00 8,96 4,12 3,63 1,50 1,07 1,16 7,46
Fleming 2 65,16 11,82 5,52 2,37 1,79 1,55 0,78 1,16 9,84

Table 1.
Best vesults percentage (by ] o) comparison between Fleming functions to various inclination constants.
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Function Mean ] 4, results

Inclination constant ¢

5 10 30 50 100 200 300 500 1000
Fleming 2,71 3,12 1,02 0,09 0,73 0,49 0,07 0,93 0,96
Fleming 2 1,34 1,06 0,92 0,89 0,88 0,88 0,88 0,89 0,88

Table 2.
Mean value results (by ] p,:) comparison between Fleming functions to various inclination constants.

4.2 Comparison between Fleming, Hard and Soft threshold functions

The main objective of building a dedicated threshold function is to make it able
to produce results superior to those of conventional functions. As seen, the most
applied functions in wavelet coefficient filtering are Hard and Soft, not only for PD
signals, but also for image processing, audio signals, etc.

First, we show in Figure 8 the results of the comparison between the first
proposed alternative using ¢ = 5 against Hard and Soft functions. According to the
J ap» we find that the proposed function achieves a higher percentage of better
results than the Hard and Soft. As expected, due to its simplicity, the Soft
thresholding is the fastest in runtime.

We then compare in Figure 9 the second alternative proposed with the Hard and
Soft functions. Note that there is a significant improvement in the number of better
results, achieving superior performance in the EMA and Ak criteria, which did not
occur with the first alternative of our function.

Therefore, is evidenced by the superiority of the proposed alternatives in rela-
tion to the amount of better results obtained compared to the usual Hard and Soft
methodologies. The only drawback is that our second proposal needs a little more
time to be processed, but it is a relatively low price to be paid to achieve better
results in reducing noisy components of PD signals. Also, note that, compared with
the Soft function, the Hard thresholding tends to provide a better preservation of

the PD pulses amplitudes and of the SNR, which confirms the statements made in
the literature [3, 22].
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Comparison of the better denoising results obtained between the Hard, Soft and Fleming 2 threshold functions.

In Figure 10 is shown a signal consisting of 3 simulated PD pulses wrapped in
white noise and in AM noise, which was created as performed in [3]. In addition,
note the filtering results for the Hard, Soft, Fleming and Fleming 2 thresholding.
The Soft function tends to considerably attenuate the pulses peak amplitudes; the
Hard function shows greater preservation of these amplitudes; the Fleming function
allows the passage of a little more noise with negligible amplitudes, but it achieves
better preservation of the amplitudes than the Hard and Soft, while the Fleming 2
function is able to solve Fleming’s problem by identifying the coefficients of greater
importance. In this way, the Fleming 2 method presents better amplitudes preser-
vation than the other functions and still manages to eliminate the low amplitude
noise seen with the use of the Fleming. The filtering improvement is also indicated
by the fitness function, with higher value (], = 16.4607) for the filtering result
using the Fleming 2 thresholding.
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Figure 10.

Comparison of the better denoising results obtained between the Hard, Soft, Fleming and Fleming 2 threshold
Sfunctions to a simulated PD signal.
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4.3 Comparison between all threshold functions

With the results described in the previous subsection, we have a quantitative
idea of the used method’s capacity, but only with the average results is possible to
have a real sense of the quality of each one. Taking advantage of the opportunity,
we implement the various wavelet thresholding methods (mentioned in Section 4),
including the: Adapt Shrink, Garrote, Hui, Liu, Non Negative Garrote (NNG), Semi
Soft (SS), Stein, Zhang 1 (Z1), Zhang 2 (Z2), Zhang 3 (Z3), Zhang 4 (Z4), and
Zhang 5 (Z5). The required variables for each of these alternatives were designated
according to the specifications provided by the respective authors in the works that
describe them.

Similarly to what was done in Table 1, we made a percentage evaluation of the
amount of best results considering all threshold functions and the proposed Fleming
functions (compared for a constant ¢ = 5). From Tables 3 and 4, the bold values
evidence that the Fleming threshold had a superior performance when compared to
the other alternatives. In terms of fitness, the one with the highest amount of better
filtering results was Fleming. The Stein function outperforms the others in execu-
tion time. The Soft function ends up losing space in practically all the evaluated
criteria, confirming that it is not suitable to treat PD signals, due to the high
attenuation generated in the wavelet coefficients processing.

Parameter Threshold function

Hard Soft Fleming Fleming2 Adaptshrink Garrote  Hui Liu

AME 1,07 0,39 9,01 31,49 5,23 4,80 13,08 6,73
MSE 0,19 0,00 10,22 33,38 7,99 9,25 8,43 5,33
RMSE 0,19 0,00 10,22 33,38 7,99 9,25 8,43 5,33
cC 0,87 0,00 16,57 39,87 3,83 11,97 7,27 2,76
NCC 0,97 0,00 17,59 40,26 3,15 11,92 6,98 2,91
EnD 18,51 0,48 18,12 14,73 1,79 8,91 1,89 9,93
SNR 2,37 0,00 21,17 42,49 0,15 3,39 1,55 2,23
DSNR 2,37 0,00 21,17 42,49 0,15 3,39 1,55 2,23
NLR 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
MEmax 9,40 0,19 20,78 17,78 1,07 8,48 0,24 6,10
MEmin 8,19 0,10 18,70 19,04 2,28 10,17 1,31 8,28
PTVmax 0,73 0,00 6,15 3,20 2,96 5,43 0,48 2,57
PTVmin 1,16 0,00 7,27 4,36 2,86 5,09 0,58 2,96
DM 0,48 0,00 4,36 4,02 1,79 3,39 2,18 0,78
RTV 2,28 0,05 9,01 8,19 1,79 3,05 3,34 2,71
CSg 3,25 0,10 20,01 35,71 0,78 5,62 4,89 5,96
cs; 11,09 0,10 19,04 20,83 0,68 9,64 1,41 7,66
Ak 9,06 0,68 13,86 18,75 4,46 4,89 11,39 6,10
Japt 3,68 0,00 19,23 35,03 0,73 5,18 441 7,12
Lexec 1,60 3,59 4,22 0,00 18,27 0,15 0,10 4,51
Table 3.

Percentage of best results by evaluation parameters for all threshold functions.
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Parameter Threshold function
NNG SS Stein 71 72 Z3 74 Z5
AME 0,97 1,02 6,35 1,31 4,36 4,12 7,03 3,05
MSE 2,28 1,11 6,83 1,11 5,14 3,05 2,37 3,29
RMSE 1,70 1,11 7,41 1,11 5,14 2,96 2,37 3,39
cC 1,70 0,39 5,14 1,60 1,55 2,03 0,00 4,46
NCC 1,31 0,39 5,28 1,55 1,07 1,89 0,00 4,75
EnD 2,03 0,48 5,43 2,86 3,59 4,12 1,55 5,57
SNR 1,31 0,78 5,33 0,87 0,05 0,97 0,00 17,34
DSNR 1,21 0,78 5,43 0,87 0,05 0,97 0,00 17,34
NLR 0,00 0,00 0,00 26,26 0,00 0,00 0,00 73,74
MEmax 1,70 0,15 5,81 9,06 1,36 4,36 0,24 13,28
MEmin 1,11 0,05 11,05 5,18 2,71 5,28 0,15 6,40
PTVmax 0,00 1,16 1,79 6,15 5,33 20,16 2,52 41,38
PTVmin 0,00 1,16 1,26 6,06 4,99 18,90 1,31 42,05
DM 0,00 1,79 0,68 7,36 2,42 12,74 37,26 20,74
RTV 0,00 2,66 3,34 4,65 4,65 14,24 18,94 21,08
csg 4,02 2,57 7,95 0,24 1,07 3,59 0,00 4,26
csy 1,55 1,02 8,62 4,55 1,41 4,89 0,78 6,73
Ak 3,49 3,44 6,59 2,81 2,96 6,06 0,29 5,18
Jape 4,41 2,33 8,19 0,44 0,87 4,36 0,00 4,02
Lexec 0,24 2,37 9,93 18,02 0,00 3,05 0,58 33,38
Table 4.
Percentage of best results by evaluation parameters for all threshold functions.

Parameter Threshold function

Hard Soft  Fleming Fleming Adapt Garrote Hui Liu

2 shrink

AME 0,021 0,020 0,021 0,021 0,021 0,023 0,023 0,019
MSE 0,020 0,017 0,020 0,020 0,017 0,021 0,025 0,016
RMSE 0,029 0,031 0,029 0,029 0,030 0,030 0,038 0,028
cC 0,770 0,736 0,790 0,787 0,761 0,773 0,713 0,775
NCC 0,769 0,733 0,789 0,786 0,759 0,773 0,706 0,773
EnD 0,302 0,525 0,267 0,283 0,472 0,364 0,571 0,294
SNR 6,47 1,22 6,82 6,83 2,57 6,51 0,00 5,40
DSNR 3,05 —2,20 3,40 3,41 -0,85 3,09 —3,42 1,98
NLR -37,33 -36,57 37,55 —37,52 —36,86 —38,26 —36,40 —37,16
MEmax 14,13 39,75 12,97 14,77 35,08 13,78 43,78 20,53
MEmin 16,11 35,57 13,20 16,24 30,09 14,03 40,20 17,37
PTVmax 15,71 11,44 11,66 16,28 13,97 13,29 12,45 9,08
PTVmin 23,06 20,14 19,93 23,93 23,45 22,07 23,58 16,49
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Parameter Threshold function
Hard Soft  Fleming Fleming Adapt Garrote  Hui Liu
2 shrink

DM 4536,233 4536,207 4536,231 4536,188 4536,217  4536,216 4536,227 4536,236
RTV 11,31 9,87 12,64 11,64 13,94 15,11 10,78 9,53
sy 3,81 —5,27 5,99 4,31 3,88 3,19 3,86 2,69
csy 2,92 3,59 2,87 2,97 24,71 22,80 31,21 2511
Ak 23,67 30,79 20,46 23,78 —4,51 1,08 -10,83 0,55
Jape 0,88 —-8,86 3,12 1,33 0,456 0,456 0,458 0,456
Lexec 0,459 0,455 0,48 0,461 —0,63 4,27 —6,97 2,15

Table 5.

Average results by evaluation parameters for all threshold functions.
Parameter Threshold function

NNG SS Stein 71 z2 73 74 Z5

AME 0,019 0,020 0,019 0,022 0,020 0,011 0,036 0,072
MSE 0,016 0,017 0,016 0,017 0,016 0,002 0,172 0,247
RMSE 0,028 0,031 0,028 0,032 0,029 0,017 0,058 0,092
cc 0,762 0,736 0,762 0,624 0,767 0,753 0,122 0,575
NCC 0,759 0,733 0,759 0,623 0,764 0,751 0,117 0,575
EnD 0,357 0,525 0,357 3269 0,477 0,359 0,978 10,527
SNR 4,18 1,23 4,18 2,84 2,52 —78,15 —16,80 4,09
DSNR 0,76 -2,19 0,76 —-0,58 -0,90 —81,57 —20,22 0,67
NLR —36,97 —36,57 —36,97 —43,48  —36,80 45,31 —34,20 —47,92
MEmax 26,41 39,72 26,41 27,26 35,11 98,39 89,02 39,01
MEmin 22,50 35,53 22,50 30,88 30,66 95,69 87,53 61,48
PTVmax 9,92 11,44 9,92 18,99 11,24 10,64 132,89 20,63
PTVmin 17,34 19,80 17,34 23,76 18,87 18,12 174,24 28,26
DM 4536,237 4536,233 4536,237 4536,195 4536,231 4536,246 4536,136  4536,172
RTV 9,57 9,87 9,57 15,23 11,57 9,07 14,38 20,10
csg —-0,58 —5,26 —-0,58 —6,30 —1,44 —84,39 —35,96 —8,89
cs 2,90 3,58 2,90 4,26 3,49 5,86 12,31 5,33
Ak 27,85 30,79 27,85 31,62 26,35 30,61 43,79 36,17
Jap:e —3,48 —8,84 —3,48 —10,56 —4,93 -90,25 —48,27 —14,22
Lexec 0,457 0,455 0,455 0,457 0,464 0,456 0,456 0,456

Table 6.

Average results by evaluation parameters for all threshold functions.

Also was evaluated the average results of the evaluation parameters, according
to the Tables 5 and 6. Note that the fitness Ja,c = 3,20 of the Fleming function
(using ¢ = 10) is the highest among all the others, being followed by the Garrote
and the Hard functions. Thus, the proposed alternatives achieve the objective of
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Figure 11.

Comparison of the better denoising results obtained between the all evaluated threshold functions to a measured

PD signal from a hydro generator.
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overcoming other methods, also providing a better qualitative result in the
treatment of PD pulses.

Figure 11 exemplifies the wavelet shrinkage process using each of the
thresholding functions discussed above for a PD signal measured from a hydro
generator. In this case, note that the functions we have created are superior in
preserving the amplitudes of the signals and eliminating the present noise, espe-
cially the filtering using the Fleming 2 function, which obtained the highest level of
Japt compared to the other functions, followed by Fleming, Garrote and Hard
functions. The Soft and the other thresholding alternatives end up causing defor-
mations of the pulses waveforms and greater attenuation of these peak amplitudes.
The Zhang 1 and Zhang 5 functions allow most of the noise to pass through the
denoising process and the Zhang 4 function ends up eliminating the PD signal that
we are interested in obtaining.

5. Conclusions

Was presented a new threshold function called Fleming, which combines the
quality of a strongly differentiable function and a more flexible alternative,
enabling its optimization to provide better results in the PD signals treatment, in
order to preserve its important characteristics for the diagnosis of the HV equip-
ment subjected to the partial discharge analysis. The proposal inspired by the well-
known logistic function [29], which depends on a parameter that controls the
inclination of the curve in the threshold value (calculated a priori). Also was created
a variant of this same function, using a simple idea, but little investigated in the
literature: identifying the decomposed coefficients with the greatest contribution in
the desired signal recovering [3].

With the results described in Section 5, in which hundreds of signals (measured
and simulated) were evaluated, the ability of the Fleming function and its Fleming 2
variant to overcome the most common functions such as Hard and Soft, as well as
twelve other alternatives presented in some publications [15, 19, 22, 35-38]. The
Fleming function can be applied with different inclination values, but for PD
signals, the ideal is that these values are limited between 5 and 10 to provide the best
results.

The Fleming 2 alternative showed the highest percentage of the best results and
the Fleming alternative showed the highest average value in terms of amplitude.
Thus, if the goal is to achieve a higher number of better results, the indicated is to
threshold the wavelet coefficients using the Fleming 2 function, but if the idea is to
achieve better average results, consider using the Fleming function. As for the
average processing time, these functions are relatively fast when compared to the
other evaluated functions, not falling far behind the classic ones Hard and Soft.

The application of the developed thresholding functions is extensible to other
types of signals, such as acoustic emissions, electrocardiogram signals, image
processing, among others. However, in each case it would be necessary to
investigate the appropriate values of the inclination parameter c.
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