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Chapter

Spatial Visualization of 
Geochemical Data: Application to 
the Chichinautzin Volcanic Field, 
Mexico
Philippe Robidoux, Julie Roberge and César Adams

Abstract

The presence of spatial magma heterogeneities in volcanic monogenetic fields 
is a major observation discussed as well synthesized for worldwide volcanic fields. 
Magma heterogeneities still have not been visualized in the form of detailed spatial 
analyst tools, which could further help structuring works of geological mapping, 
volcanic hazard, and geoheritage evaluations. Here we synthetized 32 published 
datasets with a novel geochemical mapping model inspired by sub-disciplines 
of geomatic in one of the most documented monogenetic fields on earth: the 
Chichinautzin Volcanic Field (CVF) in Mexico. The volcanic units from CVF are 
covering the 2500 km2 area, and its neighbor stratovolcanoes are bordering the 
limit of most volcanic centers (Popocatepetl, Iztaccihuatl, and Nevado de Toluca). 
The results illustrate polygons and point map symbols from geochemical markers 
such as Alkalis vs SiO2, Sr/Y, and Ba/Nb. The geochemical heterogeneity of the 
CVF monogenetic bodies decreases as it approaches the Popocatepetl-Iztaccihuatl 
stratovolcanoes. This alignment is not observed in the occidental CVF portion near 
the flank of Nevado de Toluca, but geochemical anomalies associated to markers 
of continental crust interaction such as Sr/Y follow elongated patterns that are not 
strictly following structural lines and faults mapped on surface.

Keywords: monogenetic, spatial interpolation, trans-Mexican Volcanic Belt, 
geochemistry, Chichinautzin

1. Introduction

The presence of volcanic centers clustered in a monogenetic field involves pos-
sible control from the feeding plumbing system architecture. The range of chemical 
composition (i.e. major elements abundances such as SiO2 contents, trace elements, 
etc.) from the effusive as explosive volcanic rocks also lead to various interrogations 
regarding origin of the magma that circulate in the lithosphere below monogenetic 
volcanic fields. Most of all, the presence of spatial magma heterogeneities is a major 
observation discussed and synthesized for volcanic fields in subduction zones [1–3]. 
Visualization tools are required to facilitate these observations and analyses for under-
standing the building of minor volcanic centers as defining the origin of the magma in 
monogenetic fields.
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The Chichinautzin Volcanic Field (CVF) in the center of the Trans-Mexican 
Volcanic Belt (TMVB) represents the ideal study case to improve observations and 
simplify visualization of spatial heterogeneities among a volcanic field. The high 
sampling density of volcanic rock samples in CVF literally favor the area for such 
studies. Building a spatial visualization model becomes necessary regarding natural 
hazards because of CVF vicinity to the greater Mexico city, globally one of the most 
populated urban area.

A novel spatial model and geomatic tool are thus presented here to illustrate the 
geochemical dispersion from sampled volcanic rocks. This spatial model is simple 
and involves high precision for object localization on a map. Geochemical markers 
(geomarkers) related to classic igneous petrological analyst tools now are given 
quantitative symbols and projected on a digital elevation model (DEM) back-
ground. Point symbols and polygons that mark specific ranges of values from the 
geomarkers show clear spatial magma heterogeneities that can be interpreted and 
used in various disciplines of geosciences.

1.1 Chichinautzin volcanic field

The Chichinautzin Volcanic Field (CVF) in the center of the Trans-Mexican 
Volcanic Belt (TMVB) is a key zone to understand recent monogenetic magmatism 
in a subduction zone. The volcanism of CVF and seismic activity underneath is 
rift-related and is also affected by the subduction of the Cocos plate under North 
American plate [4–9]. The age of volcanism is relatively young; geochronologi-
cal 14C data, paleomagnetic measurements and the 40Ar/39Ar method applied on 
volcanic rocks give ages that goes up to 1200 ka [10–12]. The youngest eruption is 
the Xitle scoria cone around 1665±35 years b.p., whose lavas destroyed and buried 
the pre-Hispanic settlement of Cuicuilco [13].

The question of where volcanism occur is particularly of interest for geologists 
since around the populated valley of the greater city of Mexico, the CVF includes 
more than 220 quaternary cinder cones and few shield volcanoes, with their associ-
ated lava flows and tephra sequences (Figure 1a, b). In addition, the region is still 
“geologically active”; the volcanic structures tend to be aligned on E-W normal faults 
[14] with stratovolcanoes (Popocatépetl-Iztaccihuatl and Toluca) occurring at the 
intersection of N-S and E-W faults [16, 18]. The source of magmatic and seismic 
activity is also of concern [19], beneath all CVF, the inferred depth of the slab 
interface is changing between 80 km and drastically to levels far deeper than 100 km 
[8, 20]. The crustal thickness beneath the CVF is ~40 to 50 km which is the greatest 
in the TMVB [8, 9].

Noteworthy in the field of geochemistry, [14] mentioned a spatial variation from 
the composition of volcanic rocks and schematic sections were proposed to show 
where are the different kind of magmas in CVF [15, 21]. Overall, there have been 
lots of work done in the CVF relating its heterogeneity, and with the rapid develop-
ment of analytical techniques in geochemistry, a new data compilation was needed 
after [22].

The geochemistry of the volcanic products in the CVF is characterized by 
basaltic andesite to dacitic rocks with alkaline to calc-alkaline affinities [9, 23]. The 
majority are subalkaline, except for the most mafic samples (ex: Chichinautzin and 
Guespalapa) which are transitional and plot in the alkaline field [14]. Mafic melt 
compositions (basalt, basaltic andesites) are found in olivine phenocrysts holding 
glass inclusions of ~49 to <54 wt.% SiO2 (i.e. see Xitle, [24] and Pelagatos, [25]).

Since the first proposed petrogenetic explanation from Gunn and Mooser works 
(1970s), the origin of magmas heterogeneities in the CVF is still debated. Two 
different types of mantle-derived primitive mafic magmas have been suggested for 
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CVF based on Sr-Nd isotopes, trace elements and mineralogical features [15, 26]. 
The first type is an OIB-like mafic magma, and is characterized as anhydrous  
[6, 9, 15, 23, 27–29]. The second type is associated to a metasomatized mantle 
source, with incompatible elements of a depleted mantle source, but enriched in 
mobile elements that are possibly coming from the subducting slab [6, 9, 23, 29].

1.2 Method

A database of whole rock composition was produced by the compilation 
of geochemical data from 583 samples of volcanic materials within the CVF 
(Appendices). A total of 32 references was used containing whole rock data (major 
and trace elements from (A) Scoria cones in the Chichinautzin Volcanic Field 
(sample of lava, bomb and scoria), (B) Iztaccihuatl, (C) Popocatepetl, (D) Nevado 
de Toluca. In the case of stratovolcanoes (B-C-D), only were considered juvenile 
samples of pyroclast, pumice or a dome fragment.

1.2.1 Geomarkers defined

Pairs of geochemical elements from whole rock analysis and representing high 
density sampling area were chosen based on their petrogenetic significance. All 
referenced data from the geochemical dataset of CVF were given latitude and 
longitude coordinates (Appendices I, II), then a spatial attribute is automatically 
associated when the tables are uploaded in a Geographic Information System (GIS). 
This database was projected with ArcGIS software [30] to detect any spatial trend. 

Figure 1. 
Area of study (map modified from the following authors; [13–15]) including the Chichinautzin volcanic field 
(CVF) (shaded polygon), well known monogenetic volcanic centers (small solid triangles), stratovolcanoes 
(big solid triangles), the urban areas (gray limits), and tectonic features from [16] (large lines). A digital 
elevation model (DEM) was built to represent the topography with a 30 meter-resolution. The digital elevation 
model (DEM) was built in ArcGIS to represent the topography with 30 meters resolution (access from INEGI, 
[17]). The smaller map represents the tectonic context of the trans-Mexican volcanic fault (TMVB) and 
Chichinautzin volcanic field (CVF) emplacement (map modified from [14, 15]. The geological and geophysical 
features of the TMVB (shaded area), active volcanic centers (solid triangles), and major cities (full circles) and 
the CVF (shaded rectangle). Part labels “CVF” is for Chichinautzin Volcanic Field, “NT” is for Nevado de 
Toluca, “Po” is for Popocatepetl and “Iz” is for Iztaccihuatl.



Updates in Volcanology – Transdisciplinary Nature of Volcano Science

4

The compiled data come from 32 published works between 1948 and 2011 (See 
Appendix II for a list of the references used). Also, for comparison, data from the 
neighbor polygenetic volcanoes are included: Popocatepetl, Iztaccihuatl and Nevado 
de Toluca.

The systematic approach described above was possible to propose with a recom-
pilation and a methodical statistical investigation of geochemical tracers of petro-
genetic and tectonic processes. The statistic distribution of a single ratio is called a 
geochemical marker (geomarker).

In this review, 2 geomarkers were chosen based on the significance they represent 
in rock classification and petrogenesis. Two datasets of each geomarker were then 
created from the central geodatabase and plotted in the GIS map:

1. The alkali geomarker (464 datas) which represents the alkalinity of the rocks 
and may be indicative of assimilation from continental crust during forma-
tion of the magmas. The ratio is obtained by dividing alkalis over silica which 
transform the conventional bivariant graphic into a univariable value for map-
ping [31–33]. The Sr/Y geomarker (228 datas) is used to evaluate the signifi-
cance of the alkali geomarker. The alkalinity of the rocks has high probability 
to be associated to the systematic of crustal thickness when high values from 
Sr/Y point symbols match areas with strong alkalinity. Th Updates in Volcanol-
ogy – Transdisciplinary Nature of Volcano Science e equilibrium of plagioclase 
fractionating on Sr and both amphibole + garnet phases on Y is recognized to 
correlate with the variation of crust thickness in arc magmas [27].

2. The Ba/Nb geomarker (320 data) is used to geochemically characterize the 
tectonic environment. Ba is more soluble and mobile in subduction fluids [34]. 
Nb is considered immobile in subduction fluids, it is not added to the mantle 
asthenospheric wedge and the rising basaltic melts, because it remains in the 
metamorphic rocks of the subduction zone [35, 36]. High ratios of Ba/Nb are 
then suspected of magmas enriched in fluid coming from subduction.

1.2.2 Geostatistics to support spatial model

The method proposed in this work uses spatial interpolation models which require 
evaluation depending on the data dispersion of the samples and previous geostatistics 
made on the databases. The principle of interpolation in cartography is applied to 
improve visualization of regional patterns of a natural phenomenon and to generalize 
a numerical distribution in a certain region [37, 38]. The equations of such models can 
be consulted in [37, 38], and also searched in the GIS tutorials [30, 39].

Evaluations on previous interpolation approaches to CVF were resumed in [40]. 
Intercomparing of kriging, inverse distance weight (IDW) and Linear Decrease 
(LD) is necessary due to the difference of input parameters between each approach. 
Ordinary kriging is proposed here according to the high density of samples in several 
areas between Popocatepetl and Nevado de Toluca flanks, mostly between latitudes 
19°00′ and 19°20′ (Figure 1). As petrologists are interested by geological factors 
that influence the geomarkers at different scales [27, 34–36], the semi-variogram 
evaluation preceding the ordinary kriging becomes necessary to determine at what 
distance are the geochemical changes tendencies [40]. As a matter of fact, the 
common analyze of nugget, sill, and range for determining the spatial dependence 
of geochemistry is unique to this interpolation technique [37, 38]. If the preferential 
orientation of data positions in the map was constrained (i.e. anisotropy), the angle 
(in degrees) could be manipulated by specific kriging methods in several pieces of 
GIS software. In CVF, as seen in Figure 1, the large 2500 km2 area contains too many 
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sources of anisotropy, which lead to eliminate angles dependence along the input 
parameters.

1.2.3 Evaluation of the physical environment

The interpolation model is only applied for the monogenetic cones of the 
CVF, because the material dispersion is not the same for the eruption of stra-
tovolcanoes. A map with punctual representation of each calculated average 
composition at each volcanic emission center is compared with the original 
dataset (Figure 1) and used for the interpolation model. When the raster model 
is obtained for the alkalis and Ba/Nb geomarkers, four categories of raster values 
are associated to quartiles in four categories of colors used for the geomarkers 
of CVF and then transformed into polygon shapefiles. The mapped results of 
interpolation of CVF is sliced in the GIS with the same four quartile limits (the 
same colors) for each range of values.

As for other interpolation techniques, the limiting distance (Do) chosen for 
considering a maximum number of points is important [37, 38]. This is determined 
for modeling the distribution of rock geochemistry because it is setting a maxi-
mum distance of influence between different sampled sites. This limiting distance 
(Do), or technically called “search radius” use a weighting exponent adjusted to 
the influence of the distance between sample points. First, to provide estimated 
values at locations of interest and second, to generate values presenting the same 
dispersion characteristics as the original data [38].

To determine Do, the physical environment must be considered. In this study, a 
Do of 6000 m was used based on the maximum length of lava flows measured from 
76 cones in CVF, this is considering that effusive rocks are emitted at larger distance 
than ballistic projectiles from explosive eruptions. A 6000 m buffer area was thus 
drawn covering almost all the data on the map and tried to avoid isolated samples 
(sometimes outliers). The buffer separates the farthest sample on the map from this 
artificial boundary. The radius is especially useful for limiting the interpolation cal-
culation. In addition, by clipping for the same distance the resulting matrix image, 
a better design of the geomarker dispersion model is obtained. The drawing of the 
four polygons color categories is recommended to fit exactly with the four quantile 
categories that represent the range of pixel values.

1.2.4 Evaluation of spatial model

The datasets of alkalis and Ba/Nb are analyzed with spatial geostatistical tools, 
specifically the Moran’s Index (I) because of its simple interpretation for determin-
ing the level of spatial autocorrelation (Table 1). The spatial autocorrelation from 
such index measures dependence among nearby values in a spatial distribution 
[41]. It considers that variables may be correlated because they are affected by 
similar processes, or phenomena, that extend over a larger region [38, 41]. The 
index is the result of a specialized algorithm; it first takes into account the classes 
of distances created for point pairs that are more or less at the same distance to each 
other [30, 39].

For all point pairs within a distance group, the spatial autocorrelation index (I) 
is calculated and it can be summarized as follow [equation in ILWIS 3.7, 38]: strong 
positive autocorrelation (I > 0), strong negative autocorrelation (I < 0), or random 
distribution of values (I = 0).

Pattern characteristics of the data were also analyzed. The parameter Prob1Pnt 
was calculated using ILWIS 3.7. This calculates the probability that within a certain 
distance (column distance) of any point, at least one other point will be found, i.e. 
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the probability to find the nearest neighbor of any point list within this distance. It 
is a direct measure of dispersion and for the case of CVF, it indicates if the sampling 
area is well covered for the 220 identified volcanic centers (Table 1).

To evaluate “how good” is the model, cross validation calculation was used 
where the goal is to have the smallest root-mean-squared prediction errors 
[30, 38]. The cross-validation method is based on percent error or PE (%) 
and a RMSE (root mean square error). It is the mean of the squared difference 
between the observed value (Pi*) and the predicted value (Pi), where n is the 
number of observations.

1.3 Results

1.3.1 Alkali geomarker

The geochemistry diagram shows alkaline enrichment in the four groups and 
greater dispersion for CVF (Figure 2A). The alkalinity is stronger for the stratovol-
canoes and the rock names vary from basaltic trachy andesite to trachydacite. The 
CVF is classified between basaltic andesite to dacite. Iztaccihuatl have similar values 
from sample of East CVF or Valley of Puebla (same trend). The Nevado de Toluca 
has strong alkalis values (third and fourth quartiles).

As seen in Figure 2B, the total sample distribution is almost a Gaussian curve for 
all incorporated samples in the database. The Moran Index (Table 1) demonstrates 
data that are spatially clustered, but the distribution is not random. The study gives 
a probability pattern to find a first interpolation point for 8250 m.

From the semi-variogram evaluation on the model (Figure 2C), the determined 
range (first plateau) is given with the spherical function model at 13,000 m which 
indicates a smaller scale influence compare to the other ratios. It is interesting to see 
a maximum over ~20,050 m and for other distances (plateau at 39,500 m) which 
indicates different scale influence of the alkalinity.

High values (third and fourth quartiles) from the alkali geomarker as spatial 
dispersion are variable at large scale in general, from east to west in CVF (Figure 3). 
Large surface of high alkalinity and high Sr/Y ratios are found near the Sierra de Las 
Cruces (SDLC) and Nevado de Toluca, some others south of Valley of Puebla Scoria 
Cones and in the center of CVF. Regionalization of low values is found for large 
area in the center of CVF, but some low Sr/Y ratios do not match with high alkaline 
contents for Guespalapa, Chichinautzin, Herradura and Suchioc samples. The 
distribution of alkalinity follows elongated polygons over CVF (NE-SW and SE-NW 
tendencies), but small anomalies are also observed. Stratovolcanoes are represented 
by high values of Sr/Y among point symbols, but geostatistics show large ranges of 
alkalinity.

Spatial autocorrelation Alkalis Ba/Nb

Moran’s I index 0.42 0.48

Z score 2.81 3.02

Dispersion

Prob1Pnt (m) 8250 9500

Recall the legend for Moran I: Strong positive autocorrelation (I > 0), Strong negative autocorrelation (I < 0), 
Random distribution of values (I = 0).

Table 1. 
Results of parameters from spatial autocorrelation (Moran Index, Z Score) and dispersion functions 
(Prob1Pnt).
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Figure 2. 
(A) TAS diagram (alkali vs. silica) for all CVF data point. Data from Popocatepetl-Iztaccihuatl and Nevado 
de Toluca are also included for composition. (B) Distribution diagram of the alkali geomarker. The solid 
vertical lines are the four quantile limits (0.093, 0.097, 0.101, 0.148) with the second and fourth representing the 
median and the maximum and the dashed vertical line represents the average (x̄=0.097). (C) Semi-variogram 
for the alkali geomarker for all CVF data points.
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1.3.2 Ba/Nb geomarker

The geochemistry diagram, while in most cases there is no correlation with the 
large variation of Nb datas, Ba values generally are higher for CVF, but there are no 
positive-negative relationships with Nb (Figure 4A). CVF have widely scattered 
values, the Nb values of Popocatepetl and Iztaccihuatl are generally lowers, but 
Nevado de Toluca’s values are higher.

The total sample distribution appears as two Gaussian curves. Those curves 
represent two populations of data with distinct patterns and two central tendencies 
(Figure 4B). Since Ba is not variable inside each group, the distribution of the Ba/Nb 
ratio is controlled by Nb. From Moran Index, the data form clustered pattern with-
out a random distribution. The study gives a probability pattern to find an interpola-
tion point for 9500 m so the influence between each sample is less important than for 
alkalis. From the semi-variogram, the determined range is given at 14,500 m which 
indicates a larger scale influence compare to the other ratios. A maximum is present 
at ~38,000 m (Figure 4C).

On the map, there are important first order tendencies. The entire CVF is excep-
tionally low, but regionalized and high values are found around the stratovolcanoes 
where the Nb is the lowest (La Hoya, Loma Sacramento, Tenayo), but also through 
SDLC or near Nevado de Toluca. The geochemistry changes from east to west start-
ing from the Popocatepetl area (Figure 5). The polygons from the Ba/Nb spatial 
model are clearly elongated in a N-S direction.

1.4 Discussion

1.4.1 The visualization technique

The analysis of pattern (Table 1) showed that samples were grouped in disor-
dered cluster without random dispersion, reflecting the different field strategies 

Figure 3. 
Symbol map and spatial overlay results of ordinary kriging for alkalinity ratio. The point map symbol overlays 
represent center of emission and volcanic deposits with their respective average alkalinity. The color legend is 
from Sr/Y ratio separated with quartiles. The circle point symbols represent monogenetic cones, and the triangle 
point symbols represent important deposits emitted by the stratovolcanoes. The symbol codes in the legend 
attributed for the ratio alkali categories in the legend are built with quartiles.
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that influence the targeted investigated area of CVF. This dispersion diverges from 
systematic grids performed for small scales mineral exploration tactics or soil 
surveys [38].

Figure 4. 
(A) Ba vs. Nb diagram for all CVF data point. Data from Popocatepetl-Iztaccihuatl and Nevado de Toluca 
are also included for composition. (B) Distribution diagram of the Ba/Nb geomarker. The solid vertical lines 
are the four quartile limits (41.1, 74.0, 114.0, 1081.0) with the second representing the median, and the fourth 
quantile represents the maximum. The dashed vertical line represents the average (x̄=104.9). Circular box 
represents where are the monogenetic cones in the population, and the thin border rectangular box represents 
the stratovolcanoes. (C) Semi-variogram for the Ba/Nb geomarker for all CVF data points.
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The measure of dispersion gives values between 8250 and 12,900 meters and it 
is inversely proportional to the quantity of samples in each dataset. Despite those 
distances, the spatial dependence of the models varies between 13,000 and 18,000 
meters (Figure 2C, 4C; see semi-variogram evaluation). The changes of geochemistry 
are interpreted to occur for small distances between eruptive centers, but also for 
ranges over larger distances as it is shown for alkali, Sr/Y and Ba/Nb datasets. Finally, 
from observation of the point value symbol maps (Appendix I), despite of the rich 
geological knowledge and sampling works in CVF, the measure of dispersion allows 
to interpret an insufficient density of certain sampling area, particularly for monoge-
netic cones N-E of Xitle in urban sector, in the valley around Sta. Cruz volcano, and 
south of the CVF (forest).

The evaluation of rock chemistry affinity can be used to evaluate target for 
petrological investigation and resume spatial patterns as a clear idea of geochemical 
distribution of a monogenetic field. On the other hand, the presented methodology 
finds limitations for different reasons (we proposed four factors):

1. Detailed toponymic descriptions are furnished without coordinates of samples 
by some authors which complicate assigning geographical coordinates (Appendix 
II; the number of references being n = 15/32). This is in addition to the quantity 
of elements analyzed for geochemistry in certain sectors (different analytical 
instrument, necessity or not to use rare earth and trace elements) as the targeted 
material from the publication which involve for some authors to study different 
kinds of external and internal petrological processes.

2. Control of arbitrary parameters such as the search radius and weighting expo-
nent in the interpolation approach can be affecting the error and precision of the 
model [40]. The IDW and LD techniques are ideal in areas without anisotropy 
and where the quantity of point neighbors is not critical (i.e. constant in a struc-
tured sample grid [30, 37–39].

Figure 5. 
Symbol map and spatial overlay results of ordinary kriging for Ba/Nb ratio. The point map symbol overlays 
represent center of emission and volcanic deposits with their respective average Ba/Nb ratio. The circle point 
symbols represent monogenetic cones (n = 134), and the triangle point symbols represent important deposits 
emitted by the stratovolcanoes (n = 16). The color codes attributed for the ratio categories in the legend are the 
same for the point map symbol and surface layers.
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3. Sampling density and dispersion as determined with (I) find limitations from 
the physical environment (topography, vent locations reported in literature, 
nonpreferential flow orientation, etc.).

4. Strategical sampling affects the distribution of sampling site positions (i.e. 
various objectives of petrological sampling, sample distance to road of access, 
uncertainties of rock sample association to emitting vent, etc.).

1.4.2 Surface variation of the geochemistry

Trace element ratios Ba/Nb show first-order trends and one maximum in the 
semi-variograms for 38 km (Figures 2, 4). Spatial variations of trace element 
ratios are correlated for limits that correspond to larger distances. These changes of 
geochemistry are visible in a larger area and may be related to large-scale tectonic 
effects which may be associated to new input material from the subduction zone [3].

Alkalis shown on the maps has tendency of second order (for 13,000 m) and 
have different changes of spatial dependence for larger distances interpreted in the 
semi-variogram (Figures 2,4). These second plateau and maximum can also be 
interpreted as secondary large-scale tendencies. At local scale, it perfectly marks 
the regional heterogeneity known in the CVF, but larger scale effects also occur 
(i.e. For example Pelagatos and the center of the monogenetic field is clearly less 
evolved and less alkaline; see [25, 42, 43]).

The geochemistry of monogenetic cones satellites/boundaries of Popocatepetl, 
Iztaccihuatl: like the neighbor stratovolcanoes have volcanic arc affinity (high Ba/Nb), 
influence of crustal thickness (high Sr/Y) and constitute predominantly felsic rocks. 
Despite of this, alkalinity anomalies are observed, in some cases, few minor eruptive 
centers constitute low Sr/Y ratios, but high alkalinity (ex. Nealtica, Tetela), or even 
the contrary, high Sr/Y ratios, but low alkalinity (Cerro Xoyaca, Loma Tepenasco, La 
Joya next to Iztaccihuatl; [44]). Overall, the heterogeneity of the CVF monogenetic 
bodies decreases as it approaches the Popocatepetl-Iztaccihuatl stratovolcanoes. This 
distribution suggests the possibility that the CVF and the stratovolcanoes share the 
same mantle source which is a petrological evidence in literature [14, 44]. The contrast 
of Ba/Nb values between the stratovolcanoes and the center of CVF can be explained 
by different degrees of sediment contribution from the mantle [45], crustal assimila-
tion (i.e. on Sr and Y; [39]), but also fractional crystallization, all having effects on the 
content of Ba and Nb [36].

1.4.3 Spatial heterogeneities of magma source

The most remarkable observation in the spatial model is the similarity with the 
geomarkers to the east CVF and the Popocatepetl-Iztaccihuatl complex. This could 
imply that since Quaternary, the magma source of many monogenetic conduits east 
of CVF and minor eruptive vents find similar magmatic source/a common root in 
the mantle in the vicinity of the polygenetic edifices (ex. La Hoya, [44]).

At the eastern limit of the mapped faults in [10], a similar N-S trending corridor is 
observed with high Ba/Nb anomalies. This includes the Pelagatos volcano mafic rocks 
despite the intermediate alkalinity and Sr/Y ratios (Figures 3, 5). Such signatures 
are associated to enriched mantle in incompatible elements. No regional faults are 
reported, and neither are lacustrine sediment covers east of Pelagatos [11]. A clear 
lineation of scoria cones is observed as shown by the point map overlays (Figure 1; 
Appendices). A E-W large scale change of crustal thickness can explain the variation, 
but Sr/Y do not show this N-S systematic association nor gradual changes along the 
direction of the Cocos plate subduction under the continent [8, 20].
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A different dispersion pattern of the magma conduits could occur in this area 
due to complexity of cortical pathways for magma, but as the interpolation model 
and semi-variogram indicate (Figure 4C), individual plumbing systems of the 
monogenetic field must share a deep mantle source. Large-scale geochemical 
changes from all geomarkers do not correlate with the subducting slab geometry 
[8, 20, 34, 46], which point out that spatial heterogeneities of magma source rather 
increase where mantle interact with continental crust.

Monogenetic cones north and south of CVF are more mafic, less alkaline 
and many aligned scoria cones share the same rock composition (Figures 3, 5). 
Overall, monogenetic cones are spatially associated to E-W normal faults reported 
in the works of [16, 18] and recent mapping advances resumed in [10, 11]. Even 
though, no clear geochemistry (ex. Sr/Y) vs structural orientations associations 
are observed (Figure 1) contrary to some volcanic fields (minor eruptive centers 
along the Liquiñe-Ofqui Fault Zone, Southern Andes; [47, 48]). The normal 
fault systems in CVF also affect the crust below stratovolcanoes in addition to 
NE faults. This could imply to redirect orientations for magmas pathways and 
plumbing system depths. Thus, the extend of magma differentiation is variable 
and therefore the geochemistry of satellite monogenetic cones is modified to the 
polygenic edifices (i.e. Huililco monogenetic cones versus Llaima stratovolcano in 
Chile; [2]).

As for Nevado de Toluca, only Sta. Cruz and Tenango have remarkably similar 
trace element ratios (Figures 4, 5); Sr/Y as for Ba/Nb are associated to the high 
topography from SDLC. Overall, the western part of CVF constitutes spatial 
changes of geochemistry that vary over small areas. For example, near the flanks of 
the SDLC, rocks are more diverse in SiO2 contents, have higher alkalinity and local 
interpolations show high Ba/Nb ratios [subduction signature). Then, further west, 
the same high Ba/Nb tendency follows a N-S corridor (Texontepec to Tezontle).

Local anomalies are various west of CVF and Tenango lateral fault system. Many 
E-W structures [11] do not correlate with the orientation of elongated polygons 
of high alkalinity and neither do they follow regional tendencies of spatial Sr/Y 
distribution (Figure 3). A more complex structural system can explain this dif-
ference according to the maps published in [1, 10, 49], which may imply contrast-
ing basement lithologies (i.e. see [11, 50, 51]), crustal thickness or lithospheric 
fractures distinct in depth origin, movement and geometry in comparison to the 
Popocatepetl-Iztaccihuatl complex.

1.5 Conclusion

The geostatistic and geographical mapping model of volcanic bulk rock 
chemistry in the Chichinautzion Volcanic Field (CVF) served as a methodological 
approach. Improve the comprehension of the spatial distribution of the magma het-
erogeneities inside a typical monogenetic volcanic field. The major methodological 
outcomes and geological explanations for such geochemical variations are resumed 
as follows:

1. The method presented here showed incertitude particularly for interpreting 
alkalis and Sr/Y lineation on the final models (Figures 2, 3). Limitations were 
encountered for assigning geographical coordinates, to control arbitrary pa-
rameters for spatial interpolation, to integrate physical environment parameters 
and to consider all strategical sampling objectives that may influence sample 
rock positions cumulated since 1948. The Moran Index (I) and the parameter 
Prob1Pnt helped to determine sample dispersion, which become mandatory to 
determine if some sectors inside a monogenetic field as CVF should be pre-
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ferred for kriging, IDW or LD. It is consequently recommended to segment the 
area of study from monogenetic field and use the kriging method where a pref-
erential sample orientation for high sample density cover is observed (satellite 
cones on the same flank from a polygenetic system, unidirectional topographic 
gradient, sampling along a lava flow or a structural lineation). Sectors where 
sample orientation is random and distribution is homogeneous should consider 
the Inverse Distance Weight (IDW) and Linear Decrease (LD).

2. The tectonic significance of high Ba/Nb geomarker is particularly of interest to 
indicate contribution of fluids derived from the subducted plate. This occurs in 
addition to the highly depleted mantle signature in the region of stratovolcanoes 
[21, 28, 29, 44]. One consideration is the presence of such anomalies related 
to amphibole fractioning [7] and even garnet from a deep source (~400 km; 
[27]). Another consideration is that such magmas are deeply sourced where 
hydrated fluids are produced by a metasomatized mantle source (from the slab, 
for example supported by [23, 29]). Despite of this association, such anomalies 
are geographically restricted to polygenetic systems. In addition, the Sr/Y ratio 
or alkalis geomarkers as Ba/Nb itself do not correlate with literature observa-
tions of the continental thickness [10, 11, 16, 18] nor the contact geometry of the 
subducted slab vs. lower continental crust [8, 20, 46]. Consequently, below CVF, 
rather than the slab influence [45], it is suggested that the role of lithospheric 
mantle–crust interaction is crucial to modify geochemical signature on the mag-
mas feeding minor eruptive vents.

3. Shallow depth rigid continental crust (thickness and fractures) does not allow 
sufficient time and space for magmas to record subduction signature, there-
fore, the fast magma ascent feeding typical monogenetic systems do not easily 
record high Ba/Nb ratios [1]. In some cases, those magma could rather come 
from a fertile mantle, some with OIB signature, some hybrid depleted mantles 
[7, 9, 15, 21]. If this inference is correct, obstacles in the continental crust could 
be slowing down the frequent injection of new batches of magma feeding new 
minor eruptive vents around Iztaccihuatl-Popocatepetl, and Nevado de Toluca 
volcanic complexes. The plumbing system architecture of those stratovolca-
noes already channel volumetric magmas derivated from a contrasting mantle-
crust source.
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Appendices and nomenclature

Appendice I
Building the Geodatabase

Appendice II
Table of reference for samples used in the Geographic Information 
System (GIS)

Years Complete reference ME RETE Coord.

1948 Arellano, A.R.V., 1948. La composicion de las 

rocas volcanicas en la parte sur de la Cuenca 

de Mejico, Boletin de la Sociedad Geologica 

Mexicana, Tomo XIII, p.81-82, Cuadro 18

Yes No Description

1975 Whitford, D. J., Bloomfield K., 1975. 

Geochemistry of late Cenozoic volcanic rocks 

from the Nevado de Toluca area, Mexico, Year 

Book Carnegie Inst. Washington 75 [1975], p. 

207-213, #4571 in GERMS database

Yes Yes Description

1975 Bloomfield, K. 1975, A late-Quaternary 

monogenetic volcano field in central Mexico, 

Aufsatze,Geologische Rundschau, 64: 

p.476-499

Yes No Maps

1985 Carrasco-Núñez, G., 1985. Estudio geológico 

del Volcán Popocatépetl, BS thesis, México DF, 

Facultad de Ingeniería, Universidad Nacional 

Autónoma de México, 134p.

Yes No Description

Figure A1. 
Dispersion of the 583 samples in study (map modified from: Siebe et al., 2005; Siebe et al., 2004). The 
Chichinautzin Volcanic Field (CVF) is shown (shaded polygon) over the digital elevation model (DEM) from 
INEGI (2011). The big pale solid triangles represent the three well known stratovolcanoes and their associated 
samples (small solid black triangle). The small solid black circles represent the samples from the monogenetic 
cones of CVF.
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1987 Nixon, Graham T., 1987. Petrology of the 

Younger Andesites and Dacites of Iztaccihuatl 

Volcano, Mexico: I. Disequilibrium Phenocryst 

Assemblages as Indicators of Magma Chamber 

Process, Journal of Petrology, Vol. 29, Part 2, 

p. 213-368

Yes No Maps

1989 Pozzo, C. Ana Lillian Martin del Pozzo, 1989. 

Geoquimica y paleomagnetismo de la sierra 

Chichinautzin, Tesis que presenta la autor 

en cumplimiento parcial de los requisitos del 

grado Doctor en Ciencias (Geologia), Mexico 

-D.F., 148 p.

Yes Yes Maps

1989 Swinamer, Ralph Terrance, 1989. The 

Geomorphology, Petrography, Geochemistry 

and Petrogenesis of the Volcanic Rocks in 

the Sierra Del Chichinautzin, Mexico, tesis 

submitted to the Department of Geological 

Sciences, in conformity with the requirements 

for the degree of Master Science, p.212

Yes Yes Table

1995 Cervantes, P., 1995. Eventos volcanicos al sur 

de la Ciudad de Mexico, BS Thesis, México DF, 

Facultad de Ingeniería, Universidad Nacional 

Autónoma de México, 74p.

Yes Yes Description

1998 Arana Salinas, L., 1998. Geologia del volcan 

Pelado, BS thesis, México DF, Facultad de 

Ingeniería, Universidad Nacional Autónoma 

de México, 57 p.

Yes Yes Maps, description

1998 Delgado et al. 1998, Geology of Xitle Volcano 

in southern Mexico City - A 2000 Year-Old 

monogenetic volcano in an urban area, Revista 

Mexicana e Ciencias Geologicas, volumen 15, 

#2, 1998, p.115-131

Yes No Maps, description

1998 Romero Teran, Esther, 1998. Geologia 

del Volcan Ajusco, BS thesis, Facultad de 

Ingeneria, Universidad Nacional Autonoma de 

Mexico (Instituto de Geofisica), 50 p.

Yes Yes Maps

1999 Verma S. P., 1999. Geochemistry of evolved 

magmas and their relationship to subduction-

unrelated mafic volcanism at the volcanic 

front of the Central Mexican Volcanic Belt, 

Journal of Volcanology and Geothermal 

Research, Volume 93 [1999], p. 151-171, #3623 

in GERMS database

Yes Yes Table, maps

1999 Arce S., Jose Luis, 1999. Reinterpretacion de 

la erupcion pliniana que dio origen a la Pomez 

Superior, Volcan Nevado de Toluca, Master 

thesis: Maestro en Sismologia y Fisica del 

interior de la Tierra, Postgrado en ciencias de 

la tierra, Universidad Autonoma Nacional de 

Mexico (Instituto de Geofisica), 92 p.

Yes Yes Maps, description

1999 Wallace, P., and I. Carmichael (1999), 

Quaternary volcanism near the valley of 

Mexico: Implications for the subduction 

zone magmatism and the effects of crustal 

thickness variations on primitive magma 

compositions, Contribution to Mineralogy 

and Petrology, vol. 135, p.291-314

Yes Yes Table, maps
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2000 Verma, P. Surendra, 2000. Geochemistry of 

the subducting Cocos plate and the origin of 

subduction-unrelated mafic volcanism at the 

volcanic front of the central Mexican Volcanic 

Belt, Geological Society of America, Special 

Paper 534, p.195-222

Yes Yes Table, maps, 

description

2000 Gonzalez Huesca, Alberto, 2000. Estudios de 

detalle estratigrafico y sedimentologico del 

Lahar de San Nicolas en el flanco noreste del 

volcan Popocatepetl, BS thesis, Facultad de 

Ingeneria, Universidad Nacional Autonoma de 

Mexico, 110 p.

Yes No Maps

2001 Straub, S. M., Martin-Del Pozzo, A. L., 2001. 

The significance of phenocryst diversity in 

tephra from recent eruptions at Popocatepetl 

volcano (Mexico), Contrib. Mineral. Petrol. 

140 [2001], p. 487-510, #3506 in GERMS 

database

Yes Yes Description

2001 Cervantes de la Cruz., Karina Elizabeth, 

2001. La pomez blanca intermedia: deposito 

producido por una erupcion plinana-

subpliniana del volcan Nevado de Toluca hace 

12,100 anos, Master’s thesis, Postgrado en 

Ciencias de la Tierra, Universidad Nacional 

Autonoma de Mexico, 84 p.

Yes Yes Description, 

maps

2001 Velasco Tapia, Fernando, 2001. Aspectos 

geoestadisticos en geoquimica analitica: 

Applicacion en el modelado geoquimico 

e isotopico de la sierra de Chichinautzin, 

Cinturon Volcanico Mexicano, Phd thesis: 

Doctor en ciencias (geoquimica), Postgrado 

en ciencias de la tierra, Universidad Nacional 

Autonoma de Mexico (Instituto de Geofisica), 

273 p.

Yes Yes Table, maps

2004 Siebe, Claus, Rodriguez-Lara, V., Schaaf, 

P., Abrams M., 2004. Geochemistry, Sr-Nd 

isotope composition and tectonic setting 

of Holocene Pelado, Guespalapa and 

Chichinautzin scoria cones, south of Mexico 

City, Journal of Volcanology and Geothermal 

Research,Volume 130 [2004], p. 197-226, 

#6862 in GERMS database

Yes Yes Table, maps

2004 Arana Salinas, L., 2004. Geologia de los 

volcanes monogeneticos Teuhtli, Tlaloc, 

Tlacotenco, Ocusacayo y Cuauhtzin en la 

Sierra Chichinautzin, al Sur de la Ciudad 

de Mexico, Master’s thesis (Vulcanologia), 

Postgrado en Ciencias de la Tierra, 

Universidad Nacional Autonoma de Mexico, 

117 p.

Yes Yes Maps, description

2004 Raymundo G. Martinez-Serrano et al., 2004. 

Sr, Nd and Pb isotope and geochemical 

data from the Quaternary Nevado de 

Toluca volcano, a source of recent adakitic 

magmatism, and the Tenango Volcanic 

Field, Mexico, Journal of Volcanology and 

Geothermal Research, Volume 138, Issues 1-2, 

15 November 2004, p.77-110

Yes Yes Table, maps
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2005 Witter J. B., Kress V. C., Newhall C. G., 2005. 

Volcan Popocatepetl, Mexico. Petrology, 

Magma Mixing, And Immediate Sources Of 

Volatiles For The 1994-Present Eruption, J. 

Petrol. 46 [2005], p. 2337-2366, #8497 in 

Germs database

Yes Yes Description

2005 Schaaf, Peter, Jim Stimac, Claus Siebes and 

Jose Luis Macias, 2005. Geochemical Evidence 

for Mantle Origin and Crustal Processes 

in Volcanic Rocks from Popocatépetl and 

Surrounding Monogenetic Volcanoe; Central 

Mexico, Journal of Petrology, Volume 46, #6, 

p. 1243-1282

Yes Yes Table

2006 Ceballos, Giovanni Sosa, 2006. El Paleo-

Popocatepetl: petrologia, geoquimica e 

isotopia de secuencias pre 23, 000 anos, 

Master’s thesis, Postgrado en Ciencias de la 

Tierra, Universidad Nacional Autonoma de 

Mexico (Colegio de Geografia), 120 p.

Yes Yes Description, 

maps

2008 Antonio, Marco, 2008. Reconstrucción del 

evento eruptivo asociado al emplazamiento 

del flujo piroclástico El Refugio hace 13 ka, 

volcán Nevado de Toluca (México), Revista 

Mexicana de Ciencias Geologicas, V.25, # 1, 

2008, p.115-147

Yes Yes Description, 

maps

2008 Meriggi, Lorenzo, José Luis Macías, Simone 

Tommasini, 2008. Heterogeneous magmas 

of the Quaternary Sierra Chichinautzin 

volcanic field (central Mexico): the role of 

an amphibole-bearing mantle and magmatic 

evolution processes, HeterRevista Mexicana de 

Ciencias Geológicas, v. 25, #.2, p. 197-216

Yes Yes Table

2008 Straub, S. M., Martin-Del Pozzo, A. L., 

Langmuir, C.H., 2008. Evidence from 

High-Ni Olivines for a Hybridized peridotite/

pyroxenite source for orogenic andesites 

from the central Mexican volcanic belt; 

Geochemistry Geophysics Geosystems 9, 33 p.

Yes Yes Table

2009 Guilbaud, M.-N., Siebe, C., Agustín-Flores, 

J., 2009. Eruptive style of the young high-Mg 

basaltic-andesite Pelagatos scoria cone 

southeast of México City. Bull. Volcanol. 71, 

859–880.

Yes Yes Table, maps

2009 Augustin Flores, Javier, 2009. Geologia y 

petrogenesis de los volcanes monogeneticos 

Pelagatos, Cerro del Agua y Dos Cerros en la 

Sierra Chichinautzin, al sur de la Ciudad de 

Mexico, Master thesis: Maestria en Ciencias 

(Vulcanologia), Postgrado en Ciencias de la 

Tierra, Universidad Nacional Autonoma de 

Mexico (Instituto de Geofisica), 97 p.

Yes Yes Table

2010 Arana-Salinas, L., Claus Siebe and José Luis 

Macias 2010. Dynamics of the ca. 4965 yr 

14C BP "Ochre Pumice" Plinian eruption 

of Popocatepetl volcano, Mexico, Journal 

of Volcanology and Geothermal Research, 

Volume 192, Issues 3-4, 10 May 2010, p. 

212-228

Yes Yes Description
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