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Chapter

Impact of Hybrid-Enabling
Technology on Bertrand-Nash
Equilibrium Subject to Energy
Sources
Ryle S. Perera

Abstract

In this chapter, we quantify an optimal level of subsidy for the sharing of
hybrid-enabling technology innovation in an energy market while examining its
Bertrand-Nash equilibrium. We formulate this as a Stochastic Differential Game
(SDG) and analyze the stability of the Stuckenberg, Nash and cooperative equilibria
via a feedback control strategy. We then adopt limit expectation and variance of the
improvement degree to identify the influence of the external environment on the
decision maker. We show that the game depends on its parameters and the
equilibria chosen. Ultimately, our use of short-run price competition characterized
by strategic supplies for renewable and fossil resources provides a more robust
model than that presented by Bertrand-Edgworth with endogenous capacity. As a
result, we highlight that R&D investments in hybrid-enabling technology can
ensure immediate reliability and affordability within energy production and
implementation of policy instruments.

Keywords: Bertrand duopoly game, cooperative game, hybrid-enabling
technology, Nash non-cooperative game, Stackelberg game,
stochastic differential game

1. Introduction

In recent years, many researchers have developed models to discuss the impor-
tance of lowering carbon emissions and its potential impact on society by examining
economic growth, international trade, and health benefits. Khan et al. [1] examined
the relationship between green logistics indices, economic, environmental, and
social factors through the perspective of Asian emerging economies. By adopting a
Fully Modified OLS (FMOLS) Model and Dynamic OLS (DOLS) they claimed that
logistics operations, particularly the efficiency of customs clearance processes,
quality of logistics services and trade and transport-related infrastructure are posi-
tively and significantly correlated with per capita income, manufacturing value
added and trade openness, whereas greater logistics operations are negatively asso-
ciated with social and environmental problems including, climate change, global
warming, carbon emissions, and poisoning atmosphere. Khan et al. [2] examined
the potential relationship between public health expenditures, logistics
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performance indices, renewable energy, and ecological sustainability in members of
the Association of Southeast Asian Nations by applying the structural equation
modeling approach. They showed that the use of renewable energy in logistics
operations will improve environmental and economic performance to reduce emis-
sions, whereas environmental performance is negatively correlated with public
health expenditures, indicating that greater environmental sustainability can
improve human health and economic growth. In [3], economic growth and envi-
ronmental sustainability in the South Asian Association for Regional Cooperation
using the data from the South Asian Association for Regional Cooperation (SAARC)
member countries from 2005 to 2017 was examined. Adopting the panel
autoregressive distributed lag technique to examine the hypotheses, they find that
environmental sustainability is strongly and positively associated with national
scale-level green practices, including renewable energy, regulatory pressure,
eco-friendly policies, and the sustainable use of natural resources. In [4], the con-
sumption of renewable energy with international trade and environmental quality
in Nordic countries from 2001 to 2018 is investigated. Their findings concluded that
renewable energy is strongly and positively associated with international trade
in Nordic countries. Furthermore, [5] adopted multi-criteria-decision-making tech-
niques to examine barriers in the sustainable supply chain management (SSCM)
when firms are facing heavy pressure to adopt green practices in their supply chain
(SC) operations to achieve better socio-environmental sustainability.

Around the world governments, businesses and individuals have committed to
reducing carbon emission. As a result, the energy economy is highly exposed to
these processes. As industries push for renewable energies, technology will need to
step in to ensure reliability of the power supply. Therefore, there remains a need for
exploiting the role of hybrid technology, its dynamics, limitations on the reduction
of pollution levels and policy implementation within the wider carbon emissions
debate. This is due to the vital role hybrid technology plays in energy production
processes and the ability for the energy system to offer a better energy security.
Development of such lower carbon emission policies has potential benefits to the
environment and ecological sustainability to those economies. However, within many
of these environmental policy models, technology is incorporated as an exogenous
variable and limited attention is given to endogenous technology, other technological
breakthroughs, potential government subsidies or collaborative innovations to inte-
grate low carbon technology in environmental economics. Such interventions will
promote the renewable energy sector to use natural resources and undertake public-
private partnership investments to minimize dependence on fossil fuel derived energy.

To investigate the effects of hybrid-enabling technology when producing energy
to meet consumption demand, we assume energy producing firms follow the
Bertrand game paradigm. In the presence of government subsidy for the development
and sustainability of renewable energy, tax on pollution created by energy producing
firms will motivate them to undertake Research & Development (R&D) measures to
improve hybrid enabling technologies to further reduce the level of carbon pollution.
As a result, from an economic point of view it is an interesting question to examine
the Bertrand-Nash equilibrium under such a dynamic environment. This chapter
examines this concept via a Stochastic Differential game paradigm.

Many researchers have applied game theory to study carbon reduction behavior
in electricity markets. In [6], the Cournot equilibria in an oligopolistic electricity
market subject to a linear demand function is examined. In [7], the power suppliers
bidding behavior is evaluated under the supply function equilibrium (SFE) para-
digm, where the market power of an independent system operator (ISO) is modeled
as a bi-level multi-objective problem. In [8], the equilibrium strategies in random-
demand procurement auctions in the electricity market is obtained and presented a
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method for explicit calculation of the bid strategies is presented. [9] proposed a
Nash bargaining game model to examine how governments can determine the taxes
and subsidies in a competitive electricity market whilst achieving their environ-
mental objectives. In [10–14], the role of government as a leading player who
intervenes in competitive electricity markets to promote environmental protection
is evaluated. In [15], the role of government, when managing environmental sus-
tainability in a complete electricity market in a Stackelberg game paradigm is
examined. In [16], a more robust trans-boundary industrial pollution reduction
strategy for global emission collaborations is presented. The dynamics of each
country’s quantity of pollution is modeled as a Brownian motion with Jumps to
capture the systematic jumps caused by surprise effects arising from policy uncer-
tainties within the economy. However, a crucial limitation within many of these
environmental policy models, is that technological change is incorporated as an
exogenous variable and does not consider the role of endogenous hybrid-enabling
technology or other technological breakthroughs, hence limiting the dynamics of
these models.

We quantify an optimal level of subsidy for the sharing of hybrid-enabling
technology in an energy market under a Bertrand-duopoly game. We formulate a
Stochastic Differential Game (SDG) to analyze the stability of the Stackelberg, Nash
and cooperative equilibria via a feedback control strategy. We then adopt limit
expectation and variance of the improvement degree to identify the influence of
external environment limitations on the decision maker. We show that the game
depends on its parameters and the equilibria chosen. We consider an electricity
market composed of power plants I and II, with each one having the choice between
fossil fuels Fð Þ (e.g., natural gas, petroleum or coal) and renewable sources Rð Þ (e.g.,
biomass, solar, wind, wave, geothermal or hydroelectric). Such hybrid power plants
play a crucial ameliorating role in managing the long-standing problem of climate
change and ensure immediate reliability and affordability of energy production,
whilst reducing Greenhouse Gas (GHG) emissions.

In this model, we consider a Bertrand duopoly game for two power plants under
endogenous hybrid-enabling technology. In the first stage the matrix of prices

pij

� �

ij∈ F,Rf g
, (where pij

� �

is the price of energy i, given that the opponent player’s

energy j) is determined as a Nash equilibrium of the game where each player wants
to optimize his/her demand. We then search for the Nash equilibria, and the opti-
mal proportions that maximizes the Πð Þij, ij∈ F,Rf g subject to the source type of

energy that has been used. Once all these parameters have been fixed, the game
becomes dynamic due to the evolution of a hybrid-enabling technology level K tð Þ,
prompted by Research and Developments (R&D) measures undertaken by each
power plant. Hence, each player must fix a time-dependent effect level associated
with this hybrid-enabling technology. In doing so, this study makes the following
contributions to existing game theory/energy economics literature:

i. stochastic endogenous hybrid-enabling technology innovation is
introduced into a two-player stochastic differential game with random
interference factors, which capture uncertain external environment factors
and the internal limitations within the shared hybrid-enabling technology
decision process. In doing so, we provide a framework to quantify the
impacts of market power on prices.

ii. we show that both power plants invest in R&D measures and that the limit
of expectation and variance of the improvement degree can be applied to
identify the influence of random factors.
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iii. mathematically, we show that the issue of the game depends on the
parameters of the game and the type of equilibrium one considers.

iv. by applying the HJB equation we obtain the optimal effort level and the
optimal level of subsidy for sharing hybrid-enabling technology via
feedback equilibrium strategies whilst examining the Stackelberg
equilibria, Nash equilibria and cooperative equilibria under Bertrand
duopoly.

v. we reveal that for a given level of payoff distribution the Stackelberg
equilibria under endogenous hybrid-technology innovation and the sharing
paradigm dominate the Nash equilibria.

vi. we show that in Stackelberg and Nash games, optimal hybrid-enabling
technology innovation is proportional to the government subsidy, but the
variance improvement degree of the Stackelberg game is different to the
results of the Nash game.

vii. our characterization of the short run price competition by strategic supplies
for renewable and fossil resources, provides a more robust model than that
presented by Bertrand-Edgworth, in which price competition with fixed
(endogenous) capacities was used.

viii. our model shows that robust cost-reducing R&D investments with
effective hybrid-enabling technology innovation strengthens an innovator’s
competitive position and the Stackelberg structure emerges as an
equilibrium outcome, allowing each power plant to optimally use energy
sources to produce electricity while maximizing their payoffs.

Therefore, under a Stochastic Differential Game (SDG) paradigm with uncer-
tainty, each power plant can optimally use energy sources to produce electricity
while maximizing their payoffs. Each power plant is capable of using fossil fuels Fð Þ
and renewable sources Rð Þ to produce electricity at any time. To maintain the
generality of the proposed model, this model is not limited to a specific energy
source. Hence, the terms }F} and }R}, are used throughout the paper. On the other
hand the government encourages power plants to conform to a maximum accepted
level of carbon emissions through strategies such as the imposition of tariffs on
polluters as well as incentives for those who choose to undertake R&D measures to
reduce their emission levels in order to maintain environmental sustainability. R&D
spending is costly, and the presumption is that R&D spending is somehow
connected to increased innovation, revenue growth and profits.

In recent years, researchers have incorporated the theory of SDGs, originated
from [14, 17–20] to analyzed environmental issues. Especially [21] analyzed (two
player) zero-sum stochastic differential games in a rigorous way, and proved that
the upper and lower value functions of such games satisfy the dynamic program-
ming principle whilst being the unique viscosity solutions of their associated
Hamilton-Jacobi-Bellman-Isaacs equations.

In Section 2, the proposed model and elements of evolutionary game theory are
presented. In Section 3 by implementing the Stackelberg game we examine feed-
back Stackelberg equilibria, optimal level of subsidy for the shared hybrid-enabling
technology from its counterpart and the limit of expectation and variance. In Sec-
tion 4 by implementing a Nash game we examine feedback Nash equilibria and the
limit of expectation and variance under hybrid-enabling technology. In Section 5 by
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implementing a cooperative game we examine feedback equilibria and the limit of
expectation and variance under hybrid-enabling technology. In Section 6, compar-
ative analysis of equilibrium results are described. Section 7 concludes the study.
Appendix at the end of the chapter contains proofs.

2. Model setup

We propose that the production process of electricity leads to emissions and is
proportional to the power industry’s use of energy source. We assume that there are
two power plants (Player I) and (Player II) in the energy market and each power
plant is capable of using fossil fuels (F) and renewable sources (R) to generate power
at any given time t. To reduce the level of Green House Gas (GHG)-emissions into
the atmosphere (accordance with [22] Protocol), the government will set a maxi-
mum emission quantitative level, that is directly linked to the power industry’s use
of energy source F, when producing electricity. Government encourages the power
industry to undertake necessary hybrid-enabling technology to reduce their GHG-
emission levels to the maximum accepted quantitative level, ηF, and improve effi-
ciency in renewables. We assume that the power plants change their strategies over
time based on payoff comparisons based on hybrid-enabling technological
advances. This contradicts with classical non cooperative game theory that analyzes
how rational players will behave through static solution concepts such as the Nash
equilibrium (NE) (i.e., a strategy choice for each player whereby no individual has a
unilateral incentive to change his or her behavior).

Under the theory of evolutionary games, the production strategies in the absence
of any superior hybrid-enabling technological advances, allows the power plants to play
a symmetric two-person 2 � 2 bi-matrix game. Thus, for each power plant, we
define the set Σ as its pure strategy given by the set of non-negative prices [0, ∞).
According to the Bertrand game all firms setting the lowest price will split market
demand equally (Hotelling type) and the profit can be calculated subject to the
electricity prices and the associated cost functions.

Then each iteration of an evolutionary game, where two matched power plants
in accordance with Bertrand paradigm compete with each market and play a one-
shot non-zero-sum game, represents the benchmark game of the population. If

pij, pji

� �

is the matrix of prices of power plants, respectively, then via Proposition 1

(given below), it will allow us to derive Nash equilibria of prices for these two
matched power plants. On the demand side we assume that the preferences are
quadratic as in [23].

We define the continuous demand function Dij

� �

, for each power plant as

Dij ¼ aij � βij pij þ τi

� �

þ γij pji þ τ j

� �

, i, j∈ F,Rf g (1)

where Dij is the demand function for the power plants employing the energy
source i∈ F,Rf g against the power plant which use the energy source j∈ F,Rf g: τi is
the tariff imposed by government subject to the power source i. For example
government impose a tariff-rate quota (TRQs) τFð Þ, for fossil fuels (F) and a feed-in-
tariff (FITs) τRð Þ, for renewable sources (R). pij is the electricity price of the power

plant that uses the energy source i, versus the power plant that employs the energy
source j. aij >0, is the constant market base for the power plant that employs the
energy source i versus the one which use the energy source j. The parameters βij >0

and γij >0, are independent constants that captures the demand sensitivity of a
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power plant subject to its own price βij and its rival’s price γij. Eq. (1), concludes that

the goods in the market are gross substitutes and that the demand function Dij, is
increasing in the price of the rival firm pji.

The government’s tariff policy for the power plants with respect to their source
of energy for long-time periods are transparent, and this information is available to
the public. Therefore, it is assumed that the competitive power plants follow the
government’s financial legislation, having the capability and technological skills to
produce electricity from specific sources at any given time to meet energy demand.
Then for each time-period the power plant will consider the tariff-rate quota or
feed-in-tariff and adopt a pricing strategy for the selected energy source. Hence, we
conclude that the production rate of the power plants is equal to the corresponding
demand rates with a negligible internal consumption and waste rate.

To apply the Backward induction technique to investigate the equilibrium
prices, demand, and profits, we define the profit function for each power plant as

Πij ¼ pij � Ci � vi
� �

Dij � Fi

¼ pij � Ci � vi
� �

aij � βij pij þ τi

� �

þ γij pji þ τ j

� �� �

� Fi,
(2)

where i, j∈ F,Rf g and Ci >0 is the unit production cost of the power plant when
using energy source i. vi >0, for any additional R&D unit cost for undertaking
hybrid-enabling technology, for a power plant that rely on an energy source i,
(Fi >0 is the initial setup cost of the power plants when using the energy source i).

We also assume that pij � Ci � vi
� �

>0: The firms’ technologies are represented by

their reduced cost functions. This assumes that all factor markets are perfectly
competitive and – both here and in the models of imperfect competition in the
output market – are not influenced by any strategic behavior of the firms in other
markets. We will make alternative assumptions about those technologies. In the
first assumption, pollution is proportional to output and firms do not have any
further abatement technologies.

Proposition 1. The equilibrium price for the power plants under τF, τRð Þ, is given as
pij ¼ Λij þ Ci þ vi:

Proof. Via the first order conditions of the profit function (Eq. (2)), obtain

∂Πij

∂pij
¼ aij � 2βij pij � Ci � vi

� �

þ γij pji � C j � v j

� �

þ γij τ j þ C j þ v j

� �

�βij τi þ Ci þ við Þ ¼ 0:

(3)

Defining Λij ¼ pij � Ci � vi and using Λij and Λji, rewrite the first order condi-

tions as:

2βijΛij � γijΛji ¼ aij þ γij τ j þ C j þ v j

� �

� βij τi þ Ci þ við Þ,

2βjiΛji � γjiΛij ¼ aji þ γji τi þ Ci þ við Þ � βji τ j þ C j þ v j

� �

:

8

<

:

(4)

Simultaneously solving Eq. (4), obtain

Λij ¼
2βjiaij þ γijaji þ βjiγij τ j þ C j þ v j

� �� �

þ γijγji � 2βjiβij

� �

τi þ Ci þ við Þð Þ

4βjiβij � γijγji

� � (5)
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such that βjiβij 6¼
γijγji

4 : p ∗
ij and p ∗

ji are obtained via pij ¼ Λij þ Ci þ vi and are the

optimum prices if the profit functions are concave on pij and on pji. Then via the

second order conditions, obtain the maximum point in the set as:
∂
2
Πij

∂p2
ij

¼ �2βij <0:

Since βij >0, implies that the second derivative of the profit function in equilibrium

is negative confirming that the profit function is concave at this point.
Proposition 2. At equilibrium prices the power plant’s demand and profit under

τF, τRð Þ, can be obtained as

D ∗

ij ¼ βijΛ
∗

ij ¼ βij θij þ ωijτ
∗

i þ χijτ
∗

j

� �

,

Π
∗

ij ¼ βij Λ
∗

ij

� �2
� Fi ¼ βij θij þ ωijτ

∗

i þ χijτ
∗

j

� �2
� Fi,

(6)

where

θij ¼
2βjiaij þ γijaji þ βjiγij C j þ v j

� �

þ γijγji � 2βjiβij

� �

Ci þ við Þ
� �

4βjiβij � γijγji

� � , (7)

ωij ¼
γijγji � 2βjiβij

� �

4βjiβij � γijγji

� � and χij ¼
βjiγij

4βjiβij � γijγji

� � (8)

Proof. Obtain the results by substituting Λ
∗

ij from Proposition 1 into Eqs. (1) and

(2) and simplifying.
Remark 1. The only outcome where neither power plant has an incentive to

deviate is when pij ¼ pji ¼ ci, which will be the Nash or Bertrand equilibrium for the

game. The intuition behind this result is that power plants will keep undercutting the
price of its rival until price equals marginal cost. In the long run price changes with
marginal cost and industry production increases with demand and falls with
marginal cost. One way for a power plant to avoid the Bertrand paradox and earn
economic profit in a Bertrand setting is to have a competitive cost advantage over
its rival.

2.1 Production decisions of power plants with homogenous hybrid/enabling
technology

Restricting ourselves to a two matched symmetric two-person bi- matrix game
in random contest in a one-population evolutionary game, we define the payoff
(utility) in Table 1.

Note 1. Power and the payoff are measured on a utility scale consistent with the
power plant’s preference ranking. Furthermore, [24–26] have applied symmetric
two-person bi-matrix game in random contest to study evolutionary stable games.

Power Plant II

Production Strategy Fossil Fuel Renewable Sources

Power Plant I Fossil Fuel ΠFF,ΠFFð Þ ΠFR,ΠRFð Þ

Renewable Sources ΠRF,ΠFRð Þ ΠRR,ΠRRð Þ

Table 1.

Bi matrix for two power plants by different energy sources.
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Then via equation Π
∗
ij ¼ βij Λ

∗

ij

� �2
� Fi ¼ βij θij þ ωijτi þ χijτ j

� �2
� Fi, in

Proposition 1, and the payoff matrix of the power plant I is given by:

A ¼
a11 a12

a21 a22

� �

¼
ΠF,F ΠF,R

ΠR,F ΠR,R

� �

¼
βF,FΛ

2
F,F � FF βF,RΛ

2
F,R � FF

βR,FΛ
2
R,F � FR βR,RΛ

2
R,R � FR

" #

: (9)

Obviously the bimatrix of the power plant II, is given by:

A ¼
a11 a21

a12 a22

� �

¼
ΠF,F ΠR,F

ΠF,R ΠR,R

� �

¼
βF,FΛ

2
F,F � FF βR,FΛ

2
R,F � FR

βF,RΛ
2
F,R � FF βR,RΛ

2
R,R � FR

" #

: (10)

Proposition 3. The Nash equilibrium for the Bi-matrix game G, is given as

ΠR,R � ΠF,Rð Þ
ΠF,F � ΠR,F � ΠFR þ ΠR,Rð Þ ,

ΠR,R � ΠF,Rð Þ
ΠF,F � ΠF,R � ΠR,F þ ΠR,Rð Þ

� 	

: (11)

Proof. Suppose players I and II use mixed strategies (x,1-x) and (y,1-y),
respectively, where

i. The probability that player I choosing row 1 is x and the probability that
player I choosing row 2 is 1-x.

ii. The probability that player II choosing row 1 is y and the probability that
player II choosing row 2 is 1-y.

Then the value of the game for Player I is

v1 x, yð Þ ¼ xy ΠF,Fð Þ þ x 1� yð Þ ΠF,Rð Þ þ 1� xð Þy ΠR,Fð Þ þ 1� xð Þ 1� yð Þ ΠR,Rð Þ

¼ ΠF,F � ΠF,R � ΠR,F þ ΠR,Rð Þyþ ΠF,R � ΠR,Rð Þð Þxþ ΠR,F � ΠR,Rð Þyþ ΠR,Rð Þ, (12)

and the value of the game for Player II is

v2 x, yð Þ ¼ xy ΠF,Fð Þ þ x 1� yð Þ ΠR,Fð Þ þ 1� xð Þy ΠF,Rð Þ þ 1� xð Þ 1� yð Þ ΠR,Rð Þ

¼ ΠF,F � ΠR,F � ΠF,R þ ΠR,Rð Þxþ ΠF,R � ΠR,Rð Þð Þyþ ΠR,FR � ΠR,Rð Þxþ ΠR,Rð Þ: (13)

Suppose (X, Y) yields a Nash equilibrium. Then for the given payoffs having
0< x< 1 implies that

v1 ¼ ΠF,F � ΠF,R � ΠR,F þ ΠR,Rð Þyþ ΠF,R � ΠR,Rð Þ ¼ 0: (14)

Otherwise Player I can change x slightly and do better.
Similarly, for 0< y< 1,

v2 ¼ ΠF,F � ΠR,F � ΠFR þ ΠR,Rð Þxþ ΠF,R � ΠR,Rð Þ ¼ 0: (15)

Otherwise Player II can change y slightly and do better. It follows that the
unique Nash equilibrium (x,y), has

ΠR,R � ΠF,Rð Þ
ΠF,F � ΠR,F � ΠFR þ ΠR,Rð Þ ,

ΠR,R � ΠR,Fð Þ
ΠF,F � ΠF,R � ΠR,F þ ΠR,Rð Þ

� 	

: (16)
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Remark 1. Since the power plants plays a symmetric two person bimatrix game
G, having two pure strategies ΠF,F 6¼ ΠR,F, ΠR,R 6¼ ΠFR, imply that G, has an
evolutionary stable strategy. Then the Nash equilibrium is an outcome in which the
strategy chosen by each player is the best reply to the strategy chosen by the other.
This best reply strategy yields the highest payoff to the player choosing it, given the
strategy chosen by the co-player, [27, 28].

2.2 Production decisions of power plants under endogenous hybrid/enabling
technological advances

Both players will undertake R&D measures on hybrid-enabling technology to
ensure immediate reliability and affordability in energy production whilst reducing
GHG-emissions. We assume that the strategic effects implemented by power plant I
(Player I), has improved hybrid-enabling technology to generate energy and utilize
energy sources in a much efficient way. This gives a superior advantage to power
plant I overpower plant II (Player II) and both power plants are rational to maxi-
mize their profits. Although Power plant II has heterogeneous resources to hybrid-
enabling technology, from a practical point of view it is logical for power plant I to
share this technology with power plant II, because the price competition is typically
characterized by a second-mover advantage. Many researchers have investigated
the effects of these commitments in Cournot, Bertrand and Stackelberg setups. See
[29–31]. Due to the government incentives, tariff-rate quota, feed-in-tariff and
R&D incentive measures, the power companies will be competitive to improve

their efficiency. Let LR tð Þ denotes the R&D effort level of technological improve-

ments on renewable sources at time t, and LF tð Þ denotes the R&D effort level of

technological improvements on fossil fuel at time t, of Player I. ~L
R
tð Þ denotes the

R&D effort level of technological improvements on renewable sources at time t, and

~L
F
tð Þ denotes the R&D effort level of technological improvements on fossil fuel at

time t, of Player II. For, further consideration, the sharing cost of advanced hybrid-
enabling technology (Player I) and inferior hybrid-enabling technology (Player II)
is denoted as CI tð Þ and CII tð Þ, which are the quadratic functions of the effect level of
Player I and Player II at time t, respectively. Consider

CI LR tð Þ,LF tð Þ, t
� �

¼ 1

2
βR tð Þ LR tð Þ

� �2 þ βF tð Þ LF tð Þ
� �2

� �

, (17)

and

CII
~L
R
tð Þ, ~LF

tð Þ, t
� �

¼ 1

2
~β
R
tð Þ ~L

R
tð Þ

� �2
þ ~β

F
tð Þ ~L

F
tð Þ

� �2
� 	

, (18)

where 0< βR tð Þ, βF tð Þ, ~βR tð Þ, ~βF tð Þ
� �

≤ 1 and lower the βR tð Þ, βF tð Þ, ~βR tð Þ, ~βF tð Þ
� �

,

more effective is the technological development.
Let K tð Þ denote the evolution of the hybrid-enabling technology at time t, due to

R&D collaborative innovation system of Player I and Player II at time t. The dynam-
ics of hybrid-technology is governed by the stochastic differential equation (SDE):

dK tð Þ ¼ ϑ1 tð Þ LR tð Þ,LF tð Þ
� �

þ ϑ2 tð Þ ~L
R
tð Þ, ~LF

tð Þ
� �

� ξK tð Þ
h i

dtþ φ
ffiffiffiffi

K
p

dW tð Þ

K 0ð Þ ¼ K0 >0:

8

<

:

(19)
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ξ∈ 0, 1ð �, is the attenuation coefficient of hybrid-enabling technology. Let

ϑ1 tð Þ ¼ ϑR1 tð Þ þ ϑF1 tð Þ
� �

and ϑ2 tð Þ ¼ ϑR2 tð Þ þ ϑF2 tð Þ
� �

denote the influence of the effort
level of hybrid-enabling technology sharing on collaboration innovation between

Player I and Player II, at time t. W tð Þ is a standard Brownian motion and φ
ffiffiffiffi

K
p

tð Þ
� �

random interference factor on hybrid-enabling technology.
Let Π tð Þ denotes the total profit under the hybrid-enabling technology system at

time t. Let α1 tð Þ, α2 tð Þð Þ and β1 tð Þ, β2 tð Þð Þ denote the influence of the effort level
hybrid-enabling technology on the total profit of Player I and player II, respectively,
at time t, namely, the marginal return coefficient of hybrid-enabling technology.
Total profit function can be expressed as:

Π tð Þ ¼ α1 tð ÞLR tð Þ þ α2 tð ÞLF tð Þ
� �

þ β1 tð Þ~LR
tð Þ þ β2 tð Þ~LF

tð Þ
� �

þ Γþ δð ÞK tð Þ, (20)

where

α1 tð Þ ¼ ΠR,R tð Þ
ΠF,F tð Þ � ΠR,F tð Þ � ΠF,R tð Þ þ ΠR,R tð Þ , (21)

α2 tð Þ ¼ �ΠF,R tð Þ
ΠF,F tð Þ � ΠR,F tð Þ � ΠF,R tð Þ þ ΠR,R tð Þ ,

Γ ¼ Γ Ið Þ þ Γ IIð Þ, δ ¼ δ Ið Þ þ δ IIð Þ, and

(22)

β1 tð Þ ¼ ΠR,R tð Þ
ΠF,F tð Þ � ΠR,F tð Þ � ΠF,R tð Þ þ ΠR,R tð Þ , (23)

β2 tð Þ ¼ �ΠR,F tð Þ
ΠF,F tð Þ � ΠR,F tð Þ � ΠF,R tð Þ þ ΠR,R tð Þ : (24)

Γ is the influence of the hybrid-enabling technology innovation on total revenue
δ∈ 0, 1ð �; δ is the total government subsidy coefficient of hybrid-enabling technol-
ogy based on increments of advances in hybrid-enabling technology.

Proposition 4. At least one of the Power Plants has a second mover advantage.

Proof. Demand function Dij pij, pji

� �

>0, given by Eq. (4), is twice continuously

differentiable and

∂Dij pij, pji

� �

∂pij
¼ �βij <0, and

∂Dij pij, pji

� �

∂pji
¼ γij >0∀ pij, pji

� �

∈PI � PII: (25)

The first inequality says that each demand is downward sloping in own price,
and the second that goods are substitutes (each demand increases with the price of
the other good). [32] shows that in case of symmetric firms, there is a second-mover
(first-mover) advantage for both players when each profit function is strictly con-
cave in own action and strictly increasing (decreasing) in rival’s action, and reaction
curves are upward (downward) sloping.

Then a sufficient condition on the super-modularity of the profit function is
obtained via the profit function Πij, given by Eq. (4):

∂Dij pij, pji

� �

∂pji
þ pij � Ci � vi
� � ∂

2Dij pij, pji

� �

∂pjipij

2

4

3

5E K tð Þð Þ>0, (26)
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where E is the expectations. The main implication of this is that it leads to
reaction correspondences that are non-decreasing (in the sense that each selection is
non-decreasing) but need not be single-valued or continuous. This has a very
appealing and precise interpretation: The price elasticity of Power Plant i’s demand
increases in the rival’s price, [33]. This is a very intuitive and general condition,

though clearly not a universal one. It is satisfied in particular if
∂
2Dij pij, pjið Þ

∂pjipij
>0, if a

higher price by a Power Plant’s rival does not lower the responsiveness of the Power
plant’s demand to a change in own price.

We further assume that the total revenue is allocated between two players and
θ tð Þ is the payoff distribution coefficient of player I at time t and θ tð Þ∈ 0, 1½ �.
Although Player II has heterogeneous resources of hybrid-enabling technology,
Player I can produce electricity more efficiently with lower GHG-emission, ensure
immediate reliability and affordability in energy production. Then Player II, can
acquire practical outcomes of this hybrid-enabling technological advances. To pro-
mote the hybrid-enabling technology, Player II (leader) determine an optimal shar-
ing effort level and an optimal subsidy. Then Player I (follower) choose their
optimal sharing effort level according to the optimal sharing effort level and sub-
sidy. This leads to a Stackelberg equilibrium. Let ω tð Þ ¼ ω1 tð Þ,ω2 tð Þð Þ, denote the
subsidy for hybrid-enabling technology, with Player II willing to pay to Payer I
under collaboration. The objective functions of power plant I and power plant II
satisfy the following partial differential equations

J Ið Þ K0ð Þ

¼ max
LR
S ,L

F
Sf g≥0

E

ð

∞

0
e�ρ1t θ tð Þ α1 tð ÞLR tð Þ þ α2 tð ÞLF tð Þ þ β1 tð Þ~LR

tð Þ þ β2 tð Þ~LF
tð Þ

�h

�

þ Γþ δð ÞK tð ÞÞÞ � 1

2
βR tð Þ 1� ω1ð Þ LR tð Þ

� �2 � 1

2
βF tð Þ 1� ω2ð Þ LF tð Þ

� �2
�

dt

�

,

(27)

and

J IIð Þ K0ð Þ ¼ max
~L
R

S ,
~L
F

S ,ω tð Þ
 �

≥0

E

ð

∞

0
e�ρ2t 1� θ tð Þð Þ α1 tð ÞLR tð Þ þ α2 tð ÞLF tð Þ þ β1 tð Þ~LR

tð Þ
�h

�

þβ2 tð Þ~LF
tð Þ þ Γþ δð ÞK tð Þ

�

� 1

2
~β
R
tð Þ LR tð Þ
� �2 � 1

2
~β
F
tð Þ ~L

F
tð Þ

� �2

�1

2
ω1β

R tð Þ LR tð Þ
� �2 � 1

2
ω2β

F tð Þ LF tð Þ
� �2

�

dt

�

,

(28)

where ρ1 and ρ2 are the discount rates of Player I and Player II, respectively. In

this feedback control strategy LR
S tð Þ≥0, LF

S tð Þ≥0, L S R (t) ≥ 0, ~L
R

S tð Þ≥0 and

~L
F

S tð Þ≥0, are the control variables and ω tð Þ ¼ ω1 tð Þ,ω2 tð Þð Þ∈ 0, 1ð Þ. K tð Þ>0 is the
state variable. In feedback control process, it is assumed that players at every point
in time have access to the current system and can make decisions accordingly to
that state. Consequently, the players can respond to any disturbance in an optimal
way. Hence, feedback strategies are robust for deviations and players can react
to disturbances during the evolution of the game and adapt their actions
accordingly, [34].
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3. A Stackelberg game under heterogeneous technology

Theory of strong Stackelberg reasoning is an improved version of an earlier
theory [35], which provides an explanation of coordination in all dyadic (two-
player) common interest games. It provides an explanation of why players tend to
choose strategies associated with a payoff-dominant Nash equilibrium. Its distinc-
tive assumption is that players behave as though their co-players will anticipate any
strategy choice and invariably choose a best reply to it. Stackelberg strategies
resulting from this form of reasoning do not form Nash equilibria. The theory
makes no predictions, because a non-equilibrium outcome is inherently unstable,
leaving at least one player with a reason to choose differently and thereby achieve a
better payoff. Strong Stackelberg reasoning is a simple theory, according to which
players in dyadic games choose strategies that would maximize their own payoffs if
their co-players could invariably anticipate their strategy choices and play counter-
strategies that yield the maximum payoffs for themselves. The key assumption is
relatively innocuous, first because game theory imposes no constraints on players’
beliefs, apart from consistency requirements, and second because the theory does
not assume that players necessarily believe that their strategies will be anticipated,
merely that they behave as though that is the case, as a heuristic aid to choosing the
best strategy. Strong Stackelberg reasoning is, in fact, merely a generalization of the
minorant and majorant models introduced by [36] and used to rationalize their
solution of strictly competitive games.

To promote the sharing of hybrid-enabling technology, the Player II (the leader)
determine an optimal sharing effort sharing level and an optimal subsidy scheme.
Then the Player I (the follower) choose his/her optimal sharing level according to
the optimal sharing effort level and subsidy. This leads to a Stackelberg equilibrium.

Proposition 5. If above conditions are satisfied, the feedback Stackelberg leader
(Player II)-follower (Player I) and equilibria is given as:

LR
S ¼ α1 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑR1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ

2βR ρ2 þ ξð Þ ρ1 þ ξð Þ
, (29)

LF
S ¼ α2 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑF1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ

2βF ρ2 þ ξð Þ ρ1 þ ξð Þ
, (30)

~L
R

S ¼ 1� θð Þ β1 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑR2
~β
R
ρ2 þ ξð Þ

, (31)

~L
F

S ¼ 1� θð Þ β2 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑF2
~β
F
ρ2 þ ξð Þ

: (32)

where LR
S ,L

F
S are the optimal effort level of hybrid-enabling technological

improvements shared on renewable sources and fossil fuel at time t by Player I,

respectively. ~L
R

S ,
~L
F

S are the optimal effort level of technological improvements
shared on renewable sources and fossil fuel at time t by Player II, respectively.

The optimal level of subsidy for sharing hybrid-enabling on renewable sources is
given by

ω1 ¼
α1 2� 3θð Þ þ ϑR1 2a2 � a1½ �
α1 2� θð Þ þ ϑR1 2a2 þ a1½ �

, 0≤ θ≤
2

3

0: otherwise

8

>

<

>

:

(33)
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Similarly, the optimal level of subsidy for sharing hybrid-enabling technology on fossil
fuel is given by:

ω2 ¼
α2 2� 3θð Þ þ ϑF1 2a2 � a1½ �
α2 2� θð Þ þ ϑF1 2a2 þ a1½ �

, 0≤ θ≤
2

3

0: otherwise

8

>

>

<

>

>

:

(34)

The optimal sharing payoff functions under hybrid-enabling technology on renewable
sources and on fossil fuel for Player I and Player II are given below

V
Ið Þ
S Kð Þ ¼ θ Γþ δÞ

� �

ρ1 þ ξð Þ K þ b1, V
IIð Þ
S Kð Þ ¼ 1� θð Þ Γþ δð Þ

ρ2 þ ξð Þ K þ b2, (35)

where a1, a2, b1 and b2 are given in the proof.
Proof. We define the optimal revenue functions for Player I and Player II

under hybrid-enabling technology as V
Ið Þ
S Kð Þ and V

IIð Þ
S Kð Þ, respectively, which are

continuously differentiable. Applying HJB equation to V
Ið Þ
S Kð Þ, for Player I, we

obtain

ρ1V
Ið Þ
S Kð Þ ¼ max

LR
S ,L

F
Sf g≥0

θ α1L
R
S tð Þ þ α2L

F
S þ β1

~L
R

S þ β2
~L
F

S þ Γþ δð ÞKÞ
�h in

� 1

2
βR 1� ω1ð Þ LR

S

� �2 � 1

2
βF 1� ω2ð Þ LF

S

� �2

þ ∂V
Ið Þ
S Kð Þ
∂K

ϑ1 LR
S ,L

F
S

� �

þ ϑ2 ~L
R

S ,
~L
F

S

� �

� ξK
h i

þ 1

2

∂
2V

Ið Þ
S Kð Þ
∂K2 φ2 Kð Þ

)

: (36)

Via the first order conditions, we obtain the optimal values LR
S ,L

F
S

� �

for
Player I as:

LR
S ¼ θα1 þ V 0 Ið Þ

S Kð ÞϑR1
βR 1� ω1ð Þ

, (37)

LF
S ¼ θα2 þ V 0 Ið Þ

S Kð ÞϑF1
βF 1� ω2ð Þ

, (38)

where
∂V

Ið Þ
S

Kð Þ
∂K � V 0 Ið Þ

S Kð Þ: The optimal sharing revenue function, V 0 IIð Þ
S Kð Þ, for

Player II and the associated HJB equation is

ρ2V
IIð Þ
S Kð Þ ¼ max

~L
R

S ,
~L
F

S

 �

≥0

1� θð Þ α1L
R
S þ α2L

F
S þ β1

~L
R

S þ β2
~L
F

S þ Γþ δð ÞK
� �h in

� 1

2
~β
R
LR
S tð Þ

� �2 � 1

2
~β
F

~L
F

S

� �2
� 1

2
ω1β

R LR
S

� �2 � 1

2
ω2β

F LF
S

� �2

þ ∂V
IIð Þ
S Kð Þ
∂K

ϑ1 LR
S ,L

F
S

� �

þ ϑ2 ~L
R

S ,
~L
F

S

� �

� ξK
h i

þ 1

2

∂
2V

IIð Þ
S Kð Þ
∂K2 φ2 Kð Þ

)

: (39)
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Substituting the results of Eqs. (37) and (38) into Eq. (39), obtain

ρ2V
IIð Þ
S Kð Þ ¼ max

~L
R

S ,
~L
F

S

 �

≥0

1� θð Þ
α1 θα1 þ V 0 Ið Þ

S Kð ÞϑR1
� �

βR 1� ω1ð Þ
þ
α2 θα2 þ V 0 Ið Þ

S Kð ÞϑF1
� �

βF 1� ω2ð Þ

0

@

2

4

8

<

:

þ β1
~L
R

S þ β2
~L
F

S þ Γþ δð ÞK
�

� 1

2
~β
R

~L
R

S tð Þ
� �2

� 1

2
~β
F

~L
F

S

� �2

� 1

2
ω1β

R θα1 þ V 0 Ið Þ
S Kð ÞϑR1

βR 1� ω1ð Þ

 !2

� 1

2
ω2β

F θα2 þ V 0 Ið Þ
S Kð ÞϑF1

βF 1� ω2ð Þ

 !2
3

5

þ ∂V
IIð Þ
S Kð Þ
∂K

ϑR1 θα1 þ V 0 Ið Þ
S Kð ÞϑR1

h i

βR 1� ω1ð Þ
þ
ϑF1 θα2 þ V 0 Ið Þ

S Kð ÞϑF1
h i

βF 1� ω2ð Þ
þ ϑ2 ~L

R

S ,
~L
F

S

� �

� ξK

2

4

3

5

þ 1

2

∂
2V

IIð Þ
S Kð Þ
∂K2 φ2 Kð Þ

)

:

(40)

Via the first order conditions of (Eq. (40)), we obtain the optimal values

~L
R
, ~L

F
� �

for Player II as:

~L
R

S ¼ 1� θð Þβ1 þ V 0 IIð Þ
S Kð ÞϑR2

~β
R

, (41)

~L
F

S ¼ 1� θð Þβ2 þ V 0 IIð Þ
S Kð ÞϑF2

~β
F

: (42)

And the optimal value for ω1,ω2ð Þ

ω1 ¼
α1 2� 3θð Þ þ ϑR1 2V 0

S
IIð Þ Kð Þ � VS

0 Ið Þ Kð Þ
h i

α1 2� θð Þ þ ϑR1 2V 0
S
IIð Þ Kð Þ þ VS

0 Ið Þ Kð Þ
� � , (43)

and

ω2 ¼
α2 2� 3θð Þ þ ϑF1 2V 0

S
IIð Þ Kð Þ � VS

0 Ið Þ Kð Þ
h i

α2 2� θð Þ þ ϑF1 2V 0
S
IIð Þ Kð Þ þ VS

0 Ið Þ Kð Þ
� � : (44)

Hence, the solution of the HJB equation is an unary function with K (K as

the independent variable), we define V Ið Þ
S ¼ a1K þ b1 and V

IIð Þ
S ¼ a2K þ b2,

where a1, b1, a2, and b2 are constants that need to be solved. Simplifying (Eq. (39)),
obtain:

ρ1V
Ið Þ
S Kð Þ ¼ θ α1

θα1 þ a1ϑ
R
1

βR 1� ω1ð Þ

� 	

þ α2
θα2 þ a1ϑ

F
1

βF 1� ω2ð Þ

� 	

þ β1
1� θð Þβ1 þ a2ϑ

R
2

~β
R

 ! 

(45)
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þβ2
1� θð Þβ2 þ a2ϑ

F
2

~β
F

 !

þ Γþ δð ÞKÞ
!

� 1

2
βR 1� ω1ð Þ θα1 þ a1ϑ

R
1

βR 1� ω1ð Þ

� 	2

� 1

2
βF 1� ω2ð Þ θα2 þ a1ϑ

F
1

βF 1� ω2ð Þ

� 	2

� ξKa1

þ ϑR1 θα1 þ a1ϑ
R
1

� �

βR 1� ω1ð Þ
þ ϑF1 θα2 þ a1ϑ

F
1

� �

βF 1� ω2ð Þ

" #

a1

þ ϑR2 1� θð Þβ1 þ a2ϑ
R
2

� �

~β
R

þ ϑF2 1� θð Þβ2 þ a2ϑ
F
2

� �

~β
F

" #

a1,

(46)

and simplifying (Eq. (40)), obtain:

ρ2V
IIð Þ
S Kð Þ ¼ 1� θð Þ α1 θα1 þ a1ϑ

R
1

� �

βR 1� ω1ð Þ
þ α2 θα2 þ a1ϑ

F
1

� �

βF 1� ω2ð Þ
þ β1

1� θð Þβ1 þ a2ϑ
R
2

~β
R

 ! 

þβ2
1� θð Þβ2 þ a2ϑ

F
2

~β
F

 !

þ Γþ δð ÞK
!

� 1

2
~β
R 1� θð Þβ1 þ a2ϑ

R
2

~β
R

 !2

� 1

2
~β
F 1� θð Þβ2 þ a2ϑ

F
2

~β
F

 !2

� 1

2
ω1β

R θα1 þ a1ϑ
R
1

βR 1� ω1ð Þ

� 	2

� 1

2
ω2β

F θα2 þ a1ϑ
F
1

βF 1� ω2ð Þ

� 	2

þ ϑR1 θα1 þ a1ϑ
R
1

� �

βR 1� ω1ð Þ
þ ϑF1 θα2 þ a1ϑ

F
1

� �

βF 1� ω2ð Þ

" #

a2 � ξKa2

þ ϑR2 1� θð Þβ1 þ a2ϑ
R
2

� �

~β
R

þ ϑF2 1� θð Þβ2 þ a2ϑ
F
2

� �

~β
F

" #

a2:

(47)

This implies that,

a1 ¼
θ Γþ δð Þ
ρ1 þ ξð Þ , b1 ¼

Φ1

ρ1
, a2 ¼

1� θð Þ Γþ δð Þ
ρ2 þ ξð Þ , b2 ¼

Φ2

ρ2
, (48)

where

Φ1 ¼ α1θ �
θα1 þ a1ϑ

R
1

� �

2
þ ϑR1 a1

 !

θα1 þ a1ϑ
R
1

βR 1� ω1ð Þ

� 	

þ α2θ �
θα2 þ a1ϑ

F
1

� �

2
þ ϑF1a1

 !

θα2 þ a1ϑ
F
1

βF 1� ω2ð Þ

� 	

þ β1θ þ ϑR2a1
� � 1� θð Þβ1 þ a2ϑ

R
2

~β
R

 !

þ β2θ þ ϑF2a2
� � 1� θð Þβ2 þ a2ϑ

F
2

~β
F

 !

>0,

(49)
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and

Φ2 ¼ 1� θð Þα1 �
ω1 θα1 þ a1ϑ

R
1

� �

2 1� ω1ð Þ þ ϑR1 a2

 !

θα1 þ a1ϑ
R
1

� �

βR 1� ω1ð Þ

þ 1� θð Þα2 �
ω2 θα2 þ a1ϑ

F
1

� �

2 1� ω2ð Þ þ ϑF1a2

 !

θα2 þ a1ϑ
F
1

� �

βF 1� ω2ð Þ

þ 1� θð Þβ1 �
1� θð Þβ1 þ a2ϑ

R
2

� �

2
þ ϑR2a2

 !

1� θð Þβ1 þ a2ϑ
R
2

~β
R

 !

þ 1� θð Þβ2 �
1� θð Þβ2 þ a2ϑ

F
2

� �

2
þ ϑF2a2

 !

1� θð Þβ2 þ a2ϑ
F
2

~β
F

 !

>0:

(50)

Substituting the results of a1 and a2 into Eqs. (37), (38), (41) and (42), and
simplifying, we obtain the optimal effort level of hybrid-enabling technological
improvements. By substituting optimal values given in Eqs. (48)–(50) into
Eqs. (46) and (47) obtain the optimal sharing payoff functions under hybrid-
enabling technology on renewable sources and fossil fuel for Player I and Player II.

3.1 The limit of expectation and variance

The payoff of Player I and Player II, under the Stackelberg game paradigm is
related to the improvement degree of hybrid-enabling technology via Proposition 4.
To analyze the limit of expectations and variance under Stackelberg game equilib-
rium rewrite (Eq. (19)) as follows.

dK tð Þ ¼ μ1 þ μ2 � ξK tð Þ½ �dtþ φ
ffiffiffiffi

K
p

dW tð Þ
K 0ð Þ ¼ K0 >0,

(

(51)

where

μ1 ¼ ϑ1
α1 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑR1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ

2βR ρ2 þ ξð Þ ρ1 þ ξð Þ

�

þα2 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑF1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ
2βF ρ2 þ ξð Þ ρ1 þ ξð Þ

�

, (52)

and

μ2 ¼ ϑ2
1� θð Þ β1 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑR2

~β
R
ρ2 þ ξð Þ

þ 1� θð Þ β2 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑF2
~β
F
ρ2 þ ξð Þ

#

:

"

(53)

Proposition 6. The limit of expectation E K tð Þð Þ, and variance D K tð Þð Þ in the
Stackelberg game feedback equilibrium must satisfy

E K tð Þð Þ ¼ μ1 þ μ2

ξ
þ e�ξt ~K0 �

μ1 þ μ2

ξ

� 	

, lim
t!∞

E K tð Þð Þ ¼ μ1 þ μ2

ξ
: (54)
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D K tð Þð Þ ¼ φ2 μ1 þ μ2ð Þ � 2 μ1 þ μ2 � ξ~K0

� �

e�ξt þ μ1 þ μ2 � 2ξ~K0

� �

e�2ξt
� �

2ξ2
(55)

lim
t!∞

D E K tð Þð Þð Þ ¼ φ2 μ1 þ μ2ð Þ
2ξ2

, (56)

Proof. Applying Itô’s lemma to (Eq. (51)), obtain:

d K tð Þð Þ2 ¼ 2 μ1 þ μ2 þ φ2ð ÞK � 2ξK2
� �

dtþ 2φK
ffiffiffiffi

K
p

dW tð Þ
K 0ð Þð Þ2 ¼ ~K

2

0 >0:

(

(57)

Then E K tð Þð Þ and E K tð Þð Þ2 can be defined as:

dE K tð Þð Þ ¼ μ1 þ μ2 � ξK tð Þ½ �dt
K 0ð Þ ¼ K0 >0:

�

(58)

dE K tð Þð Þ2 ¼ 2 μ1 þ μ2 þ φ2ð ÞK½ �E Kð Þ � 2ξE K2
� �� �

dt

K 0ð Þð Þ2 ¼ K2
0 >0,

(

(59)

Solving the above non-homogeneous linear differential equation, will obtain the
results.

4. Nash non cooperative game

Under Nash-non-cooperative game setting, Player I and Player II simultaneously
and independently choose their optimal efforts levels of heterogeneous hybrid-
enabling technology sharing concept to maximize their profits.

Proposition 7. If above conditions are satisfied, the feedback non-cooperative game
Nash equilibria will be:

LR
N ¼ θ α1 ρ1 þ ξð Þ þ Γþ δð Þ½ �

βR ρ1 þ ξð Þ
,LF

N ¼ θ α2 ρ1 þ ξð Þ þ Γþ δð Þ½ �
βF ρ1 þ ξð Þ

: (60)

~L
R

N ¼ 1� θð Þ β1 ρ2 þ ξð Þ þ Γþ δð Þ½ �
~β
R
ρ2 þ ξð Þ

, ~L
F

N ¼ 1� θð Þ β2 ρ2 þ ξð Þ þ Γþ δð Þ½ �
~β
F
ρ2 þ ξð Þ

, (61)

where LR
N,L

F
N are the optimal level of hybrid-enabling technological advantage

on renewable sources and on fossil fuel at time t for Player I, respectively. ~L
R

N,
~L
F

N

are the optimal level of hybrid-enabling technological advantage on fossil fuel and
on renewable sources at time t for Player II, respectively.

The optimal sharing payoff functions under hybrid-enabling technology on renewable
sources and on fossil fuel for Player I and Player II are given below

V
Ið Þ
N Kð Þ ¼ θ Γþ δÞ

� �

ρ1 þ ξð Þ K þ b̂1, V
IIð Þ
N Kð Þ ¼ 1� θð Þ Γþ δð Þ

ρ2 þ ξð Þ K þ b̂2, (62)

where b̂1 and b̂2 are given in the proof.
Proof. See Appendix A.
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4.1 The limit of expectation and variance

Proposition 8. The limit of expectation E K tð Þð Þ and variance D K tð Þð Þ in the Nash
non-cooperative game feedback equilibrium must satisfy

E K tð Þð Þ ¼ μ̂1 þ μ̂2

ξ
þ e�ξt K̂0 �

μ̂1 þ μ̂2

ξ

� 	

, lim
t!∞

E K tð Þð Þ ¼ μ̂1 þ μ̂2

ξ
: (63)

D K tð Þð Þ ¼ φ2
~μ1 þ ~μ2ð Þ � 2 ~μ1 þ ~μ2 � ξ~K0

� �

e�ξt þ ~μ1 þ ~μ2 � 2ξ~K0

� �

e�2ξt
� �

2ξ2
(64)

lim
t!∞

D E K tð Þð Þð Þ ¼ φ2
~μ1 þ ~μ2ð Þ
2ξ2

: (65)

where ~μ1 ¼ θβF α1 ρ1þξð Þþ Γþδð Þ½ �þθβR α2 ρ1þξð Þþ Γþδð Þ½ �
βRβF ρ1þξð Þ and

~μ2 ¼ 1�θð ÞβF β1 ρ2þξð Þþ Γþδð Þ½ �þ 1�θð ÞβR β2 ρ2þξð Þþ Γþδð Þ½ �
βRβF ρ2þξð Þ :

Poof of Proposition 8 is like the derivation of Proposition 6.

5. Cooperative game

Under cooperative game paradigm, Player I and Player II will choose to collabo-
rate/share their hybrid-enabling technology development knowledge while sharing
the payoff function in order to maximize their total payoffs. As a result, hybrid-
enabling technology can be improved through this effort as well.

Proposition 9. If above conditions are satisfied, then the feedback cooperative equi-
libria are defined as

LR
c ¼ α1 þ β1ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ

ρþ ξð ÞβR
, LF

c ¼ α2 þ β2ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβF

,

(66)

and the optimal cooperative payoff function under hybrid-enabling technology

on renewable sources and on fossil fuel, respectively. Vc Kð Þ ¼ Γþδð Þ
ρþξð ÞK þ b:

where b, is given in the proof.
Proof. The objective function (optimal sharing payoff function) satisfies the

following equation.

J K0ð Þ ¼ max
LR
c ,L

R
cf g0

E

ð

∞

0
e�ρt α1L

R
c tð Þ þ α2L

F
c þ β1

~L
R

c þ β2
~L
F

c þ Γþ δð ÞKÞ
�h

�

(67)

Then the optimal revenue sharing function satisfies the following HJB equation

ρVc Kð Þ ¼ max
LR
c ,L

F
cf g≥0

α1L
R
c tð Þ þ α2L

F
c þ β1

~L
R

c þ β2
~L
F

c þ Γþ δð ÞKÞ
h in

� 1

2
βR LR

c

� �2 � 1

2
βF LF

c

� �2

þ ∂Vc Kð Þ
∂K

ϑ1 LR
c ,L

F
c

� �

þ ϑ2 ~L
R

c ,
~L
F

c

� �

� ξK
h i

þ 1

2

∂
2Vc Kð Þ
∂K2 φ2 Kð Þ

�

(68)
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Via the first order conditions, now obtain the optimal values LR
c ,L

F
c

� �

as:

LR
c ¼ α1 þ β1ð Þ þ V 0

c Kð Þ ϑ1 þ ϑ2ð Þ
βR

, (69)

LF
c ¼ α2 þ β2ð Þ þ V 0

c Kð Þ ϑ1 þ ϑ2ð Þ
βF

: (70)

Substituting the results of Eqs. (69) and (70), obtain

ρVc Kð Þ ¼ max
LR
c ,L

F
cf g≥0

α1 þ β1ð Þ α1 þ β1ð Þ þ V 0
c Kð Þ ϑ1 þ ϑ2ð Þ

βR

� 	�

þ α2 þ β2ð Þ α2 þ β2ð Þ þ V 0
c Kð Þ ϑ1 þ ϑ2ð Þ

βF

� 	

� 1

2
βR

α1 þ β1ð Þ þ V 0
c Kð Þ ϑ1 þ ϑ2ð Þ

βR

� 	2

� 1

2
βF

α2 þ β2ð Þ þ V 0
c Kð Þ ϑ1 þ ϑ2ð Þ

βF

� 	2

� ∂Vc Kð Þ
∂K

ξK

þ ∂Vc Kð Þ
∂K

ϑ1 þ ϑ2ð Þ α1 þ β1ð Þ þ V 0
c Kð Þ ϑ1 þ ϑ2ð Þ

βR

� 	�

(71)

Hence, the solution of the HJB equation is an unary function with K, Vc ¼
aK þ b, where a and b are constant that need to be solved. This implies that

a ¼ Γþ δð Þ
ρþ ξð Þ : (72)

b ¼ α1 þ β1ð Þ � α1 þ β1ð Þ þ a ϑ1 þ ϑ2ð Þð Þ
2

þ ϑ1 þ ϑ2ð Þa
� 	

α1 þ β1ð Þ þ a ϑ1 þ ϑ2ð Þ
βR

� 	

þ α2 þ β2ð Þ � α2 þ β2ð Þ þ a ϑ1 þ ϑ2ð Þð Þ
2

þ ϑ1 þ ϑ2ð Þa
� 	

α2 þ β2ð Þ þ a ϑ1 þ ϑ2ð Þ
βF

� 	

>0:

(73)

Substituting the results of Eqs. (72) and (73), into Vc ¼ aK þ b, will obtain the
results.

5.1 The limit of expectation and variance

Proposition 10. The limit of expectation and variance in cooperative game
feedback equilibrium satisfy

E K tð Þð Þ ¼ μ1 þ μ2

ξ
þ e�ξt ~K0 �

μ1 þ μ2

ξ

� 	

, lim
t!∞

E K tð Þð Þ ¼ μ1 þ μ2

ξ
: (74)

D K tð Þð Þ ¼ φ2 μ1 þ μ2ð Þ � 2 μ1 þ μ2 � ξK0ð Þe�ξt þ μ1 þ μ2 � 2ξK0ð Þe�2ξt
� �

2ξ2
(75)

lim
t!∞

D E K tð Þð Þð Þ ¼ φ2 μ1 þ μ2ð Þ
2ξ2

, (76)

where μ1 ¼ α1þβ1ð Þ ρþξð Þþ Γþδð Þ ϑ1þϑ2ð Þ
ρþξð Þ and μ2 ¼ α2þβ2ð Þ ρþξð Þþ Γþδð Þ ϑ1þϑ2ð Þ

ρþξð Þ :

Proof. Poof of Proposition 10 is like the derivation of Propositions 6 and 8.
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6. Comparative analysis of equilibrium results

Proposition 11. The outcome of the game depends on the parameters of the game and
the type of the equilibrium one considers.

Proof. (i) Player I, will participate in a Stackelberg game to share more hybrid-
enabling technology under the condition that Player II pay much more extra cost for
hybrid-enabling technology

α1 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑR1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ
2βR ρ2 þ ξð Þ ρ1 þ ξð Þ

(77)

� 1� θð Þ β1 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑR2
~β
R
ρ2 þ ξð Þ

>0,

and

α2 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑF1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ
2βF ρ2 þ ξð Þ ρ1 þ ξð Þ

(78)

� 1� θð Þ β2 ρ2 þ ξð Þ þ Γþ δð Þð ÞϑF2
~β
F
ρ2 þ ξð Þ

>0:

(ii) Player I will prefer to participate in a cooperative game over a non-
cooperative game with Player II under the condition such that

α1 þ β1ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβR

� θ α1 ρ1 þ ξð Þ þ Γþ δð Þ½ �
βR ρ1 þ ξð Þ

>0, (79)

and

α2 þ β2ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβF

� θ α2 ρ1 þ ξð Þ þ Γþ δð Þ½ �
βF ρ1 þ ξð Þ

>0: (80)

(iii) The total payoff for Player I under a Stackelberg game exceeds the total payoff
of Nash non-cooperative game with Player II under the condition such that

α1 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑR1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ
2βR ρ2 þ ξð Þ ρ1 þ ξð Þ

(81)

� α1 þ β1ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβR

>0,

and

α2 2� θð Þ ρ2 þ ξð Þ ρ1 þ ξð Þ þ ϑF1 Γþ δð Þ 2� 2θð Þ ρ1 þ ξð Þ þ θ ρ2 þ ξð Þð Þ
2βF ρ2 þ ξð Þ ρ1 þ ξð Þ

(82)

� α2 þ β2ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβF

>0:

(iv). Player II will prefer to participate in a cooperative game over a non-
cooperative game with Player I under the condition such that
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α1 þ β1ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβR

� 1� θð Þ β1 ρ2 þ ξð Þ þ Γþ δð Þ½ �
~β
R
ρ2 þ ξð Þ

>0, (83)

and

α2 þ β2ð Þ ρþ ξð Þ þ Γþ δð Þ ϑ1 þ ϑ2ð Þ
ρþ ξð ÞβF

� 1� θð Þ β2 ρ2 þ ξð Þ þ Γþ δð Þ½ �
~β
F
ρ2 þ ξð Þ

>0: (84)

Proposition 12. For any K ≥ 0, under the condition that Player II pay an extra cost
for sharing hybrid-enabling technology. Then the optimal sharing payoff of hybrid-
enabling technology of Player I reaches higher than the optimal sharing payoff under the

condition that player II does not provide extra cost. This implies that V
Ið Þ
S Kð Þ≥V

Ið Þ
N Kð Þ.

Similarly, the optimal sharing payoff of hybrid-enabling technology of Player II reaches
higher than the optimal sharing payoff under the condition that Player II do not provide

extra cost, such that V
IIð Þ
S Kð Þ≥V

IIð Þ
N Kð Þ:

Proof. When 0≤ θ≤ 2
3, establish that

ΔV Ið Þ Kð Þ ¼ V
Ið Þ
S Kð Þ � V

Ið Þ
N Kð Þ ¼ θ Γþ δð Þ

ρ1 þ ξð Þ K þ b1 �
θ Γþ δð Þ
ρ1 þ ξð Þ K þ b̂1

¼ b1 � b̂1 >0,

(85)

and

ΔV IIð Þ Kð Þ ¼ V
IIð Þ
S Kð Þ � V

IIð Þ
N Kð Þ ¼ 1� θð Þ Γþ δÞ

� �

ρ1 þ ξð Þ K þ b2 �
1� θð Þ Γþ δð Þ

ρ1 þ ξð Þ K þ b̂2

¼ b2 � b̂2 >0:

(86)

7. Concluding remarks

In this chapter a complete study of an energy market by considering a Bertrand
duopoly game with two power plants using endogenous hybrid-enabling technology
was presented. Numerous game paradigms were articulated and defined including
Stackelberg, Nash non-cooperative and cooperative games as well as their relevant
equilibria via a feedback control strategy. Mathematically, the necessary conditions
under which a power plant will move from taking part in a non-cooperative Nash
game to participate as a leader in a Stackelberg game was derived. In doing so,
this model allowed us to quantify the optimal level of subsidy for sharing the
hybrid-enabling technology. We then adopted the concept of limit expectation and
variance of the improvement degree to identify the influence of random factors of
external environment and limitations of the decision maker. It is found that for a
given level of payoff distribution the Stackelberg equilibria with technological
enhancements, the knowledge sharing paradigm dominates the Nash equilibria.
In both Stackelberg and Nash games, optimal technological enhancements for
power plants were found to be proportional to the government subsidy, but the
variance improvement degree of the Stackelberg game differed to the results of the
Nash non-cooperative game due to the influence of random factors.
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Furthermore, we have shown that due to optimal price reaction functions being
upward sloping, the subsidy level plays a decisive role on the payoff function of
power plant II as the leader in a Stackelberg game. This model shows that cost
reducing R&D investments with efficient hybrid-enabling technology innovation/s
strengthens one’s competitive bargaining position via the level of subsidy for Power
Plant I to become a follower in the Stackelberg game. By analyzing this stochastic
differential game model, we capture the government subsidy incentive as well as
the subsidy that the leader (Power Plant II) pays the follower (Power Plant I) to
share hybrid-enabling technology.

The proposed quantitative framework could assist policymakers when deter-
mining the appropriate R&D incentives for the development of hybrid-enabling
technology within the energy market to achieve desired short and long-term envi-
ronmental objectives with respect to budget limitations and environmental consid-
erations.

A. Appendix

Proof. The optimal profit function for power plant I satisfies the following HJB

equation such that V Ið Þ
N Kð Þ:

ρ1V
Ið Þ
N Kð Þ ¼ max

LR
N ,L

F
Nf g≥0

θ α1L
R
N tð Þ þ α2L

F
N þ β1

~L
R

N þ β2
~L
F

N þ Γþ δð ÞKÞ
�h in

� 1

2
βR LR

N

� �2 � 1

2
βF LF

N

� �2

þ ∂V
Ið Þ
N Kð Þ
∂K

ϑ1 LR
N,L

F
N

� �

þ ϑ2 ~L
R

N,
~L
F

N

� �

� ξK
h i

þ 1

2

∂
2V

Ið Þ
N Kð Þ
∂K2 φ2 Kð Þ

)

(A.1)

Via the first order conditions, first obtain the optimal values LR
N,L

R
Ið Þ

� �

for

power plant I as:

LR
N ¼ θα1 þ V 0 Ið Þ

N Kð ÞϑR1
βR

¼ θα1 þ a1ϑ
R
1

βR
, (A.2)

LF
N ¼ θα2 þ V 0 Ið Þ

N Kð ÞϑF1
βF

¼ θα2 þ a1ϑ
F
1

βF
(A.3)

where
∂V

Ið Þ
N

Kð Þ
∂K � V 0 Ið Þ

N Kð Þ: The HJB for power plant (II), using
∂V

IIð Þ
N

Kð Þ
∂K ¼ V 0 IIð Þ

N Kð Þ,
then obtain

ρ2V
IIð Þ
N Kð Þ ¼ max

~L
R

N ,
~L
F

N

 �

1� θð Þ α1L
R
N tð Þ þ α2L

F
N þ β1

~L
R

N þ β2
~L
F

N þ Γþ δð ÞKÞ
�h in

� 1

2
~β
R

~L
R

N

� �2
� 1

2
~β
F

~L
F

N

� �2

þ ∂V
Ið Þ
N Kð Þ
∂K

ϑ1 LR
N,L

F
N

� �

þ ϑ2 ~L
R

N,
~L
F

N

� �

� ξK
h i

þ 1

2

∂
2V

Ið Þ
N Kð Þ
∂K2 φ2 Kð Þ

)

:

(A.4)

Substituting Eqs. (A.2) and (A.3) results to Eq. (A.4) and via the first order

conditions, we obtain the optimal values ~L
R

N,
~L
F

N

� �

for power plant II as:
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~L
R

N ¼ 1� θð Þβ1 þ V 0 IIð Þ
N Kð ÞϑR2

~β
R

¼ 1� θð Þβ1 þ a2ϑ
R
2

~β
R

, (A.5)

~L
F

N ¼ 1� θð Þβ2 þ V 0 IIð Þ
N Kð ÞϑF2

~β
F

¼ 1� θð Þβ2 þ a2ϑ
F
2

~β
F

: (A.6)

Hence, the solution of the HJB equation is an unary function with K, such that

V
Ið Þ
N ¼ â1K þ b̂1, V

IIð Þ
N ¼ â2K þ b̂2. Hence, finally â1, b̂1, â2, and b̂2 as:

â1 ¼
θ Γþ δð Þ
ρ1 þ ξð Þ , b̂1 ¼

Φ̂1

ρ1
, â2 ¼

1� θð Þ Γþ δð Þ
ρ2 þ ξð Þ , b̂2 ¼

Φ̂2

ρ2
, (A.7)

where

Φ̂1 ¼ α1θ �
θα1 þ a1ϑ

R
1

� �

2
þ ϑR1 a1

 !

θα1 þ a1ϑ
R
1

βR

� 	

þ α2θ �
θα2 þ a1ϑ

F
1

� �

2
þ ϑF1a1

 !

θα2 þ a1ϑ
F
1

βF 1� ω2ð Þ

� 	

þ β1θ þ ϑR2a1
� � 1� θð Þβ1 þ a2ϑ

R
2

~β
R

 !

þ β2θ þ ϑF2a1
� � 1� θð Þβ2 þ a2ϑ

F
2

~β
F

 !

>0:

(A.8)

and

Φ̂2 ¼ 1� θð Þα1 þ ϑR1 a2
� � θα1 þ a1ϑ

R
1

� �

βR 1� ω1ð Þ

þ 1� θð Þα2 þ ϑF1a2
� � θα2 þ a1ϑ

F
1

� �

βF 1� ω2ð Þ

þ 1� θð Þβ1 �
1� θð Þβ1 þ a2ϑ

R
2

� �

2
þ ϑR2a2

 !

1� θð Þβ1 þ a2ϑ
R
2

~β
R

 !

þ 1� θð Þβ2 �
1� θð Þβ2 þ a2ϑ

F
2

� �

2
þ ϑF2a2

 !

1� θð Þβ2 þ a2ϑ
F
2

~β
F

 !

>0:

(A.9)

Substituting a1&a2 into Eqs. (A.2), (A.3), (A.5) and (A.6) and simplifying,
obtain the optima effort level of technological improvements. By substituting the
above results into Eqs. (A.1) and (A.4) we obtain the optimal sharing payoff
functions, for power plant (I) and power plant (II).
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