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Chapter

Thin Film Stabilization of 
Different VO2 Polymorphs
Manish Kumar, Chirag Saharan and Sunita Rani

Abstract

In recent years, VO2 has emerged as a popular candidate among the scientific 
community across the globe owing to its unique technological and fundamental 
aspects. VO2 can exist in several polymorphs (such as: A, B, C, D, M1, M2, M3, P, 
R and T) which offer a broad spectrum of functionalities suitable for numerous 
potential applications likewise smart windows, switching devices, memory materials, 
battery materials and so on. Each phase of VO2 has specific physical and chemical 
properties. The device realization based on specific functionality call for stabiliza-
tion of good quality single phase VO2 thin films of desired polymorphs. Hence, the 
control on the growth of different VO2 polymorphs in thin film form is very crucial. 
Different polymorphs of VO2 can be stabilized by selecting the growth route, growth 
parameters and type of substrate etc. In this chapter, we present an overview of sta-
bilization of the different phases of VO2 in the thin film form and the identification 
of these phases mainly by X-ray diffraction and Raman spectroscopy techniques.

Keywords: thin film, VO2, thermochromic, X-ray diffraction, Raman

1. Introduction

Thin film materials with ‘smart’ properties have attracted increasing attention 
in past few decades, as we move towards the smarter world [1]. This is driven by 
the fact that these materials react to the variation in parameters such as tempera-
ture, pressure, electric or magnetic fields etc. [2–13]. Vanadium dioxide (VO2) is a 
well-known ‘smart material’ which is popular since the Morin’ work in 1959 [14]. 
Its monoclinic M1 phase exhibits a metal–insulator transition (MIT) near room 
temperature, accompanied by larges changes in the structural, electronic and optical 
properties [15]. These distinctive features makes it attractive in smart windows, 
switching devices, memory materials and so on [16–18]. Being a strongly correlated 
electron system, VO2 is equally attractive to condensed-matter physicists [19–22].

VO2 can exhibit various polymorphic structures (such as: A, B, C, D, M1, M2, M3, 
P, R and T), each having quite different physical and chemical properties [23–31]. 
Among these polymorphs, many are neither stable in ambient conditions nor can be 
easily synthesized. This happens because vanadium oxides can adopt a wide range of 
V:O ratios, resulting in different structural motifs. Phase space diagram (Figure 1) 
for the vanadium oxides indicates that there are more than 15 other stable vanadium 
oxides phases (like VO, V2O3, V3O5 etc.) and only a narrow window in phase space 
exist in which the pure semiconducting phase of VO2 can be grown [32]. This narrow 
window strongly limits the synthesis of VO2 either in the form of bulk crystals, 
thin films, or micro- and nanostructures. Nonetheless, different stoichiometric 
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VO2 polymorphs have been stabilized using techniques such as sputtering, pulsed 
laser deposition (PLD), sol–gel deposition, reactive evaporation and metal–organic 
chemical vapor deposition (MOCVD) etc. [15, 23, 25, 31, 33–38].

Phase Crystal structure
(space group)

Lattice parameters Comments and 
References

a(Å) b(Å) c(Å) β(°)

VO2 (A) Tetragonal(P42/ncm)
(138)

8.43 8.43 7.68 [60]

VO2 (B) Monoclinic(C2/m)
(12)

12.03 3.69 6.42 106.6 [60]

VO2 (C) Tetragonal(I4/mnm)
(139)

3.72 3.72 15.42 [24]

VO2 (D) Monoclinic(P2/c)
(13)

4.59 5.68 4.91 89.3 [26]

VO2 (P) Orthorhombic(Pbnm)
(62)

4.95 9.33 2.89 [28]

VO2 (M1) Monoclinic(P21/c)
(14)

5.74 4.52 5.38 122.6 [61]

VO2 (M2) Monoclinic(C2/m)
(12)

9.08 5.76 4.53 91.3 [62]

VO2 (M3) Monoclinic(P2/m)
(10)

4.50 2.89 4.61 91.7 [62]

VO2 (T) Triclinic(P-1)
(2)

9.06 5.77 4.52 91.4 [63]

VO2 (R) Tetragonal(P42/mnm)
(136)

4.55 4.55 2.86 [61]

Table 1. 
The crystallography data for VO2 polymorphs.

Figure 1. 
Phase space diagram for the vanadium oxides. Note the narrow window within which stoichiometric VO2 can 
be grown for x = 2.0 (reprinted from Ref. [32]).
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Koide and Takei appears to be the first to grow VO2 thin films by chemical vapor 
deposition (CVD) technique in 1967 [39]. In their deposition method, fumes of 
vanadium oxychloride (VOCl3) was carried by N2 gas into the growth chamber 
and was hydrolyzed on the surface of rutile substrates to give epitaxial VO2 films. 
In 1967, VO2 thin films were also grown using reactive sputtering by Fuls et al. 
who made the films by reactive ion-beam sputtering of a vanadium target in an 
argon–oxygen atmosphere [40]. PLD emerged as a deposition technique for oxide 
superconductors in the late 1980s, and was first used to prepare VO2 thin films by 
Borek et al. in 1993 [41]. Since then, consistent efforts have been made to grow thin 
films of various VO2 polymorphs by using different deposition techniques/routes. 
Sputtering and PLD are the leading deposition techniques used to grow different 
VO2 thin films polymorphs [42–46]. This is because of the ease with which one can 
play the deposition parameters in these techniques to stabilize thin films of various 
compounds [47–60].

In this chapter we will focus on the stabilization of thin film of six main VO2 
polymorphs: VO2 (M1), VO2 (M2), VO2 (R), VO2 (T), VO2 (A) and VO2 (B). But in 
passing it should be noted that VO2 polymorphs likewise VO2 (M3), VO2 (P), VO2 
(C) and VO2 (D) have also been mostly studied in bulk and nanostructure form 
and reports are missing on thin film stabilization of these phases [24–29, 31]. Space 
group and lattice parameters of different VO2 polymorphs known to us are tabu-
lated in Table 1.

2. Thin film growth of different VO2 polymorphs

2.1 VO2 (M1) and VO2 (R) phase thin films

Monoclinic VO2 (M1) (a = 5.74 Å, b = 4.52 Å, c = 5.38 Å, β = 122.6°) with space 
group P21/c is the most widely studied inorganic thermochromic material which 
is an insulator at room temperature. It shows a first-order MIT at 68°C with a 
concomitant structural transition into rutile tetragonal VO2 (R) (a = b = 4.55 Å, 
c = 2.86 Å) having space group P42/mnm [61]. Because of MIT and the associated 
huge changes in the structural, electronic and optical properties, VO2 (M1) and VO2 
(R) are attractive for applications in smart windows, switching devices, memory 
materials and so on [16, 17].

Figure 2 shows the structural arrangement of four different phases of VO2 [64]. 
In the VO2 (R) phase, the vanadium atoms are equally spaced along the rutile c axis 
(cR), while in the VO2 (M1) phase, simultaneous dimerization and tilting in equiva-
lent chains occur, leading to a zigzag pattern.

Highly oriented VO2 (M1) thin films on R-cut sapphire substrate were prepared 
by Borek et al. using PLD [41]. They ablated metallic vanadium target by a KrF 
pulsed excimer laser in an ultrahigh vacuum deposition chamber with Ar and O2 
(10:1) atmosphere of 100–200 mTorr, and a substrate temperature (Ts) ∼ 500°C 
followed by 1 hour post deposition annealing in the same environment. Since then 
PLD was employed by number of groups to grow good quality VO2 (M1) thin films 
by varying the deposition parameters and post deposition treatment [44–46, 65]. 
Several other techniques such as sputtering, CVD, etc. were also employed to grow 
polycrystalline and epitaxial VO2 (M1) thin films on various substrates of different 
orientation [34, 42, 43, 66–69]. To date, most VO2 (M1) films have been grown on 
substrates such as sapphire (c-type, m-type, r-type and a-type), TiO2, perovskite 
oxides, Si and Quartz. Figure 3(a) shows the grazing incidence X-ray diffraction 
(GIXRD) data of polycrystalline VO2 (M1) thin film by Kumar et al. which was 
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grown on quartz substrate by sputtering VO2 at room temperature and post deposi-
tion annealing at 500°C [69]. Figure 3(b)–d depict the X-ray diffraction (XRD) 
patterns of VO2 (M1) thin film grown on TiO2 and Al2O3 substrates of different 
orientation [46, 70].

VO2 (R) is the high temperature phase of VO2 (M1). So, VO2 (M1) thin films 
generally transforms to VO2 (R) phase when heated above the MIT temperature. 
Apart from this, thin films showing VO2 (R) phase at room temperature can also 
be stabilized by strain, hydrogenation, oxygen vacancies and doping etc. [71–76]. 
Fan et al. reported the growth of ultrathin VO2 (R) phase thin film on TiO2 (002) 
substrate [71]. Y. Zhao et al. showed that hydrogenation can also lead to growth of 
VO2 (R) phase thin film [72]. Very recently, Liang et al. described that increase in 
concentration of W dopant in V1−xWxO2/Si thin films favors the growth of VO2 (R) 
phase [73]. Figure 4 shows the XRD patterns of VO2 (R) phase thin films grown by 
different groups.

2.2 VO2 (T) phase and VO2 (M2) phase thin films

VO2 (T) phase and VO2 (M2) are known to be Mott-Hubbard type insulator which 
may find use in Mottronics and novel electronic transport applications [15, 18]. 
These phases are structurally different from VO2 (M1) and VO2 (R) phase because 
of dissimilar types of vanadium chains and dimerization as shown in Figure 2. VO2 
(M2) phase contains two distinct types of vanadium chains: one half of the vanadium 
atoms pair but do not tilt, while the other half are equidistant which tilts but do not 
pair. Triclinic phase i.e. VO2 (T) phase can be thought of as an intermediate phase 
between VO2 (M1) and VO2 (M2) phases, having two types of inequivalent vanadium 
chains (or sublattices) in which the vanadium atoms are paired and tilted to different 
degrees. VO2 (T) phase and VO2 (M2) are not as stable phase as VO2 (M1) and VO2 
(R). But, doping and/or strain can stabilize these phases [15, 35, 77]. Strelcov et al. 
presented a phase diagram which demonstrate the influence of chemical doping and 
uniaxial stress on the phase structure of VO2 [35]. This phase diagram (Figure 5(a)) 
indicates that either of M1, M2, T, or R phase of VO2 can exist depending on the type 
of dopant and/or stress. Majid et al. reported the Cr doping driven growth of VO2 (T) 
phase thin films [15]. Figure 5(b) shows their XRD pattern of grown VO2 (M1) and 
VO2 (T) phase thin films. Stress-induced VO2 films with M2 monoclinic phase stable at 
room temperature; were grown by Okimura et al. using inductively coupled plasma-
assisted (ICP) reactive sputtering technique with various rf power fed to the coil for 
ICP (Figure 5(c)) at constant Ts of 450°C and at varying Ts, under constant rf power 
(Figure 5(d)) [77]. Apart from this work, there are not much reports on the growth 
of single phase VO2 (M2) thin films which are stable at room temperature. But, there 
are numerous reports on the evolution of intermediate M2 phase in VO2 thin films 

Figure 2. 
The schematic structures for (a) rutile (R), (b) monoclinic M1, and (c) M2 phases of VO2. Red and blue balls 
denote vanadium and oxygen atoms, respectively. (d) The arrangement of vanadium chains in the four phases 
without oxygen atoms (a-d reprinted from Ref. [64]).
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during the monoclinic M1 to rutile R transition [15, 69, 78–81]. This intermediate M2 
phase in VO2 thin film can be introduced by selecting the particular substrate tempera-
ture, doping, thickness etc. Kumar et al. witnessed the intermediate M2 phase tem-
perature dependent XRD measurements across the MIT transition in polycrystalline 
VO2 thin films grown on quartz substrate using sputtering technique followed by rapid 
thermal annealing at 530°C (Figure 6(b)) [69]. However, they have not observed the 
intermediate M2 phase for films annealed at 500°C (Figure 6(a)). Majid et al. noticed 
the evolution of intermediate M2 phase in temperature dependent Raman measure-
ments of Cr doped VO2 thin films during T ➔ R phase transition (Figure 6(d)) [15]. 
For undoped VO2 thin films normal M1➔R phase transition crossover was observed 

Figure 3. 
(a) GIXRD data of VO2 (M1) thin film prepared on quartz substrate [69]. XRD data of epitaxial VO2 (M1) 
thin films grown on (b) TiO2 substrates of different orientation (reprinted from Ref. [46]), (c) c-cut sapphire 
and (d) r-cut sapphire (c, d adopted from Ref. [70]).
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without signatures of intermediate M2 phase °C (Figure 6(c)). Ji et al. stressed the 
role of microstructure on the M1-M2 phase transition in epitaxial VO2 thin films of 
different thicknesses [78]. Their temperature dependent Raman measurement result 
on 90 nm and 150 nm thick VO2 thin film sample are depicted in Figure 6(e) and (f) 
respectively. Azhan et al. also found intermediate M2 phase in VO2 thin films with large 
crystalline domains [79].

2.3 VO2 (A) and VO2 (B) phase thin films

The layered polymorphs VO2 (A) and VO2 (B) are important materials from science 
and technology perspective. VO2 (B) has been long considered as a promising electrode 
material for Li ion batteries since the after report of Li et al. in 1994 [82]. It emerged as 
a promising cathode material owing to its layered structure and outstanding electro-
chemical performance [83, 84]. Also, it is important for the study of strong electronic 
correlations resulting from structure. On the other hand, VO2 (A) phase is highly 
metastable and therefore the physical properties and the potential for technical applica-
tions have not been explored in detail. This phase is an intermediate phase between VO2 
(B) and VO2 (R), and has a reversible phase transition at ~162°C [85, 86]. The crystal 
structure of VO2 (A) and VO2 (B) phase with possible epitaxial relation on SrTiO3 
substrate, are illustrated in Figure 7(a) and (b) respectively [23]. At room temperature, 
the metastable monoclinic VO2 (B) adopts a structure derived from V2O5 and belongs to 
space group C2/m while VO2 (A) adopts a tetragonal unit cell with a space group P42/ncm 
[23]. Growth of single crystalline VO2 (B) is very challenging due to the complex crystal 
structure. Similarly to VO2 (B), the study of VO2 (A) has so far been limited.

Figure 4. 
(a) XRD profiles for thickness-dependence VO2 films on TiO2 substrate [Reprinted with permission from Fan 
et al [71]. Copyright (2014) American Chemical Society]. (b) XRD of pure (M1 phase) and hydrogen-doping 
stabilized metallic (R phase) VO2 thin films prepared on sapphire substrate (Reprinted from Ref. [72], with 
the permission of AIP Publishing). (c) Room temperature XRD of different V1−xWxO2/Si thin films (adopted 
from Ref. [73]).
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Recently; several reports are focused on VO2 (A) and VO2 (B) phases in the 
form of bulk and nano-powders where annealing treatment causes them to revert 
to stable VO2 (M1) phase [25]. Chen et al. appears to be the first to report the 
growth of textured VO2 (B) films with thickness only <25 nm on SrTiO3 (001) 
substrate [87].

The good mathing of the a − b plane of VO2 (B) to that of (001)-oriented 
perovskites enables the epitaxial growth of phase-pure VO2 (B) thin films on 
perovskite substrates, such as SrTiO3 and LaAlO3. Srivastava et al. successfully sta-
blized the single phase VO2 (B) and VO2 (A) thin films by tuning the laser retation 
rate and oxygen partical pressure during PLD while keeping the constant substrate 
tempearture (Ts = 500°C) [23]. The XRD pattern of their grown films and the phase 
digram of used deposition parameters are shown in Figure 7(c) and (d) respec-
tively. Lee et al. argued that a proper choice of Ts is crtical among the deposition 
parameters for the growth of VO2 (A) and VO2 (B) phase thin film on perovskite 
substrates [60]. They found that the thin films of these phases can reproducibly 
grow at Ts lower than 430°C only (Figure 8(a) and (b)). Morover, VO2 (A) phase 
can also appear as an intermediate phase (Figure 8(c)) when annealing is carried 
out for VO2 (B)➔ VO2 (R) conversion [60]. Wong et al. successfully synthesize thin 

Figure 5. 
(a) A temperature-composition phase diagram of VO2, demonstrating the influence of chemical doping and 
uniaxial stress on the phase structure of VO2 (reprinted with permission from Strelcov et al. [35]. Copyright 
2012 American Chemical Society). (b), room-temperature XRD patterns of the pure (M1 phase) and Cr-doped 
(T phase) VO2 thin films on the [001] Si substrate (adapted from Ref. [15]). (c and d) XRD patterns of the 
VO2 films grown on quartz substrates with various RFpower fed to the coil for ICP, at constant Ts of 450°C and 
at varying Ts, under constant RF power (Reprinted from Ref. [77], with the permission of AIP Publishing).
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films of the metastable VO2 (B) polymorph on (001) LaAlO3 at deposition tempera-
ture Ts = 325°C (Figure 8(d)) [70]. Very recently, Choi et al. grown epitaxial VO2 
(A) and VO2 (B) thin films having tungsten doping were grown on (011)-oriented 
SrTiO3 and 001)-oriented LaAlO3 substrate respectively using PLD [88].

3. Conclusions

An overview of thin film stabilization of different VO2 polymorphs i.e. VO2 
(M1), VO2 (M2), VO2 (R), VO2 (T), VO2 (A) and VO2 (B) is presented in this chapter. 
It is understood that one can stabilize the thin film of a particular VO2 polymorph 
by properly selecting the deposition technique, growth parameters, type of sub-
strate and dopant etc.

Figure 6. 
Temperature dependence of XRD data (at X-ray wavelength (λ) = 0.0693 nm) during heating cycle for VO2 
thin film annealed at (a) 500°C and (b) 530°C (a,b adopted from Ref. [69]). Temperature-dependent Raman 
spectra of (c) pure and (d) Cr-doped VO2 thin films collected in the cooling cycles (c, d adopted from Ref. [15]). 
Temperature dependent Raman spectra of (e) 90 nm and (f) 150 nm thick VO2 thin film grown on Al2O3 
substrate (e, f adopted from Ref. [78]).



9

Thin Film Stabilization of Different VO2 Polymorphs
DOI: http://dx.doi.org/10.5772/intechopen.94454

Figure 8. 
XRD patterns of (a) VO2 (B) and (b) VO2 (A) thin film on SrTiO3 (001) and (011) substrates respectively. (c) 
XRD during annealing of VO2 (B)/STO sample (a-c adopted from Ref. [60]). (d) XRD scan of VO2 (B) film 
grown on LaAlO3 (001) substrate (adopted from Ref. [70]).

Figure 7. 
The schematic crystal structure representation of (a) 220 orientated VO2 (A), (b) 002 orientated VO2 (B) 
grown on SrTiO3 (100) substrate. (c) XRD patterns showing different phases for VO2 thin films grown at 
various deposition parameters. (d) Phase diagram showing the role of laser frequency and oxygen pressure 
during pulsed laser deposition for different polymorphs of VO2 thin films (a-d adopted from Ref. [23]).
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