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Abstract

Angiogenesis is an indispensable biological process, any aberrancy associated 
with which can lead to pathological manifestations. To manage different patho-
logical conditions associated with abnormal angiogenesis, Nanomaterial based 
formulations have been tested in in vitro and in vivo models by different groups. The 
research advancements pertaining to the applications of major candidate nanoma-
terials for the treatment of pathologies like tumor, cardiovascular diseases, diabetic 
retinopathy, age related macular degeneration, chronic wounds, impaired osteogen-
esis and nerve tissue degeneration, have been briefed in this chapter.

Keywords: angiogenesis, nanomaterials, tumor, cardiovascular diseases,  
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1. Introduction

Angiogenesis is an important biological process which involves the development of 
new capillary network from the pre-existing vasculature [1, 2]. The process of angio-
genesis is indispensable in supplying oxygen and nutrients to cells under hypoxia, 
and it has been implicated in different physiological processes such as wound healing, 
embryogenesis etc. It has also been reported to play key role in many pathologies 
including diabetic retinopathy and cancer [3]. Angiogenesis is a multi-step process, 
which commences when the primary, pro angiogenic cytokine, VEGF, is secreted by 
the cells experiencing hypoxia. Thereafter the interaction of VEGF with its receptor 
(VEGFR2) on the nearby endothelial cells (EC), leads to EC activation, proliferation, 
migration, extra cellular matrix (ECM) remodeling, tube formation followed by loop 
formation leading finally to neo vessel formation and vascular stabilization [4, 5].

The process of angiogenesis is regulated by multiple factors, which may be pro- or 
anti-angiogenic in nature. The endogenous pro angiogenic factors include growth 
factors like VEGF, PDGF, FGF, EGF, angiopoietin-1, interleukin-8, placental growth 
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factor, angiogenin etc. The anti- angiogenic factors include endostatin, angiostatin, 
prolactin, fibronectin, vasostatin, interleukin-12, platelet factor 4 etc. [6, 7]. An 
equilibrium exists between the pro- and anti-angiogenic factors under physiological 
conditions, and any disturbance in that equilibrium would result in pathological mani-
festations [3]. Targeting angiogenesis therefore has drawn huge attention with respect 
to the therapeutics of pathologies were excessive or insufficient angiogenesis prevails 
[7]. One of the major approaches in angiogenesis targeted therapy involves targeting 
VEGF signaling pathway. Humanized monoclonal antibody targeting VEGFA, namely, 
Bevacizumab, with the approval of US Food and Drug Administration (FDA), has 
been employed in a combination therapy for the treatment of metastatic colorectal 
cancer [8]. In addition, an aptamer which inhibits VEGF 165, namely, Pegaptanib 
has been approved by FDA to treat Age related macular degeneration [9]. In spite of 
all such interventions, targeting angiogenesis demands much more explorations due 
to a variety of unresolved issues such as development of resistance to antiangiogenic 
therapy, lack of adequate treatment for ischaemic disorders etc. [10].

In an urge to overcome the limitations of conventional angiogenic therapy, 
researchers globally have focused on developing ‘nanomedicines’ for the treatment 
and diagnosis of various diseases associated with aberrant angiogenesis [11]. The 
field of nanomedicine involves the use of nanomaterials for biological and medici-
nal applications by virtue of their ability to interact with nucleic acids, proteins and 
membrane receptors effortlessly [10]. In this chapter, we have therefore focused on 
various research achievements pertaining to candidate nanomaterials that can be 
developed as potential drugs for angiogenic therapy.

2. Nanomaterials

The class of substances having at least one dimension less than 100 nano meters 
are called nanoscale materials and the field of science that deals with the synthesis, 
study of structure, physical and chemical properties and applications of various 
types of nanoscale materials is referred as Nanotechnology [12]. Nanomaterials 
usually occur as zero, one, two and three-dimensional structures. Generally, the 
nanoparticles are comprised of three layers called the surface layer, the shell layer 
and the core. The core is the central portion of the materials surrounded by the shell 
and surface layer. The shell layer is chemically different from the core and the outer 
layer. The surface layer permits surface modification with a variety of moieties like 
polymers, metal ions, and surfactants [13]. The physical and chemical properties 
of bulk materials are independent of their size, however, when converted into nano 
scale materials their optical, physical, mechanical and chemical properties vary 
according to their size [14]. Such properties include solubility, color, toxicity etc. 
The major reason for these improved properties of nanomaterials are due to their 
high surface mass ratio as compared with the bulk [15]. Due to their unique size, 
shape, structure and solubility they have found application in the biomedical, opti-
cal, sensor, electric and energy harvesting fields. Many nanomaterials are already 
being explored for their use in biomedical imaging [16], bio/chemical sensing [17], 
targeted gene and drug delivery [18]. We here focus on candidate nanomaterials 
which are potential nanomedicines in the field of therapeutic angiogenesis.

2.1 Classification of nanomaterials according to chemical composition

Based on the origin, size, morphology and chemical composition, nanomaterials 
are divided into various categories. In the present chapter we are focusing on some 
of the important classes that have found applications in biological field.
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2.1.1 Metal nanoparticles

Metal nanoparticles are those particles which may be the pure metal or metal 
compounds like metal oxide, hydroxides, sulphides etc., exhibit size in the sub-
micron scale. A variety of metal nanoparticles has been synthesized with varied 
structural morphology, size and compositions [19]. These metal nanoparticles can 
be synthesized from various metal precursors and can be functionalized with sev-
eral groups [20]. The metal nanoparticles permit surface modification with various 
chemical functional groups and further allow them to be conjugated with polymers, 
ligands, antibodies etc. The improved surface mass ratio, shape, morphology and 
functionality, quantum confinement and plasmon excitation make them suitable 
for the applications in the field of energy, catalysis, electronics, and medicine 
[21]. However, they show some demerits such as tendency to get agglomerate and 
chances of formation of impurities due to their high reactivity. Many of the nano-
materials except gold, silver, and platinum exhibits high cyto-toxicity.

2.1.2 Carbon-based nanomaterials

Among the various carbonaceous nanomaterials, the zero-dimensional carbon-
based quantum dots (CQDs and GQDs), one-dimensional carbon nanotubes 
(CNTs) and two-dimensional graphene (GR) are currently the most popular 
nanocarbon representatives in biological applications [22]. Carbon-based QDs are 
the recent extension in the nano carbon family with fascinating properties like 
biocompatibility, resistance to photobleaching and attractive photoluminescence. 
These outstanding properties make them smart candidates for bioimaging, sensing, 
drug delivery and cancer therapy [23, 24]. CNTs have a unique 1D nanostructure, 
with sp2 hybridized carbon atoms rolled up to design a cylindrical shape. They 
exist as both single-walled CNTs and multi-walled CNTs depending on the number 
rolled-up graphene sheets. Due to their exceptional structural, mechanical, and 
electrical diversities, they deliver remarkable flexibility, strength, and electrical 
properties suitable for various biological applications like medical diagnostics, sens-
ing and treatment of diseases. Graphene represents the 2D nano allotrope of carbon 
illustrating a planar graphitic structure with sp2 hybridized carbon network. Its 
surpassingly large surface area, easy functionalization and chemical purity makes 
it a potential candidate for drug delivery. Moreover, it is also widely explored for in 
vivo imaging and cancer detection.

2.1.3 Polymeric nanoparticles

Polymeric nanoparticles are constructed with the aid of natural or synthetic 
polymers. As compared to other nanoparticles, they offer advantages like non-tox-
icity and biocompatibility suited for specific biological applications. Although they 
are used for biosensing and bioimaging, the major purpose of polymeric nanopar-
ticles lies in the field of drug delivery [25]. Biomolecules or drugs are encapsulated 
into polymeric nanoparticles to obtain a gradual and continuous release of the drugs 
at the specifically targeted sites.

2.1.4 Ceramic nanoparticles

Nanoscale ceramics, which include various ceramic nanoparticles of zirconia, 
hydroxyapatite, alumina and titanium oxide have also found potential biologi-
cal applications. Some of the distinct features like high load capacity, stability 
and effortless incorporation to hydrophilic and hydrophobic systems enhance 
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their efficiency in the field of biomedicine, however, work on scaling down its 
cytotoxicity remains to be addressed before its full-fledged use in the biological 
system [26].

2.1.5 Semiconductor nanoparticles

Semiconductor nanoparticles, particularly QDs have been heavily explored for a 
wide variety of biological applications like biosensing, molecular imaging, live-
cell labelling and drug delivery. They possess unique optical properties like a long 
fluorescence lifetime and low photobleaching when correlated with conventional 
organic dyes and fluorescent polymers [27]. Although, the toxicity of the tradi-
tional semiconductor QDs is a typical concern that has to be addressed for in vivo 
applications.

2.1.6 Lipid-based nanoparticles

Lipid-based nanoparticles, consisting of liposomes, nanostructured lipid car-
riers and solid lipid nanoparticles have gained tremendous attention in the field of 
cancer treatment and drug delivery. These nanoparticles exhibit very low toxicity, 
can act as a carrier for both hydrophilic and hydrophobic molecules and ensures 
controlled release of drugs. Due to its versatility and biocompatibility, liposomes are 
the extensively utilized lipid-based nanoparticles [28].

3.  Nanomaterial mediated therapy for pathologies with aberrant 
angiogenesis

Abnormal or excessive angiogenesis has been reported to be involved in the 
progression of a wide variety of diseases affecting different organs. For example, 
aberrant angiogenesis has been implicated to promote diseases like tumor, auto 
immune disorders and infectious diseases caused by the pathogens inducing 
angiogenesis and such diseases have been reported to affect multiple organ sys-
tems [29]. Further, it has also been reported to be involved in the advancement of 
skin tissue associated diseases like psoriasis, allergic dermatitis, blistering disease, 
scar keloids etc. In addition, it has been reported to be the major cause for diabetic 
retinopathy and choroidal neovascularization associated with wet type AMD, 
which affect the eyes [29]. Abnormal angiogenesis has also been reported to be 
involved in the progression of blood vessel associated disorders like atheroscle-
rosis, transplant arteriopathy etc. [30]. The involvement of angiogenesis has also 
been reported in the progression of primary pulmonary hypertension, asthma 
and nasal polyps [29]. In addition, it has also been reported in the progression of 
diseases that affect the reproductive system, which include ovarian hyper stimula-
tion, endometriosis etc. [31]. Aberrant angiogenesis has also been the leading 
cause for the progression of diseases like osteomyelitis which is characterized by 
impaired osteogenesis [29]. It has also been reported to promote nerve system 
associated diseases like diabetic neuropathy and amyotrophic lateral sclerosis, 
which are characterized by nerve tissue degeneration [32]. The process of angio-
genesis has also been reported to promote physiological processes like wound 
healing and discrepancy associated with that could lead to complications like 
development of chronic wounds [33]. Different candidate disorders associated 
with aberrant angiogenesis and the candidate nanomaterials that can be devel-
oped as potential drugs for the treatment of such disorders have been detailed 
below.
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3.1 Tumor

The essentiality of angiogenesis in the progression of tumor growth was a 
breakthrough finding by Judah Folkman way back in 1971, which opened up an era 
of investigations, concerned with targeting angiogenesis for cancer therapeutics. 
It has been established that a tumor cannot grow beyond 2 mm in diameter with-
out a steady supply of oxygen and nutrients by means of angiogenesis [34–36]. 
Therefore, preventing the neovascularisation has been suggested as one of the key 
strategies for cancer therapeutics. Angiogenesis in a tumor micro environment, 
unlike that under physiological conditions, is characterized by the formation of 
immature, leaky blood vessels, resulting in a continual state of inflammation. This 
happens mainly due to the increased expression of a variety of pro angiogenic 
factors including VEGF, angiopoietin, integrins etc. and such factors are being 
targeted for anti-angiogenic therapy. Anti-angiogenic agents targeting VEGF, such 
as Bevacizumab has been approved by FDA, however, release of other pro angio-
genic factors over ruled the efficiency of such mono-therapies [37–40]. Therefore, 
combination therapies using multiple anti-angiogenic agents were more appreciated 
to quick fix resistance to angiogenic monotherapy.

Nanoparticles (NPs) could be employed as a vehicle to deliver multiple drugs, 
targeting different molecules and pathways associated with tumor angiogenesis 
[37, 41]. The therapeutic drugs are generally loaded on to the NPs either by chemi-
cal conjugation or by encapsulation [38]. The NP-based drug delivery can either 
be passive or active in mode. The presence of leaky blood vessels in the vicinity of 
tumors facilitates the passive extravasation of NPs with size less than 200 nm into 
the tumor site by the Enhanced Permeability and Retention effect (EPR) and such 
NPs are later on cleared by the liver [39, 42]. In addition, limited lymphatic drain-
age facilitates the retention of NPs at the site of tumors which in turn promotes 
sustained drug delivery [39]. It has been reported that NP conjugated Doxorubicin 
[43, 44] and small molecule inhibitors of angiogenesis [45] could accumulate in 
the tumor micro environment by EPR effect, which lead to the stoppage of tumor 
angiogenesis and tumor growth [38]. Further, Caplostatin (TNP-470), an angio-
genic inhibitor, has been reported to get selectively piled up in the blood vessels 
associated with tumors by EPR effect which in turn blocked tumor associated 
vascular hyperpermeability [46, 47]. The Active targeting of tumor vasculature by 
NPs is achieved by means of ligands presented on NP surfaces. The ligands would 
selectively bind to receptors which are over expressed on tumor cells as well as on 
tumor associated ECs, such receptors include VEGFRs, αvβ3 integrins etc. [38, 48].

NP mediated targeting of different miRNAs have also been tested for their 
therapeutic efficacy [49]. For instance, treatment with NP containing anti-miR-21 
(CTX-SNALP-anti miR-21) has been reported to silence miR-21 in patients with 
glioblastoma resulting in an increase in the levels of its target gene RhoB both at 
mRNA and protein levels. Further, NP mediated administration of anti-miR-21 has 
been reported to inhibit tumor proliferation, induce apoptosis and promote survival 
rate in the animal model [49]. Exosomes are endogenous lipid-based NPs which 
are involved in the transfer of biomolecules like RNA and proteins between cells. 
It has been reported that miR-23a encapsulated exosomes could effectively induce 
angiogenesis in CAM model as well as in in ovo xenograft model by regulating the 
expression of SIRT1 gene [50].

Different metal NPs like gold and silver NPs have been reported to be effective 
for anti-angiogenic therapy. It has been reported that gold NPs (AuNPs) are capable 
of binding to the heparin binding domains of various growth factors like VEGF165 
and bFGF leading to the conformational changes associated with the impaired 
functioning of such growth factors. AuNP mediated inhibition of VEGF was found 
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to be negatively regulating the phosphorylation of VEGFR2. The inhibitory effect 
of AuNPs on Heparin binding growth factors (HB-GFs) was found to be greatly 
depended on the size of AuNPs, further, AuNPs with 20 nm in diameter exhibited 
maximum inhibitory effect. In addition, AuNP with bare surface was found to be 
essential for the inhibitory effect on HB-GFs. Further, AuNPs have been reported to 
block of MAPK pathway in tumor cells which lead to the inhibition of epithelial to 
mesenchymal transition (EMT) and thence, the process of metastasis [51, 52].

AuNP has also been used as the carrier tool for drug delivery. It has been used 
to deliver an anti-EMT agent, Quercetin (Qu) and AuNP-Qu was found to be more 
effective when compared to free Qu, in inhibiting cell migration in MDA-MB-23 
and MCF-7 cell lines [53]. In addition, recombinant human endostatin (rhES), an 
anti- angiogenic molecule, which in conjugation with AuNP-PEG (rhES-AuNPs-
PEG), when administrated, targeted tumor cells more efficiently and exhibited 
better performance when compared to rhES. Moreover, the administration of 
rhES-AuNPs-PEG in combination with 5-flouro uracil (5-FU) facilitated improved 
localization of 5-FU on to the tumor site with subsequent reduction in tumor size 
than that in case of mono therapeutic administration of 5FU [54].

Silver NPs (AgNPs) have been reported to inhibit VEGF induced cell pro-
liferation, migration and tube formation in bovine retinal endothelial cells 
(BRECs). It has also been reported to inhibit vessel formation in matrigel plug 
assay system. AgNP mediated anti angiogenic effect was found to involve nega-
tive regulation of PI3K/Akt pathway [55, 56]. According to a different study, 
AgNP has been reported to exert anti angiogenic effect by inhibiting HIF-1 in a 
dose dependant manner [57].

In addition to metal NPs, NPs based on cationic polysaccharides like chitosan 
has also been explored for biomedical applications taking an advantage of their 
relatively low toxic nature and high biodegradability and biocompatibility. Chitosan 
NPs (CNPs) showed anti-cancer effect in the xenograft model of hepatocellular car-
cinoma by inhibiting the expression of VEGFR2 and thereby negatively regulating 
the process of tumor angiogenesis [58]. Further, CNPs in conjugation with Ursolic 
acid (CH-UA-NPs) have been shown to inhibit cell migration and tube formation in 
human umbilical vein endothelial cells (HUVECs) in-vitro. In addition, CH-UA-NPs 
have also been reported to inhibit the expression of VEGF in hepatoma cell xeno-
grafts [59]. CNPs have also been utilized as a vehicle for the co delivery of psiRNA 
VEGF and pIL-4 in MCF-7 cells which caused relatively huge reduction in the levels 
of VEGF protein when compared to the cases where the plasmids were used indi-
vidually [60].

Ruthenium modified selenium NPs (Ru-SeNPs) have also been reported to 
exhibit anti angiogenic properties, in CAM model as well as in HUVEC cells, mainly 
by inhibiting the phosphorylation of Akt, FGFR1 and Erk1/2. Further, it has been 
shown that SeNPs protected with Ru (II)-thiols (Ru-MUA@Se) was endocytosed by 
the cells by clathrin mediated mechanism [61]. SeNPs have also been used as a car-
rier tool for siRNA delivery. A pH sensitive, modified SeNP carrying VEGF-siRNA, 
namely, G2/PAH-Cit/SeNPs@siRNA, has been shown to exhibit high efficiency in 
terms of cellular uptake, drug release and gene silencing [62].

The cerium oxide NPs (CONPs) have been reported to exhibit anti-oxidant 
activity and they are characterized by a cerium core and a shield with an oxygen 
lattice. Chen et al., have shown that CONPs are capable of inhibiting reactive 
oxygen species (ROS) induced angiogenic signaling pathways [63]. In addition, 
the nanoceria conjugated with heparin was reported to inhibit the proliferation 
of human coronary artery endothelial cells (HCAECs) in a better way than that 
by unconjugated nanoceria [64]. Nanoceria has also been reported to inhibit the 
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proliferation of ovarian cancer cells in xenograft model in-vivo [65]. Further, the 
nanoceria conjugated with folic acid has also been reported to inhibit proliferation 
and angiogenesis in xenografts of ovarian cancer cells in vivo [66]. The anti-angio-
genic effect imparted by nanoceria was reported to involve the inhibition of VEGF 
signaling pathway leading to the decreased phosphorylation of VEGFR2 at Tyr1173 
and Y951 [65]. However, a report by Das et al., have suggested that nanoceria might 
exhibit pro angiogenic effect also [67], making the use of these NPs as anti-angio-
genic molecules doubtful under clinical setup.

Silica based NPs have also been reported to exhibit anti angiogenic properties. 
Silicate NPs (SiO2 NPs) have been reported to inhibit VEGFR2 phosphoryla-
tion and ERK1/2 activation in human micro vascular retinal endothelial cells 
(HMRECs), thereby inhibiting angiogenesis [68]. Mesoporous silica based 
nanoparticles (MSNs) have been used as a vehicle for the targeted delivery of 
chemotherapeutic agent, doxorubicin hydrochloride (MSNs@DOX). MSNs@
DOX has been reported to suppress the metastasis of lung cancer cells by inhibit-
ing VEGF induced angiogenesis [69]. Further RGD (Arg-Gly-Asp) modified MSN 
has been used as a carrier tool for the targeted delivery of anti-angiogenic agent, 
NAMI-A [70].

Further, MoS2 nanoflakes containing ZnO NPs were found to inhibit tumor 
growth in in-ovo xenograft model by inducing apoptosis and by negatively 
regulating the processes of angiogenesis as well as EMT [71]. Similarly, the 
Tetraiodothyroacetic acid (Tetrac) based NPs have also been reported to be anti-
angiogenic in nature in CAM model and in xenograft model of renal cancer cells 
[72]. Shereema et al., have formulated a green luminescent CQDs, which inhibited 
angiogenesis in CAM model by negatively regulating the expression levels of 
pro angiogenic factors including VEGF and FGF. The CQDs showed anti-cancer 
property in vitro, suggesting it to be a potential drug candidate for targeting tumor 
angiogenesis [73]. The applications of nanomaterials for anti tumor therapy have 
been represented schematically in Figure 1.

Figure 1. 
Applications of nanomaterials in anti-tumor therapy. Many candidate nanomaterials possess intrinsic anti-
angiogenic property and few could be used as vehicles for targeted drug delivery. Nanoparticles encapsulated/
conjugated with anti- angiogenic drugs or nanoparticle based anti-angiogenic scaffolds, when administrated in 
in vivo models, precisely target tumor vasculature and inhibit tumor growth.
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3.2 Cardio vascular diseases

Cardio vascular diseases (CVDs), which refer to a class of ailments encompass-
ing coronary artery disease (CHD), peripheral arterial disease, cerebrovascular dis-
ease etc., account for the leading cause of death worldwide [74, 75]. Atherosclerosis 
is the most prevalent pathology behind CVDs, which involves the local accumula-
tion of cholesterol within the walls of medium and large arteries leading to the 
emergence of atherosclerotic plaque [76, 77]. The process of angiogenesis has been 
implicated to play key role in plaque growth and intra plaque hemorrhage leading 
to plaque rapture [78, 79]. The application of nanomaterials has found its way in 
the diagnosis as well as treatment of CVDs. Integrin αvβ3 has been found to be over 
expressed in ECs actively involved in angiogenesis, thus, it has been targeted using 
NPs for CVD diagnosis [80]. For instance, in a murine model of hind limb ischemia, 
76Br- labeled multivalent dendrimers conjugated with integrin αvβ3 targeting 
peptides, were utilized for the detection of angiogenesis by positron emission 
tomography-computed tomography (PET-CT) [81]. In a different experiment using 
murine model of hind limb ischemia, a natriuretic peptide receptor C- targeted, 
64Cu labeled NP probe was used for the detection of angiogenesis [82]. Further, 
gadolinium-loaded perfluorocarbon (PFC) NP conjugated with a vitronectin 
antagonist peptide mimic, has been suggested to be a promising candidate for the 
detection of atherosclerotic lesions [83]. In addition, PFC NPs incorporated with 
anti-angiogenic drug, Fumagillin, have been implicated for the treatment of plaque 
angiogenesis [84].

3.3 Chronic wounds

Wounds are the disruption of the normal physiology of the skin, mucosal sur-
faces or organs, which occur as a part of a disease or etiology. The process of wound 
healing is divided into four distinct stages: hemostasis, inflammation, proliferation, 
and tissue remodeling. Injuries that show delayed healing up to 12 weeks after the 
initial insult are termed chronic wounds, often it happens because of various rea-
sons such as persistent pathological inflammation [85], complications of ischemia, 
diabetes mellitus, or chronic venous insufficiency [86]. The application of growth 
factors has been employed to improve wound healing by promoting angiogenesis, 
but it possessed some drawbacks like rapid degradation of the candidate growth 
factors and the lack of controlled and localized delivery system.

Different NPs have been reported to promote wound healing, and many of 
them were implicated as drug carriers. Studies have shown that different metal 
ions-based nanomaterials possess the ability to promote angiogenesis and thereby 
induce wound healing [87, 88]. The metal ions such as Sr2+ and Co2+ when combined 
with nano bioactive glass showed pro angiogenic activity [89]. Colloidal AuNPs 
have been widely studied for biomedical applications due to their unique surface 
characteristics as well as optical and electronic properties [90]. AuNPs combined 
with epigallocatechin gallate and α-lipoic acid, reduced oxidative stress and inflam-
mation and augmented angiogenesis, which led to cutaneous wound healing in 
rodent models [91]. The increased surface area of spherical AuNP helps in electron 
acceptance and also in scavenging reactive oxygen species that cause oxidative stress 
and impaired wound healing [92]. Formulation of AuNPs and scrambled peptides 
were reported to be suitable for angiogenic modulation in in vivo and in vitro models 
[93]. Moreover, NPs encapsulated in a microparticle developed by the microfluidic 
method provided a way to introduce a wide range of proteins including pro angio-
genic agents to the injury site [94].
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Low expression levels of angiogenic growth factors lead to impaired angiogene-
sis and wound healing. Heparin mimetic peptide nanofiber scaffolds have been used 
to overcome this situation, which showed improved vascular development associ-
ated with enhanced VEGF production in the treated animals. Also, hierarchically 
micro-patterned nanofibrous scaffolds with a surface modified nanosized bio-glass 
have been implicated in improving wound healing [95]. Xie et al. have developed 
an electrospun fiber nano composites containing different components such as 
antibacterial polymer chitosan, poly (ethylene oxide), VEGF and PDGF-BB loaded 
poly (lactic-co-glycolic acid) NPs. They have demonstrated that the application 
of such a nano composite would prevent bacterial attack in the vicinity of wound. 
In addition, they have demonstrated that the nano composite facilitated the early 
delivery of VEGF from the nanofiber and sustained delivery of PDGF-BB from the 
NPs, thereby accelerating tissue regeneration and remodeling in a full-thickness rat 
skin wound model [96]. Lino et al. have shown that light-responsive plasmonic gold 
nanocarrier could be used as a carrier vehicle for the delivery of microRNAs such 
as miR-302a and miR-155, which regulated the proliferation and survival of ECs 
thereby promoting wound healing [97].

Carbon nanotubes were functionalized with different side-chain moieties 
and they were applied for diagnosis as well as drug delivery purposes [98]. It has 
been shown that the Multi-Walled Carbon Nanotube (MWCNT) supports angio-
genesis as the macrophages engulfing MWCNT, produce angiogenic cytokines 
such as VEGF and MMP9 [99]. Liu et al. have constructed a composite scaffold of 
VEGF165 loaded functionalized MWCNT, for the prolonged and sustained deliv-
ery of VEGF165, and it promoted tissue remodeling and repairing in the in vivo 
 models [100].

Graphene based NPs have also been implicated to have massive applications 
in angiogenesis-based therapeutics [101]. Graphene, graphene oxide (GO) and 
reduced graphene oxide (rGO) have received great attraction as inorganic addi-
tive in biopolymers for developing biomaterial composites [102]. The Gelatin-
methacryloyl (GelMA) hydrogel containing rGO has been indicated to promote cell 
proliferation and migration in in-vitro model of wound healing and it has also been 
implicated to promote angiogenesis in chick embryo model [103]. In addition, ZnO 
nanoflower based nanomaterials [104] and water-soluble CONPs [105] were also 
implicated to exhibit wound healing properties by modulating the process of angio-
genesis. The candidate nanomaterials which possess the ability to promote wound 
healing, by promoting angiogenesis have been indicated schematically in Figure 2.

Figure 2. 
Pro-angiogenic nanomaterials promote wound healing. Nanomaterials like cerium oxide nanoparticles, zinc 
oxide nanoflowers, multi walled carbon nanotubes, reduced graphene oxide nanoparticles and metal ion based 
nanoparticles like strontium ions and cobalt ions, promote wound healing in different in vitro and in vivo 
models by promoting the process of angiogenesis.
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3.4 Diabetic retinopathy and age-related macular degeneration

Diabetic retinopathy (DR) is one of the critical leading causes of blindness and 
it is a secondary complication associated with Diabetic Mellitus. Diabetes affects the 
entire neurovascular regions of the retina, with ongoing neurodegeneration, gliosis, 
neuroinflammation, edema, angiogenesis, and fibrosis [106]. The changes in the 
vasculature cause perceptible abnormality in vision and lead to blindness. VEGFA, 
which gets upregulated in response to hypoxia, plays a central role in the initiation 
of DR. In addition to that, MMP9 has also been implicated to play key role in the 
onset and severity of DR [107].

The Age-related macular degeneration (AMD) is another complication where 
pathological angiogenesis is involved. AMD has been classified into two types. The 
type of AMD which is characterized by yellowish deposits in the macula is known as 
the Dry AMD, whereas, the AMD with characteristic choroidal neovascularisation 
(CNV) is termed as the wet type or neovascular AMD [108].

Laser photocoagulation and multiple intra ocular injections are the treatment 
strategies adopted for the diseases that affect the vascular structure of the posterior 
eye. It has complications like the destruction of healthy tissues. Though ‘introduc-
ing protein drugs’, was put forth as one of the treatment strategies, it possessed 
drawbacks like drug instability due to proteases action followed by drug injection. 
It therefore warranted novel treatment strategies to conquer these drawbacks. So, 
in an effort to develop alternative therapeutic strategies for ocular diseases, the 
efficacy of different candidate NPs, exhibiting innate anti angiogenic property or 
possessing the ability to carry drug, growth factors etc., to specific tissue sites, have 
been tested by different groups [109, 110].

The AuNPs, as mentioned earlier, possess anti angiogenic properties in addition 
to their unique electronic, biocompatible, and molecular-recognition properties 
[111]. It has been reported to induce the nano structural reorganization of VEGFR2 
in HUVECs and consequently suppressed angiogenesis [112]. AuNPs have also been 
reported to suppress VEGF induced cell migration by negatively regulating the 
phosphorylation of Akt and eNOS in retinal endothelial cells [113]. It has also been 
reported to obstruct the proliferation of VEGF treated retinal endothelial cells by 
suppressing Src signaling pathways [114].

Kringle 5 (K5), a proteolytic fragment of plasminogen possessing 80 amino 
acids, has been shown to be highly effective in the inhibition of EC growth [115]. It 
has also been reported to inhibit ischemia-stimulated retinal neovascularization in 
the oxygen-induced retinopathy (OIR) model [116]. But it possessed the drawback 
of a short life span. An expression plasmid of K5 was encapsulated with PLGA 
polymer to form nanoparticles (K5-NP) which effectively inhibited VEGF expres-
sion and attenuated ischemia-induced retinal vascular leakage and retinal neovas-
cularization in the OIR rat model [117]. Biodegradable NPs loaded with Fenofibrate 
(Feno-NPs) have been reported to be particularly useful for the targeted delivery 
and treatment of DR and neovascular AMD. Fenofibrate is a peroxisome prolifera-
tor-activated receptor α (PPARα) agonist, which is effective against DR. In diabetic 
rat models, at 8 weeks after the administration of Feno-NP by one intravitreal 
injection, the vascular leakage in the retina was found to be reduced. In addition to 
that the retinal leukostasis was inhibited, and further, the expression of VEGF and 
ICAM-1 were down regulated [118].

Octreotide (OCT), an analog of somatostatin, is an established  neuroprotective 
and anti-angiogenic agent that targets VEGF. The intra ocular delivery of OCT 
combined with Magnetic NPs (MNP-OCT) has been suggested to improve the 
half-life and bio activity of OCT [119]. Polliner et al. have checked the possibility of 
receptor mediated targeting of NPs to capillary endothelial cells in the retina, and 
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they have demonstrated that Cyclo (RGDfC)-modified QDs specifically bind to the 
αvβ3 integrin receptors on the ECs and the cellular uptake mediated by receptor 
binding led to the accumulation of the NPs in the choriocapillaris and intraretinal 
capillaries [120].

Yandrapu et al. have formulated ‘Nanoparticles in Porous Micropaticles 
(NPinPMP)’, by encapsulating bevacizumab coated poly lactic acid NPs into 
porousifying PLGA microparticles (NPinPMP) using supercritical carbon dioxide 
(SC CO2). Bevacizumab is a protein drug used to treat neovascular AMD and it was 
necessary to inject once in a month intravitreally. The in vitro studies revealed that, 
NPinPMP showed a sustained release of bevacizumab for a period of 4 months. In 
addition, bevacizumab has been detected for a period of 2 months after intravitreal 
injection of NPinPMP in rat model, while it was detected only for 2 weeks upon its 
intravitreal administration in individual form [121].

Likewise, Luo et al. have used, biodegradable PLGA nanoparticles conjugated 
with integrin-binding linear RGD peptide, as a carrier tool for the delivery of 
recombinant tFlt23k intraceptor plasmid possessing VEGF binding domains. 
The nontoxic RGD-functionalized NP delivery system was observed to be getting 
targeted directly to the choroidal neovascularization lesions after intravenous injec-
tion, and exhibited excellent vision restoration in both primate and murine AMD 
models [122].

Celecoxib is a cyclooxygenase-2 inhibitor, exhibiting anti-inflammatory and 
anti-angiogenic properties. Celecoxib-loaded poly (ortho ester) NPs were found 
to be highly effective against AMD and DR [123]. Interleukin-12 (IL-12) has been 
reported to exhibit anti-angiogenic property by reducing the levels of MMP9 and 
VEGFA [124]. Zheng and colleagues combined IL-12 with PLGA nanoparticles 
(IL-12-PNP) and proved it to be exhibiting better efficacy in terms of inhibition of 
VEGFA and MMP9 expressions in DR mouse retina and rat ECs. Further, the intra 
ocular administration of IL-12-PNPs showed reduced retinal damage in mice model 
with DR [125].

3.5 Impaired osteogenesis

Osteogenesis is referred to the process of regeneration of bones, which involves 
multiple steps such as the activation, migration and differentiation of different cell 
types [126]. The process of angiogenesis is crucial for the supply of growth factors, 
hormones, cytokines, chemokines, and metabolites required for osteogenesis. Any 
aberrancy associated with the vascular supply to the bone tissues would lead to 
different pathologies such as osteonecrosis [127], osteomyelitis [128], and osteopo-
rosis [129, 130]. Discrepancy in angiogenesis has also been reported as one of the 
main reasons for the failure of osteogenesis after implantation. VEGF and HIFα are 
the major angiogenesis related factors that promote osteoblast differentiation and 
osteogenesis. So, it has been suggested that restoring angiogenesis would promote 
bone function and defect repair in pathologies with impaired osteogenesis.

Many candidate nanomaterials have been reported to be effective in improving 
the repair of bone tissues [131]. For example, synthesized chitin–CaSO4–nano-
fibrin based injectable gel system showed enhanced osteo-regeneration via 
enhanced angiogenesis [132]. Further, the β CaSiO3/PDLGA composite has been 
reported to induce the phosphorylation and activation of Akt and eNOS respec-
tively in HUVECs with a resultant increase in the synthesis and release of NO and 
VEGF. Further the bone regeneration study in the rabbit femur defect model using 
β CaSiO3/PDLGA composite has shown enhanced angiogenesis and osteogenesis 
[133]. Nano-hydroxyapatite has been reported to regulate the PI3K/Akt pathway for 
inhibiting migration and tube formation in HUVECs via inhibiting NO synthesis 
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and eNOS phosphorylation [134]. Similarly, calcium phosphate combined with 
electro spun poly (lactic acid) has been reported to promote VEGF expression in 
endothelial cells. It has also been reported to support vascular development and 
bone regeneration when injected subcutaneously in mice, by promoting the expres-
sion of proangiogenic factors like VEGF, IGF-2, GM-CSF, IL-1 beta, IL-6, IL-12p70 
etc. [135]. Similarly, Nano bioactive glass, characterized by higher surface area 
and three-dimensional channel structure, is another material that could promote 
angiogenesis and bone regeneration [136, 137].

Nanomaterials can also act as carrier tools for different pro angiogenic 
small molecules and proteins like deferoxamine, adrenomedullin, VEGF etc. 
For example, Mesoporous silicate nanoparticles (MSNs) incorporated-3D 
nanofibrous gelatin (GF) scaffold has been employed for the dual-delivery of 
bone morphogenetic protein-2 (BMP2) and deferoxamine (DFO). DFO, being 
a hypoxia-mimetic drug, could trigger the stabilization of HIF-1α, and initiate 
subsequent angiogenesis. Further, it has been shown that DFO could signifi-
cantly enhance BMP2 induced osteogenic differentiation in mouse and human 
stem cell models [138].

Ionic components have been utilized for the modification of vascularized 
bone tissue engineering scaffold. The Copper based nanomaterials could pro-
mote the expression level of VEGF, which in turn promoted the proliferation 
of ECs. Nano-structured surfaces on the Hydroxyapatite scaffolds in copper 
ion (Cu2+) containing solutions under hydrothermal conditions could affect EC 
proliferation. Further, the nano-structured surfaces on the Hydroxyapatite scaf-
folds, promoted angiogenesis and bone regeneration. Dexamethasone (DEX), 
an osteogenic inducer combined with biphasic calcium phosphate nanoparticle 
(BCP NPs) scaffold, was found to induce the expression of VEGF and VEGFR2 
and supported bone regeneration. The micro-grooves present in the scaffolds 
managed the assembly of HUVECs into tubular structures and promoted angio-
genesis [139]. The gene encapsulated magnetic microspheres have also been used 
as a promising delivery system. For instance, introduction of VEGF165 with 
superparamagnetic (nano-Fe3O4) chitosan, induced in vitro and in vivo angiogen-
esis and bone regeneration [140].

The AuNPs have also been reported to induce angiogenesis during  osteogenesis. 
AuNPs exhibited differences in angiogenic activity based on their surface charges 
and the presence of functional groups. The Gene profiling data revealed that 
in comparison with the cells (hMSCs) treated with AuNPs possessing amine or 
hydroxyl functional groups (AuNPeNH2 or AuNPeOH), the cells treated with 
carboxyl group containing AuNPs (AuNPeCOOH) showed augmented expression 
levels of TGFβ and FGF-2, which in turn promoted cell proliferation over osteogenic 
differentiation [141].

3.6 Nerve tissue degeneration

Nerve tissue degeneration is a critical clinical challenge that leads to diseases like 
trauma or permanent paralysis, so research advancement in the field of nerve tissue 
regeneration is quite necessary. In the recent years, the applications of nanomateri-
als have received much attention from the research community focusing on nerve 
tissue repair.

The process of angiogenesis plays key role in supplying nutrients to the nerve 
tissue which in turn helps to repair segmental nerve defects. Recently, Lopez-
Dolado et al. have designed a 3D scaffold containing partially reduced graphene 
oxide, which when implanted in the injured site in the spinal cord of a rat model, a 
remarkable induction in angiogenesis and axon regeneration was observed [142]. 
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Further, GO/polycaprolactone (PCL) nano scaffolds have been implicated to 
promote angiogenesis by modulating Akt-eNOS-VEGF signaling pathway and it 
facilitated peripheral nerve regeneration in-vivo [143].

In addition, Xu et al. have formulated an acellular spinal cord scaffold 
(ASCS), namely, V-ASCS, for the sustained delivery of VEGF, and it was com-
posed of VEGF165 encapsulated PLGA nanoparticles conjugated with ASCS. 
When V-ASCS was implanted at the injury site in a rat spinal cord hemisection 
model, it rendered significant progress in neovascularization [144]. Wen et al. 
fabricated a hyaluronic acid scaffold with brain-derived neurotrophic factor and 
VEGF loaded PLGA microspheres, which promoted angiogenesis and nerve fiber 
regeneration when implanted at the injured site in the spinal cord of rat model 
[145]. Yu and his co-workers have formulated PLGA microspheres encapsulated 
with VEGF, angiopoietin-1 and bFGF, and these angiogenic microspheres could 
release the angiogenic factors in a sustained fashion, which then induced angio-
genesis and neurogenesis when administered at the injured site in the spinal cord 
of rat model [146].

Jian et al. have fabricated a nanohybrid hydrogel containing sulfated glycos-
aminoglycan-based polyelectrolyte complex nanoparticles (PCN), and it could 
accelerate neurogenesis and angiogenesis in in-vivo ischemic stroke model [147]. 
Amorphous non-fibrous hydrogel comprised of hyaluronic acid containing high 
cluster VEGF, when injected directly within the stroke cavity, stimulated the forma-
tion of a vascular and neuronal structures, that preceded to behavioral improve-
ment in vivo [148].

Delivery of superparamagnetic iron oxide nanoparticle labeled Endothelial 
progenitor cells (EPCs) was found to induce the formation of vessel-like structures 
by the production of VEGF and FGF [149]. Similarly, superparamagnetic iron oxide 
(SPIO)-Au core-shell NPs incorporated with nerve growth factor (NGF) have been 
implicated to promote neuron growth and differentiation [150].

4. Conclusion

Aberrancy associated with angiogenesis pave the way for the progression of a 
number of diseases like tumor, cardio vascular diseases, diabetic retinopathy, age 
related macular degeneration etc. So, targeting angiogenesis presents itself as one of 
the key therapeutic strategies to tackle such complications. The currently available 
therapies though beneficial, do possess some limitations like acquisition of drug 
resistance by cells, fast decay of protein drugs by protease action, off target effects 
leading to decreased drug efficacy etc. Different candidate nanomaterials were 
implicated to possess anti- angiogenic properties, which were tested in vitro and 
in vivo to explore their additional properties like precise targeting of pathological 
angiogenesis, cellular uptake, efficacy etc. Nanoparticles have also been utilized 
as carrier tools for drug delivery. Surface modification of nanoparticles with 
RGD, VEGF etc. has reinforced them with specific targeting, internalization and 
sustained drug delivery. Growth factor encapsulated nanoparticle-based scaffolds 
were fabricated by different groups, to effectuate wound healing, osteogenesis 
and nerve tissue regeneration in in vivo models. On the whole, the application of 
nanomaterial-based formulations in pro or anti angiogenic therapy is a rewarding 
strategy for the treatment of complications associated with aberrant angiogenesis, 
which however, requires more explorations for translating from bench to bedside. 
The candidate disorders associated with aberrant angiogenesis and various applica-
tions of nanomaterials for the treatment of such disorders have been represented 
schematically in Figure 3.
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Figure 3. 
Nanomaterial based formulations for the treatment of pathological conditions with aberrant angiogenesis. 
Abnormal angiogenesis promotes the progression of different diseases like tumor, cardiovascular disease, chronic 
wounds, diabetic retinopathy, wet type age related macular regeneration, bone and nerve tissue degeneration 
etc. nanomaterials possessing intrinsic pro- or anti- angiogenic property could be utilized individually or 
as a part of biodegradable polymer based-scaffolds for the treatment of such disorders. Different candidate 
nanoparticles with surface modifications with peptides like arginine-glycine-aspartate (RGD) and vascular 
endothelial growth factor (VEGF), could be utilized as carrier tools for targeted drug delivery.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



15

Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic…
DOI: http://dx.doi.org/10.5772/intechopen.94151

References

[1] Ribatti D. The discovery of tumor 
angiogenesis factors: a historical 
overview. In: Ribatti. D, editor. Tumor 
Angiogenesis Assays: Methods and 
Protocols. New York: Springer New 
York. 2016; 1464:1-12.

[2] Carmeliet P. Mechanisms of 
angiogenesis and arteriogenesis. Nat 
Med. 2000; 6:389-395.

[3] Carmeliet P. Angiogenesis in health 
and disease. Nat Med. 2003; 9:653-660.

[4] Ellis LM and Fidler IJ. Angiogenesis 
and metastasis. European Journal of 
Cancer.1996; 32: 2451-2460

[5] Bussolino F, Mantovani A, Persico G. 
Molecular mechanisms of blood vessel 
formation. Trends Biochem Sci.1997; 
22:251-256.

[6] Mousa SA, Arias HR, Davis PJ. Role 
of non-neuronal nicotinic acetylcholine 
receptors in angiogenesis modulation. 
In: Mousa SA, Davis PJ, editors. 
Angiogenesis Modulations in Health 
and Disease: Practical Applications of 
Pro- and Anti-angiogenesis Targets. 
Dordrecht: Springer Netherlands. 
2013:55-75.

[7] Gacche RN and Meshram RJ. 
Angiogenic factors as potential drug 
target: efficacy and limitations of anti-
angiogenic therapy. Biochim Biophys 
Acta Rev Cancer. 2014; 1846:161-179.

[8] Hurwitz H, Fehrenbacher L, 
Novotny W, Cartwright T, Hainsworth J, 
Heim W, Berlin J, Baron A, Griffing S, 
Holmgren E, Ferrara N, Fyfe G, Rogers B, 
Ross R, Kabbinavar F. Bevacizumab plus 
irinotecan, fluorouracil, and leucovorin 
for metastatic colorectal cancer. N. Engl. 
J. Med. 2004; 350:2335-2342.

[9] Gragoudas ES, Adamis AP, 
Cunningham ET, Feinsod M, Guyer DR. 
Pegaptanib for neovascular age-related 

macular degeneration. N. Engl. J. Med. 
2004; 351: 2805-2816.

[10] Barui AK, Nethi SK, Haque S,  
Basuthakur P, Patra CR. Recent 
Development of Metal Nanoparticles 
for Angiogenesis Study and Their 
Therapeutic Applications. ACS Appl. 
Bio Mater. 2019; 2:5492-5511.

[11] Min YZ, Caster JM, Eblan MJ, 
Wang AZ. Clinical Translation of 
Nanomedicine. Chem. Rev. 2015; 
115:11147-11190.

[12] Jeevanandam J, Barhoum A,  
Chan YS, Dufresne A, Danquah MK.  
Review on nanoparticles and 
nanostructured materials: history, 
sources, toxicity and regulations. 
Beilstein J Nanotechnol. 2018; 9: 
1050-1074.

[13] El-Toni AM, Habila MA,  
Labis JP, Alothman ZA, 
Alhoshan M, Elzatahry AA, Zhang F. 
Design, synthesis and applications 
of core–shell, hollow core, and nano 
rattle multifunctional nanostructures. 
Nanoscale. 2016;8: 2510-2531.

[14] Mourdikoudis S, Pallares RM, 
Thanh NTK. Characterization techniques 
for nanoparticles: comparison and 
complementarity upon studying 
nanoparticle properties. Nanoscale. 
2018;10: 12871-12934.

[15] Khan I, Saeed K, Khan I. 
Nanoparticles: Properties, applications 
and toxicities. Arabian Journal of 
Chemistry.2019;12: 908-931.

[16] Nune SK, Gunda P, Thallapally PK, 
Lin Y-Y, Forrest mL, Berkland CJ. 
Nanoparticles for biomedical imaging. 
Expert Opin Drug Deliv. 2009;6: 
1175-1194.

[17] Shereema RM, Sankar V, Raghu KG, 
Rao TP, Shankar SS. One step green 



Theranostics - An Old Concept in New Clothing

16

synthesis of carbon quantum dots 
and its application towards the 
bioelectroanalytical and biolabeling 
studies, Electrochimica Acta. 2015; 182: 
588-595.

[18] Mohammadi MR, 
Nojoomi A, Mozafari M, Dubnika A, 
Inayathullah M, Rajadas J. Nanomaterials 
engineering for drug delivery: a 
hybridization approach, J. Mater. Chem. 
B. 2017;5: 3995-4018.

[19] Shereema RM, Nambiar SR, 
Shankar SS, Rao TP. ceo2–MWCNT 
nanocomposite based electrochemical 
sensor for acetaldehyde. Anal. Methods. 
2015; 7: 4912-4918.

[20] Neouze M-A and 
Schubert U. Surface Modification 
and Functionalization of Metal and 
Metal Oxide Nanoparticles by Organic 
Ligands, Monatshefte für Chemie. 2008; 
139:183-195.

[21] Ali A, Zafar H, Zia M, Haq I, 
Phull AR, Ali JS, Hussain A. Synthesis, 
characterization, applications, and 
challenges of iron oxide nanoparticles. 
Nanotechnology, Science and 
Applications. 2016; 9: 49-67.

[22] Patel KD, Singh RK, Kim HW, 
Carbon-based nanomaterials as an 
emerging platform for theranostics. 
Mater. Horiz. 2019; 6: 434-469.

[23] Notarianni M, Liu J, Vernon K, 
Motta N. Synthesis and applications 
of carbon nanomaterials for energy 
generation and storage. Beilstein J. 
Nanotechnol. 2016; 7: 149-196.

[24] Shereema RM, Rao TP, 
Kumar SVB, Sruthi TV, Vishnu R, 
Prabhu GRD, Shankar SS. Individual 
and simultaneous electrochemical 
determination of metanil yellow and 
curcumin on carbon quantum dots 
based glassy carbon electrode. Materials 
Science & Engineering C. 2018; 
93:21-27.

[25] Banik BL, Fattahi P, 
Brown JL. Polymeric nanoparticles: 
the future of nanomedicine. Nanomed 
Nanobiotechnol. 2016, 8:271-299.

[26] Thomas SC, Harshita, Mishra PK, 
Talegaonkar S. Ceramic nanoparticles: 
fabrication methods and applications in 
drug delivery. Curr Pharm Des. 2015; 21: 
6165-6188.

[27] Jung D-R, Kim J, Nahm C, 
Choi H, Nam S, Park B. Review Paper: 
Semiconductor Nanoparticles with 
Surface Passivation and Surface 
Plasmon. Electronic Materials Letters. 
2011; 7:185-194.

[28] Feng L and Mumper RJ. A critical 
review of lipid-based nanoparticles for 
taxane delivery. Cancer Letters. 2012; 
334:157-175.

[29] Carmeliet P. Angiogenesis in health 
and disease. Nature Medicine. 2003; 9: 
653-660.

[30] Van Belle E, Rivard A, Chen D, 
Silver M, Bunting F, Ferrara N, 
Symes JF, Bauters C, Isner JM. 
Hypercholesterolemia Attenuates 
Angiogenesis but Does Not Preclude 
Augmentation by Angiogenic Cytokines. 
Circulation. 1997; 96: 2667-2674.

[31] LeCouter J, Kowalski J, 
Foster J, Hass P, Zhang Z, Dillard-Telm L, 
Frantz G, Rangell L, DeGuzman L, 
Keller GA, Peale F, Gurney A, Hillan KJ, 
Ferrara N. Identification of an angiogenic 
mitogen selective for endocrine gland 
endothelium. Nature. 2001; 412: 
877-884.

[32] Oosthuyse B, Moons L, Storkebaum 
E et al. Deletion of the hypoxia-response 
element in the vascular endothelial 
growth factor promoter causes motor 
neuron degeneration. Nat Genet.2001; 
28:131-138.

[33] Jenkinson L, Bardhan KD, 
Atherton J, Kalia N. Helicobacter 



17

Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic…
DOI: http://dx.doi.org/10.5772/intechopen.94151

pylori prevents proliferative stage of 
angiogenesis in vitro: role of cytokines. 
Dig.Dis.Sci. 2002; 47: 1857-1862.

[34] Folkman J. Tumor angiogenesis: 
therapeutic implications. N Engl J Med. 
1971; 285:1182-1186.

[35] Folkman J: Incipient angiogenesis 1. 
J Natl Cancer Inst. 2000; 92:94-95

[36] Naumov GN, Akslen LA, Folkman 
J: Role of angiogenesis in human tumor 
dormancy: animal models of the 
angiogenic switch. Cell Cycle. 2006; 
5:1779-1787

[37] Hashemi Goradel N, 
Ghiyami-Hour F, Jahangiri S, et al. 
Nanoparticles as new tools for inhibition 
of cancer angiogenesis. J Cell Physiol. 
2018; 233:2902-2910.

[38] Banerjee D, Harfouche R, 
Sengupta S. Nanotechnology-mediated 
targeting of tumor angiogenesis. Vasc 
Cell. 2011; 3: 3.

[39] Peer D, Karp JM, Hong S, 
Farokhzad OC, Margalit R, Langer R: 
Nanocarriers as an emerging platform 
for cancer therapy. Nat Nanotechnol. 
2007; 2:751-760.

[40] Ferrara N: VEGF as a therapeutic 
target in cancer. Oncology. 2005; 
69:11-16.

[41] Brigger I, Dubernet C, Couvreur P. 
Nanoparticles in cancer therapy and 
diagnosis. Advanced Drug Delivery 
Reviews. 2002; 54:631-651.

[42] Couvreur P, Vauthier C: 
Nanotechnology: intelligent design to 
treat complex disease. Pharm Res. 2006; 
23:1417-1450.

[43] Sengupta S, Eavarone D, Capila I,  
Zhao G, Watson N, Kiziltepe T, 
Sasisekharan R: Temporal targeting of 
tumour cells and neovasculature with 
a nanoscale delivery system. Nature. 
2005; 436:568-572.

[44] Chaudhuri P, Harfouche R, Soni S, 
Hentschel DM, Sengupta S: Shape effect 
of carbon nanovectors on angiogenesis. 
ACS Nano. 2010; 4:574-582.

[45] Harfouche R, Basu S, 
Soni S, Hentschel DM, Mashelkar RA, 
Sengupta S. Nanoparticle-mediated 
targeting of phosphatidylinositol-3-
kinase signaling inhibits angiogenesis. 
Angiogenesis. 2009; 12:325-338.

[46] Satchi-Fainaro R, Mamluk R, 
Wang L, Short SM, Nagy JA, Feng D, 
Dvorak AM, Dvorak HF, Puder M, 
Mukhopadhyay D, Folkman J: Inhibition 
of vessel permeability by TNP-470 
and its polymer conjugate, caplostatin. 
Cancer Cell. 2005; 7:251-261.

[47] Satchi-Fainaro R, Puder M, 
Davies JW, Tran HT, Sampson DA, 
Greene AK, Corfas G, Folkman J: 
Targeting angiogenesis with a conjugate 
of HPMA copolymer and TNP-470. Nat 
Med. 2004; 10:255-261.

[48] Xie J, Shen Z, Li KC, Danthi N: 
Tumor angiogenic endothelial cell 
targeting by a novel integrin-targeted 
nanoparticle. Int J Nanomedicine. 2007; 
2:479-485.

[49] Costa PM, Cardoso AL, Custodia C, 
Cunha P, Pereira de Almeida L, Pedroso 
de Lima MC. MiRNA-21 silencing 
mediated by tumortargeted 
nanoparticles combined with sunitinib: 
A new multimodal gene therapy 
approach for glioblastoma. Journal of 
Control Release. 2015; 207:31-39.

[50] Sruthi TV, Edatt L, Raji GR,  
Kunhiraman H, Shankar SS,  
Shankar V, Ramachandran V, 
Poyyakkara A, Kumar SVB. Horizontal 
transfer of miR-23a from hypoxic tumor 
cell colonies can induce angiogenesis. 
J Cell Physiol. 2018; 233:3498-3514.

[51] Arvizo RR, Rana S,  
Miranda OR, Bhattacharya R, 
Rotello VM, Mukherjee P. Mechanism 



Theranostics - An Old Concept in New Clothing

18

of anti-angiogenic property of gold 
nanoparticles: Role of nanoparticle size 
and surface charge. Nanomedicine: 
Nanotechnology, Biology and Medicine. 
2011; 7:580-587.

[52] Arvizo, RR, Saha S, Wang E,  
Robertson JD, Bhattacharya R, 
Mukherjee P. Inhibition of tumor 
growth and metastasis by a self-
therapeutic nanoparticle. Proceedings 
of the National Academy of Sciences. 
2013; 110:6700-6705.

[53] Balakrishnan S, Bhat F, Raja 
Singh P, et al. Gold nanoparticle–
conjugated quercetin inhibits epithelial 
mesenchymal transition, angiogenesis 
and invasiveness via EGFR/VEGFR-2-
mediated pathway in breast cancer. Cell 
Proliferation. 2016; 49:678-697.

[54] Li W, Zhao X, Du B, et al. Gold 
nanoparticle-mediated targeted delivery 
of recombinant human endostatin 
normalizes tumour vasculature and 
improves cancer therapy. Scientific 
Reports. 2016; 6: 30619.

[55] Baharara J, Namvar F, Mousavi M,  
Ramezani T, Mohamad R. Anti-
angiogenesis effect of biogenic silver 
nanoparticles synthesized using saliva 
officinalis on chick chorioalantoic 
membrane (CAM). Molecules. 2014; 
19:13498-13508.

[56] Khandia R, Munjal A, Bangrey R, 
Mehra R, Dhama K, Sharma N. Evaluation 
of silver nanoparticle mediated 
reduction of neovascularisation 
(angiogenesis) in chicken model. 
Advances in Animal and Veterinary 
Sciences. 2015; 3:372-376.

[57] Yang T, Yao Q , Cao F, Liu Q , Liu B, 
Wang X-H. Silver nanoparticles inhibit 
the function of hypoxia-inducible 
factor-1 and target genes: Insight into 
the cytotoxicity and antiangiogenesis. 
International Journal of Nanomedicine. 
2016; 11:6679.

[58] Xu Y, Wen Z, Xu Z. Chitosan 
nanoparticles inhibit the growth of 
human hepatocellular carcinoma 
xenografts through an antiangiogenic 
mechanism. Anticancer Research. 2009; 
29:5103-5109.

[59] Jin H, Pi J, Yang F, et al.  
Ursolic acid-loaded chitosan 
nanoparticles induce potent anti-
angiogenesis in tumor. Applied 
Microbiology and Biotechnology. 2016; 
100:6643-6652.

[60] Şalva E, Turan SO, Kabasakal L, 
Alan S, Özkan N, Eren F, Akbuğa J. 
Investigation of the therapeutic efficacy 
of codelivery of psiRNA-Vascular 
endothelial growth factor and pIL-4 
into chitosan nanoparticles in the Breast 
tumor model. Journal of Pharmaceutical 
Sciences. 2014; 103:785-795.

[61] Sun D, Liu Y, Yu Q , et al. Inhibition 
of tumor growth and vasculature 
and fluorescence imaging using 
functionalized ruthenium-thiol 
protected selenium nanoparticles. 
Biomaterials. 2014; 35:1572-1583.

[62] Yu Q , Liu Y, Cao C, Le F, Qin X, 
Sun D, Liu J. The use of Ph sensitive 
functional selenium nanoparticles 
shows enhanced in vivo VEGF-siRNA 
silencing and fluorescence imaging. 
Nanoscale. 2014; 6: 9279-9292.

[63] Chen J, Patil S, Seal S, McGinnis JF. 
Rare earth nanoparticles prevent retinal 
degeneration induced by intracellular 
peroxides. Nature Nanotechnology. 
2006; 1:142-150.

[64] Lord MS, Tsoi B, Gunawan C,  
Teoh WY, Amal R, Whitelock JM.  
Anti-angiogenic activity of heparin 
functionalised cerium oxide 
nanoparticles. Biomaterials. 2013; 
34:8808-8818.

[65] Giri S, Karakoti A, Graham RP, et al. 
Nanoceria: A rare-earth nanoparticle as 
a novel antiangiogenic therapeutic agent 



19

Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic…
DOI: http://dx.doi.org/10.5772/intechopen.94151

in ovarian cancer. PLoS ONE. 2013; 8: 
e54578.

[66] Hijaz M, Das S, Mert I, et al. 
Folic acid tagged nanoceria as a novel 
therapeutic agent in ovarian cancer. 
BMC Cancer. 2016; 16:220.

[67] Das S, Singh S, Dowding JM, et 
al. The induction of angiogenesis by 
cerium oxide nanoparticles through the 
modulation of oxygen in intracellular 
environments. Biomaterials. 2012; 33: 
7746-7755.

[68] Jo DH, Kim JH, Yu YS, Lee TG, 
Kim JH. Antiangiogenic effect of 
silicate nanoparticle on retinal 
neovascularization induced by 
vascular endothelial growth factor. 
Nanomedicine: Nanotechnology, 
Biology and Medicine. 2012; 8:784-791.

[69] Zhang M and Jiang L. Doxorubicin 
hydrochloride-loaded mesoporous silica 
nanoparticles inhibit non-Small cell 
lung cancer metastasis by suppressing 
VEGF-Mediated angiogenesis. Journal 
of Biomedical Nanotechnology. 2016; 
12:1975-1986.

[70] Hu H, You Y, He L, Chen, T. The 
rational design of NAMI-A loaded 
mesoporous silica nanoparticles as 
antiangiogenic nanosystems. Journal 
of Materials Chemistry B. 2015; 
3:6338-6346.

[71] Chako L, Poyyakkara A, 
Kumar VBS, Aneesh PM. MoS2-ZnO 
nano composites as highly functional 
agents for anti-angiogenic and anti-
cancer theranostics. J. Mater. Chem. B. 
2018; 6:3048-3057.

[72] Yalcin M, Dyskin E, Lansing L, et al. 
Tetraiodothyroacetic acid (tetrac) and 
nanoparticulate tetrac arrest growth of 
medullary carcinoma of the thyroid. 
The Journal of Clinical Endocrinology 
& Metabolism. 2010; 95:1972-1980.

[73] Shereema RM, Sruthi TV, 
Kumar VBS, Rao TP, Shankar SS. 

Angiogenic profiling of synthesized 
Carbon Quantum Dotes. Biochemistry. 
2015; 54:6352-6356.

[74] Namara KM, Alzubaidi H, 
Jackson JK. Cardiovascular disease 
as a leading cause of death: how are 
pharmacists getting involved? Integr 
Pharm Res Pract. 2019; 8: 1-11

[75] Stewart J, Manmathan G, 
Wilkinson P. Primary prevention of 
cardiovascular disease: A review of 
contemporary guidance and literature. 
JRSM Cardiovasc Dis. 2017; 6: 
2048004016687211.

[76] Gallino A, Aboyans V, Diehm C, 
et al. European Society of Cardiology 
Working Group on Peripheral 
Circulation. Non-coronary 
atherosclerosis. Eur Heart J. 2014; 
35:1112-1119.

[77] Ross R. Atherosclerosis–an 
inflammatory disease.N Engl J Med. 
1999; 340:115-126.

[78] Sueishi K, Yonemitsu Y, 
Nakagawa K, Kaneda Y, Kumamoto M, 
Nakashima Y. Atherosclerosis and 
angiogenesis. Its pathophysiological 
significance in humans as well as in 
an animal model induced by the gene 
transfer of vascular endothelial growth 
factor. Ann. NY Acad. Sci.1997; 811: 
322-324.

[79] Moreno PR, Purushothaman 
KR, Sirol M, Levy AP, Fuster V. 
Neovascularization in human 
atherosclerosis. Circulation. 2006; 113: 
2245-2252.

[80] Stupack DG, Cheresh DA. Integrins 
and angiogenesis. Curr. Top. Dev. Biol. 
2004; 64: 207-238.

[81] Almutairi A, Rossin R, Shokeen M, 
et al. Biodegradable dendritic positron-
emitting nanoprobes for the noninvasive 
imaging of angiogenesis. Proc Natl Acad 
Sci USA. 2009; 106:685-690.



Theranostics - An Old Concept in New Clothing

20

[82] Liu Y, Pressly ED, Abendschein DR, 
et al. Targeting angiogenesis using 
a C-type atrial natriuretic factor-
conjugated nanoprobe and PET. J Nucl 
Med. 2011; 52:1956-1963.

[83] Winter PM, Morawski AM,  
Caruthers SD, Fuhrhop RW, 
Zhang H, Williams TA, Allen JS, 
Lacy EK, Robertson JD, Lanza GM, 
Wickline SA. Molecular imaging 
of angiogenesis in early-stage 
atherosclerosis with alpha(v)beta3- 
integrin-targeted nanoparticles. 
Circulation. 2003; 108: 2270-2274.

[84] Winter PM, Neubauer AM, 
Caruthers SD, Harris TD, Robertson JD, 
Williams TA, Schmieder AH, Hu G, 
Allen JS, Lacy EK, Zhang H, Wickline SA, 
Lanza GM. Endothelial alpha(v)
beta3 integrin-targeted fumagillin 
nanoparticles inhibit angiogenesis in 
atherosclerosis. Arterioscler. Thromb. 
Vasc. Biol. 2006; 26: 2103-2109.

[85] Singh S, Young A, McNaught CE. 
The physiology of wound healing. 
Surgery. 2017; 35:473-477.

[86] Patel S, Srivastava S, Singh MR, 
Singh D. Mechanistic insight into 
diabetic wounds: Pathogenesis, 
molecular targets and treatment 
strategies to pace wound healing. 
Biomedicine & Pharmacotherapy. 2019; 
112:108615.

[87] Vargas GE, Durand LAH, Cadena V, 
et al. Effect of nano-sized bioactive glass 
particles on the angiogenic properties of 
collagen based composites. J Mater Sci 
Mater Med. 2013; 24:1261-1269.

[88] Kargozar S, Baino F, Hamzehlou S, 
Hill RG, Mozafari M. Bioactive glasses: 
sprouting angiogenesis in tissue 
engineering. Trends Biotechnol. 2018; 
36:430-444.

[89] Kargozar S, Lotfibakhshaiesh N, 
Ai J, et al. Strontium and cobalt-
substituted bioactive glasses seeded 

with human umbilical cord perivascular 
cells to promote bone regeneration via 
enhanced osteogenic and angiogenic 
activities. Acta Biomater. 2017; 58: 
502-514.

[90] Danieland MC and Astruc D. Gold 
nanoparticles: assembly, supramolecular 
chemistry, quantum-size-related 
properties, and applications toward 
biology, catalysis, and nanotechnology. 
Chem Rev. 2004; 104: 293-346.

[91] Leu JG, Chen SA, Chen HM, et 
al. The effects of gold nanoparticles 
in wound healing with antioxidant 
epigallocatechin gallate and alpha-lipoic 
acid. Nanomedicine. 2012; 8:767-775.

[92] Poljsak B, Šuput D, Milisav I. 
Achieving the balance between ROS and 
antioxidants: when to use the synthetic 
antioxidants. Oxid Med Cell Longev. 
2013; 2013:956792.

[93] Roma-Rodrigues C, 
Heuer-Jungemann A, Fernandes AR, 
Kanaras AG, Baptista PV. Peptide-
coated gold nanoparticles for 
modulation of angiogenesis in vivo. 
International journal of nanomedicine. 
2016; 11:2633-2639.

[94] Zarubova J, Hasani-Sadrabadi MM, 
Bacakova L, Li S. Nano-in-Micro Dual 
Delivery Platform for Chronic Wound 
Healing Applications. Micromachines. 
2020; 11:158.

[95] Xu H, Lv F, Zhang Y, Yi Z, Ke Q , 
Wu C, Liu M, Chang J. Hierarchically 
micro-patterned nanofibrous scaffolds 
with a nanosized bio-glass surface for 
accelerating wound healing. Nanoscale. 
2015; 7:18446-18452.

[96] Xie Z, Paras CB, Weng H,  
Punnakitikashem P, Su LC, Vu K, 
Tang L, Yang J, Nguyen KT.  
Dual growth factor releasing multi-
functional nanofibers for wound 
healing. Acta biomaterialia. 2013; 
9:9351-9359.



21

Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic…
DOI: http://dx.doi.org/10.5772/intechopen.94151

[97] Lino MM, Simões S, Vilaça A, 
Antunes H, Zonari A, Ferreira L. 
Modulation of angiogenic activity 
by light-activatable miRNA-loaded 
nanocarriers. ACS nano. 2018; 
12:5207-5220.

[98] Battigelli A, Menard-Moyon C, Da 
Ros T, Prato M, Bianco A. Endowing 
Carbon Nanotubes with Biological and 
Biomedical Properties by Chemical 
Modifications. Adv. Drug Delivery Rev. 
2013; 65:1899-1920.

[99] Meng J, Li X, Wang C, Guo H, 
Liu J, Xu H. Carbon nanotubes activate 
macrophages into a M1/M2 mixed 
status: recruiting naive macrophages 
and supporting angiogenesis. ACS 
applied materials & interfaces. 2015; 
7:3180-3188.

[100] Liu Z, Feng X, Wang H, Ma J, 
Liu W, Cui D, Gu Y, Tang R. Carbon 
nanotubes as VEGF carriers to 
improve the early vascularization of 
porcine small intestinal submucosa 
in abdominal wall defect repair. 
International journal of nanomedicine. 
2014; 9:1275

[101] Zhao H, Ding R, Zhao X, et al. 
Graphene-based nanomaterials for drug 
and/or gene delivery, bioimaging, and 
tissue engineering. Drug Discov Today. 
2017; 22: 1302-1317.

[102] Terzopoulou Z, Kyzas GZ,  
Bikiaris DN. Recent advances in 
nanocomposite materials of graphene 
derivatives with polysaccharides. 
Materials. 2015; 8:652-683.

[103] Ur Rehman SR, Augustine R, 
Zahid AA, Ahmed R, Tariq M, Hasan A. 
Reduced Graphene Oxide Incorporated 
GelMA Hydrogel Promotes 
Angiogenesis For Wound Healing 
Applications. International Journal of 
Nanomedicine. 2019; 14:9603-9617.

[104] Barui AK, Veeriah V, Mukherjee S,  
Manna J, Patel AK, Patra S, Pal K, 

Murali S, Rana RK, Chatterjee S, Patra 
CR . Zinc oxide nanoflowers make 
new blood vessels. Nanoscale. 2012; 
4:7861-7869.

[105] Chigurupati S, Mughal MR, 
Okun E, Das S, Kumar A, McCaffery M, 
Seal S, Mattson MP. Effects of cerium 
oxide nanoparticles on the growth 
of keratinocytes, fibroblasts and 
vascular endothelial cells in cutaneous 
wound healing. Biomaterials. 2013; 
34:2194-2201.

[106] Abcouwer SF. Angiogenic factors 
and cytokines in diabetic retinopathy. J 
Clin Cell Immunol. 2013; 1: 1-12.

[107] Penn JS, Madan A, Caldwell RB, 
Bartoli M, Caldwell RW, Hartnett ME. 
Vascular endothelial growth factor in 
eye disease. Progress in retinal and eye 
research. 2008; 27:331-371.

[108] Salvi SM, Akhtar S, Currie Z. 
Ageing changes in the eye. Postgraduate 
Medical Journal. 2006;82:581-587.

[109] Amato R, Catalani E, Dal 
Monte M, et al. Autophagy-mediated 
neuroprotection induced by octreotide 
in an ex vivo model of early diabetic 
retinopathy. Pharmacol. 2018; 
128:167-178.

[110] Bisht R, Mandal A, Jaiswal JK, 
Rupenthal ID. Nanocarrier mediated 
retinal drug delivery: overcoming ocular 
barriers to treat posterior eye diseases. 
Wiley Interdiscip. Rev. Nanomed. 
Nanobiotechnol. 2018; 10:10.1002/
wnan.1473.

[111] Jahangirian H, Kalantari K, 
Izadiyan Z, Rafiee-Moghaddam R, 
Shameli K, Webster TJ. A review of 
small molecules and drug delivery 
applications using gold and iron 
nanoparticles. Int. J. Nanomedicine. 
2019; 14:1633-1657.

[112] Cai J and Du B. Gold nanoparticles 
induce nanostructural reorganization 



Theranostics - An Old Concept in New Clothing

22

of VEGFR2 to repress angiogenesis. 
J. Biomed. Nanotechnol. 2013; 
9:1746-1756.

[113] Chan CM, Hsiao CY, Li HJ, Fang JY, 
Chang DC, Hung CF. The Inhibitory 
Effects of Gold Nanoparticles on VEGF-
A-Induced Cell Migration in Choroid-
Retina Endothelial Cells. International 
Journal of Molecular Sciences. 2020; 
21:109.

[114] Kim JH, Kim MH, Jo DH, Yu YS, 
Lee TG, Kim JH. The inhibition of 
retinal neovascularization by gold 
nanoparticles via suppression of 
VEGFR-2 activation. Biomaterials. 2011; 
32:1865-1871.

[115] Cao Y, Chen A, An SS, Ji RW, 
Davidson D, Llinas M. Kringle 5 of 
plasminogen is a novel inhibitor of 
endothelial cell growth. J Biol Chem. 
1997; 272:22924-22928.

[116] Zhang D, Kaufman PL, 
Gao G, Saunders RA, Ma JX: Intravitreal 
injection of plasminogen kringle 5, an 
endogenous angiogenic inhibitor, arrests 
retinal neovascularization in rats. 
Diabetologia. 2001; 44:757-765.

[117] Park K, Chen Y, Hu Y, Mayo AS, 
Kompella UB, Longeras R, Ma JX. 
Nanoparticle-mediated expression 
of an angiogenic inhibitor 
ameliorates ischemia-induced retinal 
neovascularization and diabetes-
induced retinal vascular leakage. 
Diabetes. 2009; 58:1902-1913.

[118] Qiu F, Meng T, Chen Q , Zhou K, 
Shao Y, Matlock G, Ma X, Wu W, Du Y, 
Wang X, Deng G. Fenofibrate-loaded 
biodegradable nanoparticles for the 
treatment of experimental diabetic 
retinopathy and neovascular age-related 
macular degeneration. Molecular 
pharmaceutics. 2019; 16:1958-1970.

[119] Amato R, Giannaccini M, Dal 
Monte M, Cammalleri M, Pini A, 
Raffa V, Lulli M, Casini G. Association 

of the Somatostatin Analog Octreotide 
with Magnetic Nanoparticles for 
Intraocular Delivery: A Possible 
Approach for the Treatment of 
Diabetic Retinopathy. Frontiers in 
Bioengineering and Biotechnology. 
2020; 8:144.

[120] Pollinger K, Hennig R, Ohlmann A, 
Fuchshofer R, Wenzel R, Breunig M, 
Tessmar J, Tamm ER, Goepferich A. 
Ligand-functionalized nanoparticles 
target endothelial cells in retinal 
capillaries after systemic application. 
Proceedings of the National Academy of 
Sciences. 2013; 110:6115-6120.

[121] Yandrapu SK, Upadhyay AK, 
Petrash JM, Kompella UB. Nanoparticles 
in porous microparticles prepared by 
supercritical infusion and pressure 
quench technology for sustained 
delivery of bevacizumab. Molecular 
pharmaceutics. 2013; 10:4676-4686.

[122] Luo L, Zhang X, Hirano Y, 
Tyagi P, Barabás P, Uehara H, Miya TR, 
Singh N, Archer B, Qazi Y, Jackman K. 
Targeted intraceptor nanoparticle 
therapy reduces angiogenesis and 
fibrosis in primate and murine macular 
degeneration. ACS nano. 2013; 
7:3264-3275.

[123] Palamoor M and Jablonski MM. 
Synthesis, characterization and in 
vitro studies of celecoxib-loaded poly 
(ortho ester) nanoparticles targeted 
for intraocular drug delivery. Colloids 
and Surfaces B: Biointerfaces. 2013; 112: 
474-482.

[124] Roupakia E, Markopoulos GS,  
Kolettas E. IL-12-mediated 
transcriptional regulation of matrix 
metalloproteinases. Biosci Rep. 2018; 
38:BSR20171420.

[125] Zeng L, Ma W, Shi L, Chen X, 
Wu R, Zhang Y, Chen H, Chen H. Poly 
(lactic-co-glycolic acid) nanoparticle-
mediated interleukin-12 delivery for 
the treatment of diabetic retinopathy. 



23

Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic…
DOI: http://dx.doi.org/10.5772/intechopen.94151

International journal of nanomedicine. 
2019; 14: 6357-6369.

[126] Colnot C, Romero DM, Huang S, 
Helms JA. Mechanisms of action of 
demineralized bone matrix in the repair 
of cortical bone defects. Clin Orthop 
Relat Res.2005; 435: 69-78.

[127] Childs SG. Osteonecrosis: death of 
bone cells. Orthopaedic Nursing. 2005; 
24:295-301.

[128] Lazzarini L, De Lalla F, Mader JT. 
Long bone osteomyelitis. Current 
infectious disease reports. 2002; 
4:439-445.

[129] Burkhardt R, Kettner G, 
Bohm W, Schmidmeier M, Schlag R, 
Frisch B, Mallmann B, Eisenmenger W, 
Gilg T. Changes in trabecular bone, 
hematopoiesis and bone marrow 
vessels in aplastic anemia, primary 
osteoporosis, and old age: a comparative 
histomorphometric study. Bone. 1987; 
8:157-164.

[130] Alagiakrishnan K, Juby A, 
Hanley D, Tymchak W, Sclater A. Role 
of vascular factors in osteoporosis. 
J Gerontol A Biol Sci Med Sci. 2003; 
58:362-366.

[131] Holmes B, Bulusu K, Plesniak M, 
Zhang LG. A synergistic approach to 
the design, fabrication and evaluation 
of 3D printed micro and nano featured 
scaffolds for vascularized bone 
tissue repair. Nanotechnology. 2016; 
27:064001.

[132] Kumar RA, Sivashanmugam A, 
Deepthi S, Bumgardner JD, Nair SV, 
Jayakumar R. Nano-fibrin stabilized 
CaSO4 crystals incorporated injectable 
chitin composite hydrogel for 
enhanced angiogenesis & osteogenesis. 
Carbohydrate polymers. 2016; 
140:144-153.

[133] Wang C, Lin K, Chang J, Sun J. 
Osteogenesis and angiogenesis induced 

by porous β-CaSiO3/PDLGA composite 
scaffold via activation of AMPK/ERK1/2 
and PI3K/Akt pathways. Biomaterials. 
2013; 34: 64-77.

[134] Shi X, Zhou K, Huang F, 
Wang C. Interaction of hydroxyapatite 
nanoparticles with endothelial cells: 
internalization and inhibition of 
angiogenesis in vitro through the PI3K/
Akt pathway. International journal of 
nanomedicine. 2017; 12:5781-5795.

[135] Oliveira H, Catros S, Boiziau C, 
Siadous R, Marti-Munoz J, Bareille R, 
Rey S, Castano O, Planell J, Amédée J, 
Engel E. The proangiogenic potential of 
a novel calcium releasing biomaterial: 
Impact on cell recruitment. Acta 
biomaterialia. 2016; 29:435-445.

[136] Kang MS, Lee NH, Singh RK, 
Mandakhbayar N, Perez RA, Lee JH, 
Kim HW. Nanocements produced 
from mesoporous bioactive glass 
nanoparticles. Biomaterials. 2018; 
162:183-199.

[137] Tian T, Xie W, Gao W, Wang G, 
Zeng L, Miao G, Lei B, Lin Z, Chen X. 
Micro-nano bioactive glass particles 
incorporated porous scaffold 
for promoting osteogenesis and 
angiogenesis in vitro. Frontiers in 
chemistry. 2019; 7:186.

[138] Yao Q , Liu Y, Selvaratnam B, 
Koodali RT, Sun H. Mesoporous silicate 
nanoparticles/3D nanofibrous scaffold-
mediated dual-drug delivery for bone 
tissue engineering. Journal of Controlled 
Release. 2018; 279: 69-78.

[139] Chen Y, Chen S, Kawazoe N, 
Chen G. Promoted angiogenesis and 
osteogenesis by dexamethasone-loaded 
calcium phosphatenanoparticles/
collagen composite scaffolds with 
microgroove networks. Scientific 
reports. 2018; 8:1-12.

[140] Luo C, Yang X, Li M, Huang H, 
Kang Q , Zhang X, Hui H, Zhang X, 



Theranostics - An Old Concept in New Clothing

24

Cen C, Luo Y, Xie L. A novel strategy for 
in vivo angiogenesis and osteogenesis: 
magnetic micro-movement in a bone 
scaffold. Artificial cells, nanomedicine, 
and biotechnology. 2018; 46:636-645.

[141] Kawazoe N and Chen G. Gold 
nanoparticles with different charge and 
moiety induce differential cell response 
on mesenchymal stem cell osteogenesis. 
Biomaterials. 2015; 54:226-236.

[142] López-Dolado E, 
González-Mayorga A, Gutiérrez MC, 
Serrano MC. Immunomodulatory 
and angiogenic responses induced by 
graphene oxide scaffolds in chronic 
spinal hemisected rats. Biomaterials. 
2016; 99:72-81.

[143] Qian Y, Song J, Zhao X, et al. 3D 
fabrication with integration molding 
of a graphene oxide/polycaprolactone 
nanoscaffold for neurite regeneration 
and angiogenesis. Adv Sci. 2018; 
5:1700499.

[144] Xu ZX, Zhang LQ , 
Wang CS, Chen RS, Li GS, Guo Y, 
Xu WH. Acellular spinal cord scaffold 
implantation promotes vascular 
remodeling with sustained delivery of 
VEGF in a rat spinal cord hemisection 
model. Current Neurovascular 
Research. 2017; 14:274-289.

[145] Wen Y, Yu S, Wu Y, et al. Spinal 
cord injury repair by implantation of 
structured hyaluronic acid scaffold 
with PLGA microspheres in the rat. Cell 
Tissue Res. 2016; 364:17-28.

[146] Yu S, Yao S, Wen Y, 
Wang Y, Wang H, Xu Q . Angiogenic 
microspheres promote neural 
regeneration and motor function 
recovery after spinal cord injury in rats. 
Scientific reports. 2016; 6:1-13.

[147] Jian W-H, Wang H-C, Kuan 
C-H, Chen M-H, Wu H-C, Sun J-S, 
Wang T-W. Glycosaminoglycan-based 
hybrid hydrogel encapsulated with 

polyelectrolyte complex nanoparticles 
for endogenous stem cell regulation in 
central nervous system regeneration. 
Biomaterials. 2018; 174:17-30.

[148] Nih LR, Gojgini S, Carmichael ST, 
Segura T. Dual-function injectable 
angiogenic biomaterial for the repair 
of brain tissue following stroke. Nature 
materials. 2018; 17:642-651.

[149] Carenza E, BarcelóV, 
Morancho A, Levander L, Boada C, 
Laromaine A, Roig A, Montaner J, 
Rosell A. In vitro angiogenic performance 
and in vivo brain targeting of 
magnetized endothelial progenitor 
cells for neurorepair therapies. 
Nanomedicine: Nanotechnology, 
Biology and Medicine. 2014; 10:225-234.

[150] Yuan M, Wang Y, Qin Y-X. 
Promoting neuroregeneration 
by applying dynamic magnetic 
fields to a novel nanomedicine: 
Superparamagnetic iron oxide (SPIO)-
gold nanoparticles bounded with nerve 
growth factor (NGF). Nanomedicine. 
2018; 14:1337-1347.


