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Chapter

Applications of Oxidoreductases
Sandhya Rani Gogoi

Abstract

Oxidoreductases comprise of a large group of enzymes catalyzing the transfer 
of electrons from an electron donor to an electron acceptor molecule, commonly 
taking nicotinamide adenine dinucleotide phosphate (NADP) or nicotinamide 
adenine dinucleotide (NAD) as cofactors. Research on the potential applications of 
oxidoreductases on the growth of oxidoreductase-based diagnostic tests and better 
biosensors, in the design of inventive systems for crucial coenzymes regeneration, 
and in the creation of oxidoreductase-based approaches for synthesis of polymers 
and oxyfunctionalized organic substrates have made great progress. This chapter 
focuses on biocatalytic applications of oxidoreductases, since many chemical and 
biochemical transformations involve oxidation/reduction processes, developing  
practical applications of oxidoreductases has long been a significant target in 
biotechnology. Oxidoreductases are appropriate catalysts owing to their biodegrad-
ability, specificity and efficiency and may be employed as improved biocatalysts to 
substitute the toxic/expensive chemicals, save on energy/resources consumption, 
generate novel functionalities, or reduce complicated impacts on environment.

Keywords: oxidoreductases, cofactors, biosensors, coenzymes regeneration, 
biocatalytic

1. Introduction

The various chemical transformations catalyzed by enzymes make these 
catalysts a key goal for utilization by the promising biotechnology industries. In 
the recent years, intense research in the field of enzyme technology has provided 
numerous approaches that facilitate the practical application of enzymes. This 
chapter emphasizes the application of oxidoreductases which catalyze the exchange 
of electrons amid the donor and acceptor molecules, in reactions involving electron 
transfer, proton/hydrogen extraction, hydride transfer, oxygen insertion, or other 
imperative steps. Oxidoreductases acquire advantage from the inclusion of different 
cofactors - for instance heme, flavin and metal ions - to catalyze redox reactions [1]. 
Majority of oxidoreductases are nicotinamide cofactor-dependent enzymes which 
have a high preference for nicotinamide adenine dinucleotide phosphate (NADP) 
or nicotinamide adenine dinucleotide (NAD) and they are further classified in six 
major classes which are oxidases, dehydrogenases, hydroxylases, oxygenases, per-
oxidases and reductases [2]. This chapter demonstrates the potential applications of 
oxidoreductases on the growth of oxidoreductase-based diagnostic tests and better 
biosensors, in the design of inventive systems for crucial coenzymes regeneration, 
and in the formation of oxidoreductase-based approaches for synthesis of polymers 
and oxyfunctionalized organic substrates.
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2. Oxidoreductase-based diagnostic tests and as biosensors

The diagnosis and monitoring of a variety of diseases is extremely demanding 
nowadays for routine examination of clinical samples and other associated tests. 
The diagnostic enzymes are used for the detection/diagnosis or prognosis of disease 
conditions due to their substrate specificity and quantitated activity in the presence 
of other proteins, and are preferred in diagnosis, which can be used as a diagnostic 
tool for disease detection [3]. Depending on the verity of the disease, diseased 
state often leads to tissue damage. In such conditions, enzymes specific to diseased 
organs are released into blood circulation with augmented enzyme activity. The 
measurement of corresponding enzyme activities in blood/plasma, or any other 
body fluid, has been exploited in the diagnosis of diseased tissues/organs [3].

Jixu Wang et al. [4] investigated the expression and significance of glucose-
6-phosphate dehydrogenase (G6PD) in human gastric cancer progression and 
prognosis. Apoptosis and necrosis are two major types of cell death in normal and 
disease pathologies. A key signature for necrotic cells is the permeabilization of the 
plasma membrane which can be quantified in tissue culture settings by measuring 
the release of the intracellular enzyme lactate dehydrogenase (LDH). It has been 
described that the measuring LDH release is a useful method for the detection of 
necrosis [5]. Two dehydrogenases, specifically, sorbitol dehydrogenase (SDH) and 
LDH, are used for cancer prognosis [3]. Reports suggested that in prostate cancer 
[6], and precancerous colorectal neoplasms [7], an abnormal serum concentra-
tion of SDH has been observed. Additionally, an enhanced level of SDH can be 
observed in acute liver damage and parenchymal hepaticdiseases [3]. It has been 
reported that LDH, marker of anaerobic metabolism, is associated with highly 
invasive and metastatic breast cancer and suggested that the association of activity 
of LDH in tumor tissue with mammographic characteristics could help in defining 
aggressive breast cancers [8]. The gene expression of LDH is studied in several 
human malignant tumors, collectively among colorectal cancer [9], lung cancer 
[10–12], breast cancer [13], oral cancer [14], prostate cancer [15], germ cell cancer 
[16], and pancreatic cancer [17]. In recent times, the prognostic value of the serum 
LDH level in cancer patients has been considered as a significant area of research. 
Additionally, LDH performs as a prognostic marker in patients with acute leukemia 
[18] and sickle cell disease [19].

A biosensor is an analytical tool that comprises a biological or biologically 
derived sensing matter with close proximity to the physico-chemical transducer [3]. 
The chief function of such a device is to produce a discrete or uninterrupted signal 
that is comparative to the concentration of the analyte [20]. Enzyme-based chemical 
biosensors are based on biological recognition and in order to function, the enzymes 
must be accessible to catalyze a specific biochemical reaction and be stable under 
the normal operating circumstances of the biosensor [21]. Generally the function of 
oxidoreductase biosensors is dependent on charge transport amid the enzyme and 
an electrode surface by means of coenzymes or redox mediators [22].

Over the years, various enzyme-based biosensors have been developed, however 
only a few of them are commercialized. The majority of the published work on enzy-
matic biosensors focuses on targeted blood glucose monitoring based on ampero-
metric techniques [3]. The earliest glucose biosensor based on glucose dehydrogenase 
from Erwinia sp. and carbon paste was generated by Laurinavicius et al. [23] where 
the enzyme was incorporated in a polylysine-albumin gel, and the anchoring material 
was a paste of chemically adapted carbon powder, fumed silica, and binding mate-
rial. A cellulose dehydrogenase based glucose biosensor from a mutant of Corynascus 
thermophilus has been developed, and a glassy carbon electrode (GCE) was acquired 
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by direct electrode position of gold nanoparticles (AuNPs). The biosensor was used 
for the detection of glucose in human saliva samples, with successful results in terms 
of both revival and association with glucose blood levels [24]. This proposes the 
development of noninvasive glucose monitoring devices. The details of different  
oxidoreductase enzymatic biosensors applied for clinical diagnosis are listed in 
Table 1. The first marketable biosensor (glucose biosensor) was commenced in 1975 
which was derived from the electrochemical recognition of hydrogen peroxide, 
and the glucose oxidase was employed for the improvement of the biosensor [3]. 
Subsequently, Clemens et al. [25] established a novel amperometric glucose biosen-
sor in a bedside artificial pancreas, and it was marked underneath the brand name 
“Biostator” by Miles (Elkhart, Indiana).

3. Oxidoreductases in coenzymes regeneration

The most of oxidoreductases for catabolism and anabolism significantly require 
two natural nicotinamide-based coenzymes (NAD and NADP), respectively. The 
most NAD(P)-dependent oxidoreductases choose one coenzyme as an electron 
acceptor or donor to the other depending on their diverse metabolic functions [41]. 
Generally coenzymes are involved in these oxidoreductase-catalyzed reactions to 
transport electron, hydride, hydrogen, oxygen, or other atoms or small molecules 
in diverse enzymatic pathways [42, 43]. The nicotinamide adenine dinucleotide 
(NAD)/nicotinamide adenine dinucleotide phosphate (NADP), ubiquinone (CoQ ), 
and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD) are the 
typical coenzymes. Nicotinamide-based coenzymes for the electron transport and 
storage in the form of hydride groups are the most noteworthy in view of the fact 
that 80% of characterized oxidoreductases necessitate NAD as a coenzyme, and 
10% of them require NADP as a coenzyme [44].

Nicotinamide coenzymes based dehydrogenases are of emergent importance for 
the production of chiral compounds, either by reduction of a prochiral precursor 
or via oxidative resolution of their racemate [45]. Nevertheless, the oxidized and 
reduced nicotinamide cofactors regeneration is an extremely critical step as the 
employ of these cofactors in stoichiometric amounts is too expensive for function. 
There are very few enzymes which are appropriate for the regeneration of oxidized 

Enzymes Analyte Test sample Disease diagnosed References

Glucose 
oxidase

Glucose Blood plasma, 
blood serum, 
urine, and 
saliva

Diabetes, hypoglycemia [26–29]

Oxalate 
oxidase

Oxalate Blood serum 
and urine

Idiopathic urolithiasis and various 
intestinal diseases

[30]

Cholesterol 
oxidase

Cholesterol Blood serum Coronary heart disease, myocardial 
and cerebral infarction (stroke)

[31–34]

Lactate 
oxidase

Lactate Blood plasma, 
blood serum, 
drug and 
biological 
samples

Hyper lactatemia, cardiac arrest, 
resuscitation, sepsis, reduced renal 
excretion, decreased extra hepatic 
metabolism, intestinal infarction 
and lacticacidosis

[35–40]

Table 1. 
Oxidoreductase enzymatic biosensors as diagnostic tools.
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nicotinamide cofactors. Glutamate dehydrogenase can be utilized for the oxidation 
of NADH in addition to NADPH while l-lactate dehydrogenase is able to oxidize 
NADH only [45]. The reduction of NAD+ is carried out by formate and FDH [45]. 
Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are proficient to 
reduce both NAD+ and NADP+ [45]. It has been reported that ADH from horse liver 
reduces NAD+ whereas ADHs from Lactobacillus strains catalyze the reduction of 
NADP+ [45]. These enzymes can be applied by their inclusion in entire cell biotrans-
formations by an NAD(P)+-dependent major reaction to achieve in situ regeneration 
of the consumed cofactor [45]. And for the regeneration of the reduced cofactors 
NADH and NADPH numerous systems for instance engineered formate dehydro-
genase [46, 47], phosphite dehydrogenase [48, 49], glucose dehydrogenase [50, 51] 
plus cosubstrate are well established and extensively used.

Johannes et al. [52] reported the engineering of a highly stable and active mutant 
phosphite dehydrogenase (12x-A176R PTDH) from Pseudomonas stutzeri and 
evaluation of its potential as an effective NADPH regeneration system in an enzyme 
membrane reactor. They have utilized two practically imperative enzymatic reac-
tions including xylose reductase-catalyzed xylitol synthesis and alcohol dehydro-
genase-catalyzed (R)-phenylethanol synthesis as models, and the mutant PTDH 
was compared to the commercially available NADP+-specific Pseudomonas sp. 101 
formate dehydrogenase (mut Pse-FDH) that is extensively employed for NADPH 
regeneration [52]. Soluble water-forming NAD(P)H oxidases comprise a promising 
NAD(P)+ regeneration scheme since they only require oxygen as cosubstrate and 
produce water as only byproduct [53]. In addition, the thermodynamic equilibrium 
of O2 reduction is a significant driving force for mostly energetically unfavorable 
biocatalytic oxidations [53]. Petschacher et al. [53] presented the generation of 
an NAD(P)H oxidase with high activity for both cofactors, NADH and NADPH. 
Applicability for cofactor regeneration is shown for coupling with alcohol dehydro-
genase from Sphyngobium yanoikuyae for 2-heptanone production.

4.  Oxidoreductase-based approaches for synthesis of polymers  
and various organic substrates

Enzyme catalyzed oxidation reactions have achieved growing concern in 
biocatalysis recently, reflected also by numerous outstanding reviews on this 
topic reported in the last years [54–56]. The group of oxidoreductases, to which 
all enzyme catalyzing oxidoreduction reactions, comprises numerous groups of 
biocatalysts such as dehydrogenases, monooxygenases, dioxygenases, oxidases, 
peroxidases, etc. [55]. Moreover, the enzymatic oxidative polymerizations have 
advantages of using nontoxic catalysts and mild reaction conditions, and the 
specific enzyme catalysis affords regio- and chemoselective polymerizations to con-
struct functional materials [57]. It has been reported that peroxidases with the use 
of hydrogen peroxide as oxidant efficiently induce the oxidative coupling of phenols 
to phenolic polymers, the majority of which are scarcely attained by conventional 
chemical catalysts [57]. In addition, it has been published that laccase and peroxi-
dase are helpful for production of cross-linked polymers such as artificial urushi 
and biopolymer hydrogel [57]. Kobayashi [58] established that the enzymatic 
polymerization as to be an efficient method of polymer synthesis. The polymer-
ization uses hydrolases and oxidoreductases as catalysts and this new method of 
polymer synthesis afforded natural polysaccharides like cellulose, amylose, xylan, 
and chitin, and unnatural polysaccharides catalyzed by a glycosidase from well-
designed monomers, varied functionalized polyesters catalyzed by lipase from a 
variety of monomers, and poly-aromatics materials catalyzed by an oxidoreductase 
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and an enzyme model complex from phenols and anilines [58]. Furthermore, vinyl 
polymerization has been initiated by oxidoreductase [58].

Marjanovic et al. [59] reviewed the oxidative oligomerization and polymeriza-
tion of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene 
and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, 
in aqueous, organic, and mixed aqueous organic monophasic or biphasic media. 
Owing to the nontoxicity of oxidoreductases and their elevated catalytic effective-
ness, as well as high selectivity of enzymatic oligomerizations/polymerizations 
under gentle conditions by means of primarily water as a solvent and often resulting 
in minimal byproduct formation enzymatic oligomerizations and polymerizations 
of arylamines are environmentally friendly and considerably contribute to a “green” 
chemistry of conducting and redox-active oligomers and polymers [59].

It has been also established that oxidative enzymes comprise privileged catalysts 
in organic synthesis [60]. Environmentally benign reaction conditions with high 
selectivity are the most fascinating characteristic exhibited by these biocatalysts in 
contrast to classical metal-based reagents. de Gonzalo et al. [60] reviewed the new 
perspectives and concepts derived from oxidative enzymatic processes, involving 
oxidative C-C bond forming reactions, atroposelective oxidations, oxidative dynamic 
processes, interconnected reactions, cyclic deracemizations, oxidative desymmetri-
zations and artificial oxidative enzymes. Oxidoreductases comprise an imperative 
group of biocatalysts as they facilitate not merely the broadly used stereoselective 
reduction of aldehydes and ketones but also the less well exploited oxidation of 
alcohols and amines [53]. In addition, oxidoreductases catalyzed oxidations are 
utilized for production of chiral alcohols and amines by deracemization [54, 60–62]. 
It has been reviewed thoroughly that the oxidoreductases enable chemists to perform 
highly selective and efficient transformations ranging from simple alcohol oxidations 
to stereoselective halogenations of non-activated C-H bonds [63]. Mifsud et al. [64] 
demonstrated for the first time that catalytic water oxidation mediated by robust 
TiO2 semiconductors can be productively coupled to oxidoreductases achieving 
photobiocatalytic redox reactions.

One of the major applications of oxidoreductase is a pharmaceutical synthesis 
of 3,4-dihydroxylphenyl alanine (DOPA), which is employed in the treatment of 
Parkinson’s disease and the industrial process that synthesizes DOPA make use of 
the oxidoreductase polyphenol oxidase [65]. It has been reported that the enanti-
oselective reduction of C-4-substituted 3,5-dixocarboxylates can be carried out by 
using alcohol dehydrogenase from Lactobacillus brevis (LBADH) over-expressed in 
E. coli [66]. Laccase can be employed to synthesize numerous complex medicinal 
agents including triazolo(benzo)cycloalkyl thiadiazines, vinblastine, penicillin X 
dimer, cephalosporin antibiotics, and dimerized vindo-line [67]. In addition laccase 
can be used to synthesize a range of functional organic compounds including poly-
mers with specific mechanical/electrical/optical properties, textile dyes, cosmetic 
pigments, flavor agents, and pesticides [68]. Biocatalysis is facilitating technology 
to organic synthesis chemistry by providing high selectivity of enzymatic reactions 
under mild conditions makes it a very valuable tool for green chemistry.

5. Medical applications

Due to the specificity and bio-based nature, potential applications of oxidore-
ductases in various fields are attracting active research efforts [69]. Several products 
generated by oxidoreductases are finding applications as antimicrobial, detoxifying,  
or active personal-care agents [69]. One potential application is laccase-based in situ 
generation of iodine, a reagent extensively used as disinfectant [67]. It has been 
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described that laccase-iodide salt binary iodine-generating system (for sterilization) 
can have several advantages over the direct iodine application [69]. Peroxidases 
may replace laccase for the application, even though they would require H2O2 as 
cosubstrate [69]. The ClO¯ and Mn(III) species formed by haloperoxidase and 
Mn-peroxidase are extremely effective oxidants and antimicrobial agents [70]. 
Peroxidase can also be used to cross-link collagen which is beneficial to the healing of 
damaged skin [71]. The physiological activities of lysyl oxidase comprise the extra-
cellular matrix construction which can hasten wound-healing [72, 73]. A glucose 
oxidase, lactoperoxidase, and iodide system has been tested for dental care and the 
oxidase produces H2O2 to feed the peroxidase, so that it can produce iodine that can 
kill plaque-causing bacteria [74]. It has been reported that the haloperoxidase can 
be used to oxidatively modify rubber latex surfaces, making them less allergenic 
[75]. A secreted oxidoreductase may even be developed as a vaccine against secretor 
microbes such as, Aspergillus oryzae catalase A protein has been studied as a potential 
aspergillosis vaccine [69]. It has been reported that low-molecular-mass laccase puri-
fied from the mushroom Tricholoma giganteumis possesses significant HIV-1 reverse 
transcriptase inhibitory activity [76]. As nature’s own catalysts, enzymes acquire very 
diverse specificity, reactivity, and other physicochemical, catalytic, and biological 
properties highly enviable for miscellaneous industrial and medical applications [69].

6. Conclusions

Tremendous progress has been made in the recent years in the field of applica-
tions of oxidoreductases. Oxidoreductases metabolism is a fundamental bio-
process that plays a pivotal role in all species, including humans, plants, animals, 
and microorganisms, as their specific function is to catalyze oxidation and reduc-
tion reactions that occur within the cell. Abnormality in this metabolic system 
leads to a number of metabolic disorders. Thus, owing to the remarkable proper-
ties of oxidoreductases, they can be used for the diagnosis of disorders. They can 
provide insight into the diseased state by diagnosis, prognosis, or by assessment 
of response therapy. It has been established that oxidoreductases as biosensors are 
becoming popular potential tools in biotechnology due to their high specificity. 
With oxidoreductases, the conversion of a variety of aliphatic/aromatic molecules 
can be achieved; inert hydrocarbons can be functionalized (by hydroxylation, 
sulfoxidation, epoxidation, etc.); regio-, enantio- (on racemic substrates); enan-
tiotopo– (on prochiral sub-strates); and chemo-selective reactions can be accom-
plished; important synthons from inexpensive and renewable biomaterials can 
be constructed; and the negative environment impact can be reduced [69]. Since 
numerous chemical and biochemical transformations engage oxidation/reduction 
processes, developing practical biocatalytic applications of oxidoreductases has 
long been an imperative target in biotechnology.
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