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Chapter

Advances in Developing Multigene 
Abiotic and Biotic Stress-Tolerant 
Rice Varieties
Nitika Sandhu, Shailesh Yadav and Arvind Kumar

Abstract

Increasing incidences of multiple abiotic stresses together with increasing 
population are the major constraints to attain the global food security. Rice, the 
major staple food crop is very much prone to various abiotic and biotic stresses, 
which can occur one at a time or two or more together in a single crop growing 
season and adversely affects the rice production and productivity. The devastating 
effect of multiple stresses on rice crop is much more erratic and complex leading 
to higher losses in the crop grain yield. The concurrent occurrence of multiple 
streeses can destroy rice production in many of the rainfed areas of South and 
Southeast-Asia. Genomics-assisted breeding strategies have been instrumental in 
introgression of various major effect QTLs/genes into rice mega varieties and have 
proven successful in achieving the desired level of tolerance/resistance to various 
abiotic stresses in diffferent crop species. Keeping the present scenario of changing  
climate in mind, the chapter discusses the recent past success in combining toler-
ance to two or more abiotic stresses in mega rice varieties applying genomics-
assisted breeding and development of high-yielding climate resilient rice through 
stacking of multiple genes/QTLs, which can withstand in a cascade of multiple 
stresses occurring regularly in rainfed environments.

Keywords: abiotic stress, biotic stress, genomic-assisted breeding, pyramiding, 
QTLs, rice, yield

1. Introduction

Global warming and the changing climatic conditions lead to the concurrence 
of multiple abiotic and biotic stresses individually/or in combination [1, 2] thus 
adversely affecting the rice crop growth and yield [3]. The changing climate, more 
and more extreme weather events are increasing the probability of simultaneous 
multiple abiotic stresses, including extra pressure from biotic stresses. Abiotic and 
biotic stresses reported to have significant negative impact on rice crop survival, 
growth, development and yield in most parts of the world, especially the Asia and 
Africa [4, 5]. The abiotic stresses such as drought, salinity, cold, high temperature 
and heavy metals are known to influence the occurrence of biotic stresses [6–8]. 
The combined effect of multiple stresses may resulted the minor pests to become 
the potential threats in the coming future [1, 9, 10].
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The rice farming is practiced in various diverse ecological zones. The rice 
cultivation system in diiferent growing areas are mainly depends upon various 
factors such as available water, soil type, and the prevailing monsoon. Rice produc-
tion faces various constraints in various ecology of rice cultivation (Table 1). Rice 
crop faces multiple stresses during different stages of its growth and development 
and around 70% reduction in yield was reported due to the occurance of abiotic 
stresses at different stages of growth and development [5]. Similarly, the major 
biotic stresses such as bacterial leaf blight, blast, brown plant hopper, brown spot, 
sheath blight and gall midge reported to impart severe crop yield losses or even 
complete crop failure during infestation [4]. The growth of rice yield has dete-
riorated from 2.3% per year during 1970s–1980s to about 1.5% during 1990s, and 
to <1% in the first decads of this present century [11]. Although the rice produc-
tion has improved considerably over time but it is not sufficient to cope with the 
increasing demand globally [12]. The annual shortage of rice is expected to rise 
from 400,000 tons in 2016 to around 800,000 tons by 2030 [13].

As crop plants are immobile, they have to respond to the different abiotic and 
biotic stresses in the field itself. Breeding efforts in developing tolerance for single 
stress such as drought, heat, salinity, cold, insect and pathogen or a single stress 
type viz. abiotic or biotic may be tricky because plants may respond differentially to 
different or simultaneous occurance of stresses. The increase in resistance/tolerance 
to one type of stress may be at the cost of resistance/tolerance to another stress [14]. 
Breeding of high yielding multiple stress tolerant/resistant rice varieties with better 
grain quality is the urgent need of the hour since many decades [15]. Improvement of 
germplasm involving improved donors free from undersirable linkage, identification 
and introgression of genomic regions after validation involving recent advances in 
genomics-assisted breeding has provided opportunity to combat the challenges arising 
due the occurance of multiple stresses [16]. An integrated genomics-assisted breeding  
approach to introgress desirable genes/QTLs conferring tolerance/resistance to major 
abiotic and biotic stresses in addition to improved yield and quality will help to 
combat the present situation [16–20]. The commercial use of QTLs/genes-conferred 
multiple stress tolerant/resistant rice varieties provides an effective, economical and 
environment friendly approach to protect the crop yield and productivity. In past few 
years, the identification of genomic regions associated with drought, submergence and 
heat tolerance and introgression and pyramiding of these regions applying markers 
assisted selection/backcross approach have successfully led to the development of 

Ecosystem Source of water Constraints

Upland Rainfall Drought, blast, weeds, low soil fertility, Fe toxicity, soil nematode 
problem, lodging

Rainfed 
shallow 
lowland

Rainfall, water 
table

Lack of assurred irrigation, frequent drought, blast, bacterial leaf 
blight

Rainfed 
medium 
lowland

Rainfall, water 
table

Lack of assurred irrigation, drought, flood, drought and flood in 
same or different season, bacterial leaf blight, brown plant hopper, 
gall midge

Rainfed deep 
lowland

Rainfall, water 
table, flood 
water

Lack of assured irrigation, fragile and low productivity, Prevailing 
abiotic stresses such as flood, salinity, Biotic stresses such as 
bacterial leaf blight, gall midge, brown plant hopper

Irrigated Irrigation Salinity, bacterial leaf blight, brown plant hopper

Table 1. 
Rice production constraints in various ecologies of rice cultivation.
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drought or flood tolerant version of some of the mega varieties such as Swarna, IR64 
and Sambha Mahsuri. Some of these developed genomics-assisted derived breeding 
lines have been released as varieties in various countries of South Asia and South East 
Asia for cultivation.

2. Biotic stresses

2.1 Bacterial blight

Rice crop is most vulnerable to bacterial blight (BLB) caused by Xanthomonas 
oryzae pv. Oryzae (Xoo). The incidences of BLB reported yield losses of 20–30% 
and as high 80–100% in moderate and severe infection conditions, respectively 
[21, 22]. This might be due to the partial grain filling resulted from low photosyn-
thetic activity [23]. Out of already identified 45 BLB resistant (R) genes, 11 genes 
have been fine mapped and cloned till date applying modern biotechnological 
[24–27]. The marker-assisted pyramiding approach was applied to pyramid four 
BLB resistant genes; Xa4, xa5, xa13 and Xa21 in background of high yielding rice 
varieties to achieve wider and durable resistance [28–31]. The combination of 
these four BLB genes reported as most stable and showed resistance to most of the 
pathogen isolates [32, 33].

2.2 Blast

Rice blast (Magnaporthe oryzae) is another crucial threat to the rice production 
caused by fungus Pyricularia oryzae. It is affecting leaves, collar, nodes, panicles 
and panicle neck during vegetative to reproductive stage causing 10–30% under 
mild infestation [34–36] to 70–80% [37] to 100% [38] yield losses under severe 
infestation conditions. Till now, more than 100 blast resistant genes have been 
identified, however only 30 of them has been cloned and functionally characterized 
[17, 39]. The identified linked markers can be used effectively to provide resistance 
against this devastating fungal disease. The broad-spectrum blast resistant genes 
viz. Pi9 which encodes the NBS–LRR gene clusters and Pita2 which was mapped 
on the short arm of chromosome 12 confer resistant to many of the blast races in 
different countries [40, 41]. Transgenic rice lines carrying Pi-d2 blast resistance 
gene transformed involving vectors pCB6.3 kb, pZH01–2.72 kb, and pCB5.3 kb 
showed various levels of resistance (~92%) against 39 strains of rice blast [42]. The 
durability of rice blast resistance can be further improved by the hybridization of 
rice varieties carrying complementary genes to attain multi-genic resistance against 
broad spectrum pathogen races [43], thereby reducing the selection pressure on a 
single isolate.

2.3 Brown plant hopper

Brown plant hopper (Nilaparvata lugens) is one of the most notorious insect-pest 
of rice causing large scale destructions across Asia amounting to around 60% crop 
loss [44]. In addition, it is responsible for the transmission of the virus diseases such 
as rice grassy stunt virus and rice ragged stunt (RRSV) viruses [45, 46]. To date, 37 
BPH resistant genes on six of the total twelve rice chromosomes have been reported 
from cultivated rice and wild Oryza species [17, 47, 48]. Out of these 34 genes, 
20 genes were fine mapped and only 8 genes (Bph3, Bph14, Bph9, Bph17, Bph26, 
Bph18, Bph29 and Bph32) have been cloned and functionally characterized [49–56]. 
These resistance genes encode NBS-LRR protein family that are being widely used 
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in marker-assisted breeding programs to develop rice varieties resistance to BPH. 
However, notable achievements have been made in identification and introgression 
of BPH resistance genes, rapid evolution of the virulent populations of BPH poses 
a prime concern. The Srilankan rice cultivar Rathu Heenati was first reported as 
the potential donor providing resistance against four BPH biotypes [57]. Even after 
30 years of deployment in the Philippines, Rathu Heenati still reported to provide 
resistance to BPH [58]. The cloning and functional characterization of BPH resistant 
genes provides unique opportunity to effectively use these genes in marker-assisted 
gene introgression program [53].

2.4 Gall midge

The Asian rice gall midge (Orseolia oryzae) is another serious insect pest of 
rice prevailing mainly in wet season in the South-East Asia, China, and India, 
while Orseolia oryzivora, a closely related species is prevalent in the Africa. The 
infestation of gall midge (GM) amounting an annual yield loss of $550 million in 
different countries in Asia [59]. Till date, various genetic studies have identified 
11 major resistance (R) genes providing resistance to 7 biotypes of the gall midge 
of rice which are prevailing mostly in South Asian countries [60–63]. Out of 11, 
eight of GM resistance genes (Gm1, Gm2, Gm4, gm3, Gm6, Gm8, Gm7, and Gm11) 
have been mapped successfully [64, 65]. Interestingly, none of the identified GM 
resistant genes confers resistance to all the biotypes of gall midge, while none of the 
GM biotype is virulent against all the identified resistance genes. Four gall midge 
resistance genes designated as Gm1, gm3(NB-ARC), Gm2(NB-ARC), and Gm4 
(NB-LRR) have been functionally validated and linked markers can be used for the 
marker-assisted introgression program [63, 66–68]. Marker-assisted introgression/
pyramiding of gall midge resistant genes (Gm1 + Gm4) and (Gm4 + Gm8) in back-
ground of improved Samba Mahsuri and an elite rice hybrid DRRH3 respectively 
was attempted by Divya et al. [62] and Kumar et al. [69]. Further, marker assisted 
pyramiding of multi-genes conferring to bacterial blight, gall midge, blast along 
with Saltol QTLs for salinity tolerance was reported [18, 33].

3. Abiotic stresses

3.1 Drought

Among the abiotic stresses, drought is one of the most disruptive, and risky 
events of the ongoing climate change that affect millions of people every year 
across the world. Depending upon the intensity and pattern of rainfall, drought can 
occur from few days to few months or even to years [70]. The development of high 
yielding drought-tolerant rice varieties is the final goal of rice breeders to reduce 
the yield losses due to drought and to ensure the projected world food production. 
However, the development of drought-tolerant rice varieties is immensely tough 
due to the complex quantitative nature of trait [71, 72]. The selection of lines under 
differential level of drought and due to the occurrence of drought at different 
stages [73–75] is again not an easy task. In addition, the strong GxE interactions 
and low heritability of traits such as grain yield also add to the difficulty of the task 
[76]. Cost-effective modified breeding strategy involving combined phenotyping 
and genotyping selection approaches in the development and screening of large 
segregating populations covering high genetic variation have led to the successful 
identification of 12 major effect QTLs (qDTY1.1 on chromosome 1; qDTY2.1, qDTY2.2 
and qDTY2.3 on chromosome 2; qDTY3.1 and qDTY3.2 on chromosome 3, qDTY4.1 on 
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chromosome 4; qDTY6.1 and qDTY6.2 on chromosome 6, qDTY9.1 on chromosome 
9, qDTY10.1 on chromosome 10, and qDTY12.1 on chromosome 12) with consistent 
effects in background of widely cultivated, popular, high-yielding but drought-
susceptible rice varieties, such as IR64, Swarna, Sabitri, MTU1010, Vandana and 
TDK1 [77–85].

3.2 Salinity

Salinization of soil is an another important crises the world is facing nowadays. 
Salty soil which is widely distributed across the world is major factor of rice yield 
reduction. The salt affected land in India accounts for 6.73 mha (million heactare) 
which is predicted to increase to 16.2 mha by 2050 [86, 87]. The complexity of salt 
tolerance mechanisms limits the development of high yielding salt tolerance rice 
varieties [88]. Salinity stress reported to affect rice grain yield from 20 to 100% 
depends on the severity of the stress and the duration of stress exposed to the rice 
crop [89]. Fortunately, the exiting wide genetic variability in rice germplasm in 
response to soil salinity stress makes possible to develop salt tolerant rice varieties 
[90–92]. The identification and introgression of the trait (s)/genomic regions of 
interest are the well-known approaches for the development of salinity tolerant 
varieties [93, 94]. Marker assisted breeding approaches have been proven successful 
in developing new improved, high yielding salt tolerance rice varieties [95–100].

3.3 High and low temperature

Global changes in the climate conditions and increasing greenhouse gas emis-
sion led to a rise in earth’s surface temperature in some past decades, and the 
temperature is predicted to rise by 2 to 4°C by 2050 [101]. The high temperature 
duration of 3–5 days, 5–7 days and above 8 days is generally considered as mild, 
moderate and severe heat injury, respectively [102] while low temperature ranged 
from 0 to 15°C and <0°C categorized as chilling and freezing stress, respectively. 
Over the past few decades, extensive efforts have been made in identification of 
genes/QTLs improving heat [103–105] and cold tolerance [106, 107] in rice, which 
are very complex trait.

4.  Marker-assisted pyramiding of multiple QTLs/genes for abiotic/biotic 
stresses

The challenges from the climate change scenario require the development of 
climate-adapted rice varieties that combine the tolerance of various abiotic and 
biotic stresses to better sustain yield losses from unpredicted climate-related 
events. Recent developments in the identification of major QTLs/genes for drought, 
submergence, salinity, bacterial blight, brown plant hopper, gall midge, and blast 
and the successful introgression of identified QTLs to develop improved varieties 
tolerant of different individual stresses indicate that, with the advent of new marker 
technology, the development of varieties that combine tolerance of the various 
abiotic and biotic stresses prevalent in any region is feasible. Such varieties once 
developed can help farmers overcome yield losses and better farm income under the 
changed climatic conditions.

The identification of major effect QTLs for the grain yield under drought 
qDTY12.1 [77], qDTY3.1 [80], and qDTY1.1 [78]; Sub1, the gene for submergence 
[108, 109]; and Saltol, the QTL for salinity [110, 111] using modern breeding 
tools has provided novel opportunities to the breeders to develop the rice varieties 
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tolerant of abiotic stresses. Marker-assisted backcrossing of Sub1 to improve popular 
variety Swarna had been successfully demonstrated to provide a yield advantage 
under submerged conditions for up to 18 days [112]. Similarly, the development of 
drought-tolerant versions of IR64 and Vandna [84, 113] at IRRI that are shown to 
possess a 1.0 and 0.5 t/ha yield advantage under drought over IR64 and Vandna, 
respectively, and successful introgression of Saltol into BR28 [114] are some of the 
recent successes using marker-assisted introgression.

Marker assisted gene pyramiding is an effective breeding strategy to transfer 
more than one tolerance/resistance genes into a single rice line in order to achieve 
durable and broader resistance level which can prevent the breakdown of tolerance/
resistance against specific races/pathogens [115]. Pyramiding of BLB resistant genes 
such as xa5 + xa13 + Xa21 [30, 31], Xa4 + xa5 + Xa21 [29] and Xa4 + xa5 + xa13 + 
Xa21 [70] had been reported to provide durable resistance in rice against bacterial 
blight disease. Pyramiding of blast resistance genes Pi9 and Pita has proven effec-
tive to combat the blast incidence and increase the durability of blast resistance 
genes [116].

Rice lines pyramided with multiple disease resistance genes (Xa4, Xa21, xa5, 
Bph18 and Pi40,) has conferred resistance against BLB, blast, and BPH disease [29]. 
Among abiotic stresses, recently, drought and flood tolerance were combined using 
marker assisted pyramiding of the drought QTLs (qDTY1.1 + qDTY2.1 + qDTY3.1) 
and submergence gene (Sub1) together in a popular rice variety, Swarna [19]. The 
marker-assisted derived rice varieties have been released in different countries 
(Table 2).

5. QTLs/gene pyramiding through multiple parents crossing

To tackle the multiple problems of rice cultivation under ongoing climate 
change, a high yielding climate smart new rice lines with superior grain quality is 
the urgent need to intensify the sustainable rice production. Genomics-assisted 
breeding (GAB) was attempted to introgress and assemble multiple QTL/genes-
qDTY1.1, qDTY2.1, qDTY3.1, qDTY12.1, Sub1, Gm4, Pi9, Pita2, Bph3, Bph17, Xa4, xa5, 
xa13, Xa21 and Xa23 into the background of a high yielding breeding line suited 
for lowland ecosystem of rice under Stress Tolerant Rice for Africa and South 

Variety QTLs/gene combinations Targeted 

trait

Targeted 

country

Year of 

release

DRR 
dhan-42

qDTY2.2 + qDTY4.1 Drought India 2014

Yaenelo 4 qDTY2.2 + qDTY4.1 Drought Myanmar 2015

Yaenelo 5 qDTY2.2 + qDTY4.1 Drought Myanmar 2016

Yaenelo 7 qDTY2.2 + qDTY4.1 Drought Myanmar 2016

CR 
dhan-801

qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub 1 Drought + 
flood

India 2017

Bahuguni 
dhan-2

qDTY3.1 + Sub 1 Drought + 
flood

Nepal 2017

Bahuguni 
dhan-1

qDTY1.1 + qDTY3.1 + Sub 1 Drought + 
flood

Nepal 2017

Table 2. 
Marker-assisted derived variety released in various countries of South Asia for tolerance to drought and flood 
in rice.
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Asia(STRASA) project at IRRI. Developed climate resilient rice lines carrying 6–10 
QTLs/genes combinations for tolerance to multiple biotic (BLB-Xa4, xa5, Xa21, 
xa13 and Xa23; Blast-Pita2, Pi9; BPH-Bph3 & Bph17 and gall midge-Gm4) and abi-
otic stresses (yield under drought stress- qDTY1.1, qDTY2.1, qDTY3.1, qDTY12.1 and 
submergence- Sub1) as well as superior grain quality traits are free from undesirable 
linkage drags and can be released as varieties on different countries after evaluation 
in the national system or can be used as an elite parental lines for making diverse 
crosses targeted to achieve high genetic gain [117]. Recently, introgression lines 
with 7 to 10 QTLs/genes for multiple-biotic stresses (blast, BLB, BPH and GM) with 
drought QTLs in background of Swarna has been reported [14]. A MAGIC (multi-
parent advanced generation intercross) population developmental strategy has also 
been proposed to examine the effect of multiple alleles to provide high grain yield, 
better grain quality, and tolerance to a wide range of multiple biotic and abiotic 
stresses [118].

An increase in rice productivity through introgression of multiple traits which 
can improve rice adaptability under dry direct seeded (DSR) and additionally 
carrying traits for abiotic/biotic stresses looks a promising breeding strategy to 
adapt with changing climate, limited water and labor resources and increase rice 
yield under mechanized DSR conditions. QTLs for traits that increase adaptability 
to direct seeded rice conditions such as root traits [nodal root number (qNR4.1, 
qNR5.1) and root hair density (qRHD1.1, qRHD5.1, qRHD8.1)], early vegetative vigor 
(qEVV9.1), early uniform emergence (qEUE1.1, qEUE11.1), grain yield under DSR 
conditions (qGY1.1, qGY8.1, qGY10.1), and lodging resistance (qLDG4.1) had been 
pyramided with abiotic stresses (drought QTLs-qDTY1.1, qDTY2.1, qDTY3.1 and 
qDTY12.1) as well as biotic resistance (gall midge-Gm4, blast- Pi9, Pita 2, bacterial 
leaf blight- Xa4, Xa21, xa5, xa13, and brown plant hoppers-Bph3 and Bph17) using 
MAS approach [119, 120].

5.1 Steps in multiple-trait breeding

Three steps involved in multiple traits introgression scheme, (a) assemble first 
(b) line fixation and (c) line evaluation. In assemble first step, a complex crossing 
scheme utilized in transferring the desirable alleles/traits from all the targeted 
parents aimed to accumulate one copy of all targeted genes/QTLs in a single 
genotype. In line fixation step, gene based/SSRs/linked markers were utilized 
in each generation from F2 to F6 generation for tracking the presence of desir-
able alleles of targeted QTLs/in order to find homozygous plants carrying all the 
targeted QTLs/genes. Phenotyping of the homozygous lines for the targeted traits 
were performed in line evaluation step and proceed further for multilocation 
testing of promising lines in the targeted environments. The detailed description 
on traits, donors, QTLs/genes and markers associated that were used in genomic-
assisted breeding program for the development of climate resilient lines at IRRI, 
Philippines (Table 3).

5.2 Challenges in multiple-trait breeding

The complex breeding program that targets combining tolerance of various 
abiotic and biotic stresses together in the various genetic backgrounds is unpredict-
able and more research is needed as such, little is known about the effect that each 
gene/QTL on the others. However, it is highly assumed that most of the QTLs/
genes should work in an additive manner, as far as the targeted QTLs/genes are 
either located on different chromosomes or in different regions of the same chro-
mosomes. Genomic interactions play a significant role in deciding the performance 



A
biotic Stress in Plants

8

Trait Donor QTLs/genes Markers (SNPs/Indels/SSRs/gene based markers) Reference

Biotic stress

Blast WHD-1S-75-1-127, Tadukan, IRBL9 Pi9, Pita2 Pi9: Pi9STS2, Pi9-659T, Pi9-1477G, MSU7_6_10381500 (M492 + M493), 
M891 (C), Pi9-659T, Pi9-1477G
Pita2: MSU7_12_9177624 (M535 + M536), SnpOS00488(G), YL155/
YL87, YL153/YL154

[40, 117, 
121]

Bacterial leaf 
blight

IRBB60, Xa4, xa5, xa13, Xa21, Xa23 Xa4: snpOS0054 (AG), RM224, MP1 + MP2
xa5: xa5S, xa5R, xa5DRR
xa13: xa13-promoter (M478Lm + M479Lm + M480Lm), xa13F_130-
147/xa13 R_1678-1662
Xa21: Xa21s_exon (M769 + M770), snpOS0061 (C), U1/I1, M1207 (T), 
pTA248

[117, 122]

Brown plant 
hopper

Rathu Heenati Bph3, Bph17 RM589,RM586,RM190, RM8213, RM16556, RM586, RM589, RM190, 
RM7639, RM19311(linked markers)

[14, 117, 
123]

Gall midge Abhaya Gm4 GM4_LRR-del_F, GM4_LRR-del_R [49, 117, 
124]

Abiotic stress

Drought + 
submergence

IR96322-34-223-B qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 qDTY1.1: RM431, RM11943, RM12233(linked markers), snpOS0071 (A), 
snpOS0074 (G)
qDTY2.1: RM324, RM3549, RM12868, RM12987, RM12995(linked 
markers), snpOS0078 (A), snpOS0079 (A)
qDTY3.1: RM520, RM16030, RM416(linked markers), snpOS0085 (G), 
snpOS0089 (C)
Sub1: ART5, snpOS0040 (T)

[19, 117]

Drought IR74371-46-1-1 qDTY12.1 RM28099, RM28166, Indel 8, SnpOS00483(G), SnpOS00484(A) [77, 117]

Cold IR 83222-8-1-1-1-1-1-1-1, IR 66160-
121-4-4-2, HGKN

qCTS4a, qCTS11.1 qCTS4a: RM349, RM17604, RM17623, RM3648, RM2799
qCTS11: RM26889, RM21, RM206

[125, 126]

Heat N22/IR64 qHTSF4.1, qHTSF4.2, id4005120, id4011562 [104]

Salinity Pokkali/IR29 Saltol G11A, AP3206, RM3412, RM493 [110, 127]

Table 3. 
List of traits, donors, QTLs/genes, and markers associated used in crossing program for the development of climate resilient lines at IRRI, Philippines.
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of introgression lines pyramided with various drought grain yield QTLs in rice 
[128–131]. In some cases, epistatic interactions between different loci can enhance 
or reduce the effect of some of the genes/QTLs. Under such a situation, as an 
alternative strategy of identifying and advancing lines with different combinations 
of genes/QTLs- six, seven, or eight for different stresses and showing higher grain 
yield under nonstress conditions will also be selected and the best combinations 
that will show tolerance of a maximum number of abiotic and biotic stresses and 
the highest yield advantage will be advanced for testing. Plants carrying maximum 
number QTLs/gene but having negative interaction with grain yield and showing 
inferior plant type can be rejected for further advancement.

Maintenance of larger population size could also be a feasible strategy which can 
allow to select rare recombinants having maximum number of targeted QTLs/genes 
and also free from undesirable linkages. In previous studies, drought tolerant rice lines 
were developed through successful breakage of the linkages between loci for tolerance 
to drought and undesirable traits by fine mapping and maintain huge population 
size [132].

6. Role of genomic selection in multiple-trait breeding

Genomic selection (GS) in crop plants facilitates the rapid selection of superior 
accessions/genotypes and accelerate the breeding cycle targeted for higher genetic 
gain. It aims to use the genome-wide markers to predict the effects of all associated 
loci. The developed best prediction model is applied to the tested breeding material 
which has been charactized only genotypically but not phenotypically. The breeding 
estimated value called as GEBV (genomic estimated breeding value). The parental 
lines with higher GEBV can be selected as the candidate lines for future breeding 
programs. Most of the previous studied in cereal crops has shown great potential for 
GS to enhance the selection for grain yield and yield related traits [133, 134]. Multi 
trait genomic selection can be also implemented on phenotypic data of multiple traits 
viz. grain quality traits, grain yield and yield components, and reaction to the biotic 
and abiotic stresses, however it is important that a favorable genetic correlation exists 
between traits to implement genomic prediction model effectively [135, 136].

7. Conclusions

To solve the global issue of food security in the era of changing climate, novel 
approaches involving successful stacking of multiple genes/QTLs in a single rice 
line utilizing strategic phenotypic-genotypic selection could provide opportunity 
targeting genetic gain in rice. New advances in hybridization stratgies, genom-
ics, marker development, and sequencing permitted the opportunity to create 
muti-gene carrying high-yielding rice varieties to combat multiple stresses. The 
development of rice varieties carrying multiple QTLs/genes in homozygous 
conditions can address the production constraints faced due to both biotic and 
abiotic stresses simultaneously. These stress-tolerant rice varieties with desired 
grain quality can greatly help farmers in improving productivity under multiple 
stress conditions.
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