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Abstract

Uterine fibroids, also known as uterine leiomyoma is the most common benign 
tumor of the uterus found in women of reproductive age. Uterine fibroids are the 
cause of major quality-of-life issues for approximately 25% of all women who suffer 
from clinically significant symptoms of uterine fibroid. Despite the prevalence of 
fibroid, currently, there are no effective treatment options for fibroid. The lack 
of understanding of the etiology of fibroid contributes to the scarcity of medical 
therapies available. Sex steroid hormones, dysregulation of cell signaling pathways, 
miRNA expression, and cytogenetic abnormalities may all implicate in fibroid 
etiology. Several herbal medicines have been used as anti-inflammation and antitu-
mor agents. All of them have a common capability to inhibit expression of pro-
inflammatory cytokines, proliferative genes, and pro-angiogenetic genes. Exploring 
herbal medicines as remedies lighten the hope of treatment. In the current review 
article, we discuss signal transduction pathways activated herbal medicines. We also 
address the possibility of using herbal medicines for uterine fibroid treatment.

Keywords: uterine fibroids, herbal medicines, curcumin, resveratrol, THSG, 
pycnogenol, AFE, EGCG

1. Background

Uterine fibroids are common benign muscle tumors of the uterus. It affects the 
normal life of thousands of women of childbearing age, especially non-Caucasian 
women, which can be caused by genetic and environmental factors. It is not usually 
fatal but can produce serious clinical symptoms. The prevalence of uterine fibroids is 
predicted to be approximately 70% depending on the population [1]. Clinical symp-
toms caused by uterine fibroid include pelvic pain or compression, abnormal uterine 
bleeding, gastrointestinal and voiding problems. It also produces pregnancy compli-
cations as well as fertility impairment. Since there are no effective medical therapies, 
invasive surgeries have become a clear option for the treatment of this tumor.

Studies on the whole genome of uterine fibroid indicate that there are many new 
signal transduction pathways and how gene nets play a role in uterine fibroid devel-
opment. Not only in its origin, the transcriptomic, and epigenetic profiles, as well 
as the impact of the inter-cell matrix are all involved in uterine fibroid growth [2]. 
Additionally, microRNA plays a role in regulating uterine fibroid pathogenesis [3]. 
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Nowadays, numerous treatments for fibroids are available. Therapies include con-
servative medications to invasive surgeries. Up to now, the regular therapy of uterine 
fibroid is surgery, but its negative impact on future fertility is evidenced. Therefore, 
selecting appropriate individualized therapy and augmented modifications to fit 
patient’s expectations are readily important. However, newly developing pharmaceu-
tical prospects have significant adverse effects, such as liver function impairment, hot 
flashes, bone density loss, endometrial changes, and inability to attempt conception 
during treatment [4].

Numbers of natural compounds are demonstrated effectively to treat uterine 
fibroids and to relieve their symptoms. In this review, we will discuss potential 
available herbal medicine compounds that may be beneficial for uterine fibroid 
patients, particularly those who plan to conceive during therapy or desire to pre-
serve their future fertility. Nonetheless, there is still no significant clinic evidence 
available so far. Therefore, it is highly recommended to obtain more clinical trials 
utilizing these compounds before endorsing widespread usage [5].

2. Mechanisms and signal transductions in uterine fibroid

As the pathogenesis of uterine fibroids has not been fully elucidated, many stud-
ies have been carried out in mechanisms involved in this area and are still ongoing. 
The involved mechanisms affect several categories of cellular and tissue functions. 
The presumptive identification of progenitor stem cells of uterine fibroids has 
produced fibroids and maternal junctions, providing new clues about the etiology 
of uterine fibroids [2]. There are two hypotheses raised for the development mecha-
nisms of uterine fibroid. However, they may cross-talk with each other intimately. 
The genetic hypothesis is focused primarily on the mutant mediator complex 
subunit 12 (MED12) genes [6], suggesting it onsets in the side population of the 
female reproductive system embryonic myoblasts and contributed rise to multiple 
small and medium fibroids later on [2]. Most studies on uterine fibroids have 
focused specifically on somatic mutations in the MED12 gene [6, 7]. According to 
the available data, this mutation has been confirmed in more than 70% of patients 
with uterine fibroids depending on different populations [6, 8]. Alternatively, the 
single and usually large-size fibroids are induced by predominantly epigenetic 
disorders in uterine fibroid steam cells, provoked by enhanced expression of the 
DNA hypomethylation in HMGA2 gene and epigenetic deregulation enhanced by 
hypoxia, muscle tension, or chromosome instability/aberrations (Table 1).

The life cycle of uterine fibroid is divided into two stages: transformation and 
benign tumor development [7, 57]. Mutations are sources for normal myometrial 
stem cells to transform into abnormal cells. Additionally, some other factors may 
also cause immunological changes [58] to lead to altered DNA repair and cell muta-
tion [59]. Finally, a mixture of early environmental exposure and hyperreactivity to 
estrogen may also play a role in fibroid development [60].

Reactive oxygen species (ROS) formed after exposure to oxidative stress and/or 
hypoxia are linked to the activation of a variety of signal molecules [61–66]. Various 
enzyme systems produce ROS, including the mitochondrial electron transport 
chain, cytochrome P450, lipoxygenase, cyclooxygenase, NADPH oxidase complex, 
and peroxisomes [61]. Hypoxia triggers many key adaptive changes that enable cell 
survival, including inhibition of apoptosis, changes in glucose metabolism, and 
angiogenic phenotypes [61]. Recent studies have shown that oxygen depletion pro-
motes mitochondria to increase more ROS production, and then activate signaling 
transduction pathways, such as hypoxia-inducible factor (HIF)-1α to promote cell 
survival and increase fibrotic growth sequentially [61].
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Curcumin Resveratrol THSG Pycnogenol Anoectochilus formosanus EGCG

ERK1/2 Inhibition  

[9, 10]

Activation [11]

Activation  

[12–15]

Inhibition [16]

Activation

Decrease expression 

levels [17]

Suppression [18]

Suppression [19] Inhibition [20]

Activation

PI3K Inhibition [21] Inhibition [22] Inhibition [23, 24] Activation [25] NA Activation [26]

Inhibition [27]

NF-κB Inhibition Inhibition Inhibition [16] Suppression [18] Activation [28]

Inhibition [19, 29]

Inhibition [20, 30]

STAT3 Inhibition Inhibition NA NA NA Inhibition [31]

AMPK Activation Activation Activation [32] Expression [33] Activation [34, 35] Activation [36, 37]

Nrf2 Activation Activation Activation

[16, 32, 38]

NA NA Activation [39]

PPAR Activation [40] NA Suppression [41] Suppression [42] Activation [36] Activation

Suppression of gene 

expression

PD-L, IL-1, 

IL-6, TNF-a

PD-L1, MMPs [43] PD-L1 NA PD-L1, COX-2, TNF-α, CAK, 

MMP-9, and TRAP [29]

Proliferative genes [44]

Activation of gene 

expression

Caspase-3, 

caspase-9

Caspase-3, 

caspase-9

Apoptotic-related protein 

expression [24]

NA Anti-proliferative genes [45, 46] BAX, p21, MDM2, and 

TP53I3 [30].

Anti-oxidant Yes [47] Yes Yes [48] Yes [33, 49] Yes [19] Yes [50]

Anti-inflammation Yes Yes Yes Yes [51] Yes [45] Yes

Anti-Cancer growth Yes Yes Yes Yes [52, 53] Yes Yes

ECM production 

inhibition

Yes [54] Yes Yes NA NA Yes [55, 56]

THSG: 2,3,5,4’-Tetrahydroxystilbene-2-O-β-glucoside; EGCG: Epigallocatechin gallate; PPAR: Peroxisome proliferator-activated receptor; ECM: Extracellular matrix.

Table 1. 
Signaling pathways, gene expressions and activities induced by natural products curcumin, resveratrol, THSG, pycnogenol, AFE and EGCG.



Fibroids

4

Remarkably, ovarian sex hormones play an important role in uterine fibroid 
pathophysiology [7, 67, 68]. Primarily under the influences of sex hormone, 
myometrial stem cells transform into pathological cells and develop into uterine 
lesions [69]. Tumor growth occurs by a large number of cell growth and extracel-
lular matrix (ECM) building up [70, 71]. Accumulation and remodeling of ECM 
are believed to be crucial for fibrotic diseases such as uterine fibroid. Indeed, ECM 
plays an important role in forming the bulk structure of fibroids. Rigid ECM-rich 
structure may cause abnormal bleeding and pelvic pain [70, 72]. Therefore, a better 
understanding of ECM accumulation and remodeling is critical for developing new 
therapeutics for uterine fibroid. The ECM is approximate twice the volume in uter-
ine fibroid compared to those in healthy myometrium. ECM is mainly composed 
of different types of collagen, fibronectin, and proteoglycan [70, 71]. It has been 
found in ultrafiltration that different fibers forming the ECM have abnormal struc-
tures and are different from the corresponding fibers in the unchanged tissue [73].

Estrogen has been shown to stimulate proliferation in a dose- and time-
dependent manner in uterine fibroid cell lines [68, 74]. Estrogen (17β-estradiol) 
binds to the nuclear estrogen receptor (ER)-α to modulate the expression of proto-
oncogenes, cytokines, and growth factors [75–77]. Uterine fibroid cells are more 
accessible to actions of 17β-estradiol than normal myometrial cells [78]. Although 
estrogen is essential for uterine fibroid growth, progesterone now is considered 
the key hormone to initiate uterine fibroid pathological differentiation and growth 
[7]. Estradiol has a tolerant effect on the growth of uterine fibroids mediated by 
progesterone. Additionally, the combination of estrogen and progesterone signifi-
cantly increased cellular expression of the proliferation marker Ki-67 [79] and the 
accumulation of ECM due to the accelerated synthesis of type 1 and type 3 collagen 
[80]. Studies of Ishikawa et al. have shown that combined estrogen and proges-
terone increased uterine fibroid size more than 3-fold higher than those treated 
with estradiol alone or untreated controls in a xenograft model [67]. These results 
highlight the significant role of progesterone in uterine fibroid growth.

Furthermore, disturbance of steroid hormone receptors may be a primary 
pre-requisite for development of uterine fibroid [81]. Adenovirus-mediated a 
dominant-negative ER-α gene delivery eliminates the expression of estrogen and 
progesterone-regulated genes in uterine leiomyoma cells in vitro and shrinks uterine 
fibroids in vivo [82, 83]. Steroid hormones can affect uterine fibroid cells by differ-
ent mechanisms including paracrine [7]. Steroid hormones stimulate expression 
of cytokines and growth factors. Sequentially, the induced cytokines and growth 
factors affect signal pathways, growth, and survival of uterine fibroid cells. They 
also regulate angiogenesis and ECM formation [84]. Consequently, this influences 
uterine fibroid cells to grow and survive and ECM to accumulate. ECM may serve 
as a reservoir for growth factors and cytokines to increase their stability and extend 
their influence [70].

Different growth factors and signal pathways are involved in uterine fibroid 
formation processes [71, 84]. As one of the most important growth factors affect 
development of uterine fibroid, transforming growth factor-β (TGF-β) stimulates 
uterine fibroid progress [71]. TGF-β signaling connects with other different path-
ways such as Smad pathway, phosphoinositide 3-kinase (PI3K)/Akt/mammalian 
target of rapamycin (mTOR), the mitogen-activated protein kinases (MAPK, 
ERK1/2) signaling cascade, and focal adhesion kinase (FAK) [71]. Expression 
of TGF-β is significantly increased in myometrial cells when they are directly 
in contact with the uterine fibroid tumor [85]. TGF-β1 stimulates expression of 
metalloproteinase-2 (MMP-2), MMP-9, and membrane-associated MMP inhibitor 
(RECK) [86]. TGF-β also modulates ECM production via cross-talk with growth 
factor and integrins [87, 88].
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In addition to TGF-β, insulin-like growth factor–1 (IGF-1) is another growth 
factor that plays a vital role in the pathogenesis of uterine fibroid [89]. Studies 
of Boehm et al. indicated that more IGF-1 expression increases in uterine fibroid 
than in normal myometrium [90]. An animal model from Eker rat also showed 
upregulation of IGF-1 in uterine fibroid tissue [91]. We have shown how IGF-1R 
accumulated in uterine fibroid primary cell lines in response to IGF-1 to regulate 
cell proliferation [12]. Estrogen induces ERK1/2 activation and IGF-I, cell cycle 
regulating transcriptional factor A-Myb accumulation to stimulate uterine fibroid 
cell cycle progression in human uterine leiomyoma cell lines [92]. Additionally, 
growth hormone stimulates IGF-1 production to promote cell proliferation and to 
inhibit apoptosis in uterine fibroid [93, 94].

Wingless-type (Wnt)/β-catenin signaling also plays a role in somatic stem-cell 
function in both myometrium and uterine fibroid tissue [7]. Paracrine activation of 
the Wnt/β-catenin pathway in uterine fibroid stem cells can stimulate tumor growth 
[95]. Activin A, a product of macrophages, may also play a crucial role in uterine 
fibroid biology. Activin A is response for different immunological actions including 
cell transformation to lead to tumor development [58, 96]. Interactions between 
Wnt/β-catenin and TGF-β pathways, as well as with steroids and growth factors, 
give rise to the clonal formation of uterine fibroid tumors and are believed to be the 
basis of modern uterine fibroid biology hypothesis [7, 97].

The genetics of uterine fibroids and the etiology of epigenetic procedures have 
many peculiarities at first, then become quite similar and partially overlap due to 
the proximity of their genetic network and epigenetic environment. Research on 
the etiology of uterine fibroids to elucidate new strategies for the prevention and 
treatment of this common disease [2].

3. Treatment of uterine fibroid

Because the natural cause of uterine fibroid is not known, it makes the myomec-
tomy or selected conditions hysterectomy to become the mainstay of management 
[98]. Genetic factors, epigenetic factors, and several pathogenic factors such as 
sex hormones, growth factors, cytokines, chemokines, and extracellular matrix 
components all of them have been implicated in development and growth of uterine 
fibroid [99, 100]. Although surgery has been suggested, it is not an attractive choice 
due to its serious consequences, especially with patients desiring to preserve their 
fertility potential [100].

Studies of El Andaloussi et al. [101] indicate that MED12 mutation presents a 
potential of dysregulating Wnt4/β-catenin to transform cells [101]. The dysregulat-
ing Wnt4/β-catenin affects mTOR signaling and caused autophagy abrogation, cell 
proliferation, and tumorigenesis [101]. Silenced MED12 gene reduces the prolifera-
tion of uterine fibroid cells [97]. In 2020, Ali et al. also found that β-catenin nuclear 
translocation contributes to uterine fibroid phenotype, and β-catenin signaling is 
modulated by estradiol and histone deacetylases activity [102]. Additionally, the 
Wnt/β-catenin pathway leads to increased levels of TGF-β3 [7, 71]. As we discussed 
above, different isoforms of TGF-β may play a crucial role in uterine fibroid 
development. Studies that used anti-uterine fibroid agents cause the attenuation 
of this pathway by reducing TGF-β3 signal and protein expression, resulting in a 
reduction in TGF-β canonical signaling [103]. Therefore, canonical Wnt pathway 
has been suggested to be a potential therapeutic target for the treatment of uterine 
fibroids [104].

It has been shown the proliferation of uterine fibroid is sensitive to the GnRH 
agonists [105, 106] or estrogen receptor antagonists. For those patients can be 
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applied with hormone treatment with GnRH agonists including Lupron, Synarel, 
and Zoladex and/or aromatase inhibitors such as anastrozole (Arimidex®), letro-
zole (Femara®), exemestane (Aromasin®), vorozole (Rivizor®), formestane 
(Lentaron®), fadrozole (Afema®), and testolactone (Teslac®). Treatment with 
medications such as tamoxifen may also reduce uterine fibroid size [106]. In addi-
tion, using an adenovirus-expressing dominant-negative ER-α reduces ER-α to 
arrest fibroid growth in a mouse model which may provide an optional treatment 
[107]. Besides, alternative medicine has been shown to improve the symptom of 
uterine fibroids [108–110].

Alternatively, several natural products have been suggested for the treatment 
of uterine fibroids based on their natural activities of anti-inflammation, anti-
proliferation, and anti-angiogenesis. We will discuss mechanisms in the following 
sections.

3.1 Curcumin

Curcumin is a yellow active natural polyphenol of the perennial herb Curcuma 
longa, commonly known as turmeric. In addition, curcumin is commonly found as 
ingredients in food seasoning, cosmetics, or herbal supplements. It has tradition-
ally been used for decades in Asian countries as a medical herb due to its anti-
microbial, anti-inflammatory, anti-tumorigenic, and anti-mutagenic properties 
[111]. Curcumin has many medical effects such as suppression of thrombosis [112], 
reduction of blood cholesterol [113, 114], and reduction of myocardial infarction 
[115]. Evidence indicates that curcumin suppresses the growth of several tumor 
cell lines [116, 117]. All in all, curcumin is effective against a variety of inflamma-
tory illnesses and modulates multiple cell signaling pathways. However, it is still 
not well understood which binding site or receptor for it. In vitro studies indicate 
that curcumin can interact with integral components of cell signaling pathways 
and therefore may be pharmacologically relevant. However, only limited studies 
have shown functional consequences of curcumin interaction [118]. The tumor 
suppression mechanisms of curcumin are accredited by modulation of numer-
ous targets playing important roles in tumor growth [119–122]. Those targets 
include transcription factors, receptors, kinases, cytokines, enzymes, and growth 
factors. Therefore, curcumin has been demonstrated to suppress the growth of 
several tumor cell lines [123]. It also inhibits the growth of uterine fibroid cells, 
even though there has yet to be a report describing the precise mechanism of its 
inhibition.

Curcumin inhibits phorbol ester-induced activation of NF-κB and ERK1/2  
[9, 10]. Alternatively, it induces apoptosis via activation of ERK1/2 or SAPK/JNK 
in cancer cells [11]. Role of ERK1/2 activation in curcumin-treated cancer cells is 
controversial [124]. Curcumin down-regulates endothelial cell fibrosis and inhibits 
uterine fibroid cell proliferation via regulation of the apoptotic pathway, and it also 
reduced production of the ECM component fibronectin (Figure 1). Curcumin has 
also been shown to attenuate TGF-β-induced endothelial-to-mesenchymal transi-
tion [125]. Extracts from Curcuma zedoaria inhibits uterine fibroid cell prolifera-
tion compared to normal myometrial cells [126]. On the other hand, it stimulates 
caspase-3 and caspase-9 expression in uterine fibroid cells. Curcumin provides a 
novel direction for uterine fibroid therapies [127].

Peroxisome proliferator-activated receptor (PPAR) is a ligand-dependent 
transcription factor of the nuclear hormone receptor superfamily. It is expressed 
in a tissue-specific manner and plays an important role in the differentiation of 
adipocytes [128, 129]. PPARγ exerts anti-inflammatory, anticancer, and insulin 
sensitivity effects and participates in the control, proliferation, and differentiation 
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of the cell cycle. Hepatic stellate cells are the type of hepatocyte responsible 
for fibrosis in liver damage and can lead to chronic liver damage and cirrhosis. 
Curcumin induces and activates PPARγ in rat hepatic stellate cells [40]. Curcumin 
considerably increases the proliferative inhibition of stellate cells by PPARγ. [40]. 
Besides, curcumin also enhances the activity of PPARγ in human colon cancer 
cell lines by reducing the expression of cyclin D1 and epidermal growth factor 
receptor (EGFR), thereby disrupting the cell cycle [130]. These two inhibitory 
effects depend on PPARγ activation. The study by Takashi Takeda et al. showed 
that uterine fibroids can share pathogenic characteristics with the development of 
metabolic syndrome [131]. PPARγ is also virtually involved in insulin signaling. 
A PPARγ agonist, thiazolidinedione, has been used to treat patients with type II 
diabetes [129]. Thiazolidinedione may be used to prevent the progression of ath-
erosclerosis and metabolic syndrome [132]. On the other hand, curcumin directly 
inhibits fibroid proliferation, and curcumin-induced PPARγ activation can also 
prevent metabolic syndrome and indirectly inhibit fibroid growth [132]. However, 
since these findings were based on in vitro experiments, it raised concerns about 

Figure 1. 
Signaling pathways by which curcumin induces biological activities in cells. Curcumin binds to an unidentified 
cell surface binding site to activate the ERK1/2 cascade. On the other hand, in addition, to downregulate NF-κB 
activation, it inhibits phorbol ester-induced activation of NF-κB and ERK1/2. Curcumin also activates SAPK/
JNK activation and Caspase-3 and -9-dependent apoptosis in cancer cells, may also including uterine fibroid 
cells. Curcumin inhibits TGF-β-induced ECM production. It also reduces inflammation and induces apoptosis.
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the observation limitations. Later, Kenji Tsuiji et al. have developed a new in vivo 
uterine fibroid model to study the inhibition of rat leiomyoma (ELT-3) cells by cur-
cumin [132]. The IC50 of curcumin-induced anti-proliferation in uterine fibroid 
cell lines is 20 μM, however, when patient-matched myometrial cells were exposed 
to equivalent concentrations of curcumin, there was no statistically significant 
inhibition of growth [127].

Studies indicated that curcumin absorption rate in the intestine is very low 
[133–136]. Similar raising concerns were also in other herb medicines, such as 
resveratrol discussed in next section. Thus, some modifications of curcumin need 
to be taken to keep its high blood concentration. Some studies regarding increased 
absorption and bioavailability of curcumin have been reported. For instance, the 
co-administration of curcumin and piperine can increase the bioavailability of cur-
cumin [135]. Another strategy is to develop new curcumin analogues with a higher 
cell growth inhibitory capacity. One such compound, GO-Y030, has been shown 
to exhibit an 8- to 40-fold greater growth inhibitory potential than curcumin in 
several cancer cell lines [137, 138]. It may be useful to use the compound to clinically 
treat uterine fibroids.

3.2 Resveratrol

Polyphenols have been attracting by their anti-oxidative effects during the past 
years for human chronic diseases involved in inflammation like diabetes mellitus, 
neurodegenerative diseases, cardiovascular diseases, and cancers [139]. Resveratrol 
is one of well-studied stilbenes found in peanuts, grapes, and some berries. It is a 
plant product in response to environmental stress, pathogen infection, and ultra-
violet radiation [127]. Resveratrol has been known as chemo-preventive, serving to 
suppress DMBA-induced ductal breast carcinoma [140] and ultraviolet light (UV)-
induced skin cancer [141] in mouse models. Resveratrol induces p53-dependent 
apoptosis in several human cancer cell lines, including thyroid, prostate, and breast 
cancer cells [13, 142–145]. It also induces p53-independent anti-proliferation against 
cancer cells [14, 146–148]. Resveratrol has been recommended to be a reversion 
molecule for multiple drug-resistant breast cancer [149]. Resveratrol is safe and 
well-tolerated by patients, with common adverse events including nausea, diarrhea, 
and weight loss [150].

Although surface receptors involved in the resveratrol signal transduction 
remain to be identified, resveratrol binds to cell surface integrin αvβ3 to activate 
ERK1/2 and ant-proliferation in cancer cells [13, 145, 151] (Figure 2). Integrin αvβ3 
is also involved in AKT phosphorylation [15, 152]. Resveratrol inhibits PI3K-AKT 
signal pathway to induce anti-proliferation [22] or other biological activities as 
IL-33-mediated mast cell activation [153].

Overexpression of integrin αvβ3 is observed in several types of solid tumors 
[154, 155] and highly growing endothelial cells [154, 155]. Our studies indicate 
that integrin αvβ3 overexpresses in primary uterine fibroid cell lines [12]. The 
integrin αvβ3 overexpresses in primary human uterine fibroid Case 016 and Case 
018 compared to normal Case 003 cells [12]. Therefore, it is a perfect target for 
resveratrol which has been shown to bind on integrin αvβ3 receptor [13]. Integrins 
are not classic signaling receptors in that they possess no enzymatic activity. 
Integrin signaling depends on the allosteric behavior of the receptors, their ability 
to concentrate into adhesion zones, and the recruitment to these zones of numerous 
other adhesome components to form complex integrin-based cell adhesions [156, 
157]. Many adhesome components are enzymes that interact with classic signaling 
pathways. Resveratrol regulates signal transduction via integrin αvβ3 in human 
uterine fibroid cells. Resveratrol attenuates expression of integrin αv and integrin β3 
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in primary uterine fibroid cell Case 016 and Case 018 but not in normal myometrial 
cells. Resveratrol induces ERK1/2 activation in uterine fibroid cells [12]. However, 
the constitutive phosphorylation of AKT in uterine fibroid cells was inhibited by 
resveratrol.

Integrin signaling and function are heavily dependent on cross-talk with other 
signaling pathways, especially growth factor signaling pathways [158–160]. Besides 
the aberrant integrin expression, IGF-1R highly expresses more in uterine fibroid 
compared to the normal tissues [161] indicating IGF-1 may also be involved in the 
abnormal proliferation [92, 162]. IGF-1 binds to IGF-1R to activate downstream 
AKT which is a target of resveratrol. Resveratrol did not inhibit IGF-1R phosphory-
lation in primary uterine fibroid cells [12]. These results suggest that the action of 
resveratrol on IGF-1R-dependent signal transduction is downstream IGF-1R at Akt 
level [12]. Resveratrol analogue, pterostilbene (3′,5′-dimethoxy-resveratrol) targets 
mTOR/PI3K/Akt signaling pathway to disrupt mitochondrial membrane potential, 
and induce apoptosis [163].

IGF-I mRNA is expressed significantly higher in leiomyoma cells than that in 
myometrial cells [12]. IGF-1 stimulates IGF-1R phosphorylation of but the action is 
blocked by resveratrol pre-treatment. Growth effect of IGF-1 can possibly reduce 
by resveratrol [164]. Resveratrol inhibits IGF-1-induced phosphorylated IGF-1R 
accumulation and proliferation consequently [12]. IGF-1 enhances leiomyoma 
cell proliferation and thereby accelerates uterine fibroid progression. In sum-
mary, resveratrol via a mechanism involved in crosstalk between integrin αvβ3 

Figure 2. 
Resveratrol/THSG activates signaling pathways in uterine fibroid cells. A stilbene receptor is present on 
integrin αvβ3 by which resveratrol activates ERK1/2 and induces nuclear accumulation of COX-2. On the 
other hand, 2,3,5,4′‐tetrahydroxystilbene‐2‐O‐β‐glucoside (THSG) has a similar chemical structure and 
assumedly binds to integrin αvβ3 to activate the signal transduction pathway. In resveratrol-treated cancer 
cells, pERK1/2 also translocates to the cell nucleus and complexes with inducible COX-2. Phosphorylated 
ERK1/2 also translocates into the cell nucleus and forms a complex with inducible COX‐2 in resveratrol‐
treated cancer cells. Resveratrol induces phosphorylation of the complexed p53 at Ser15 and p53‐dependent 
antiproliferation. Blocking resveratrol‐induced nuclear accumulation of COX‐2 inhibits p53 phosphorylation 
and antiproliferation.
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and IGF-1R-sensitive signal transduction pathways induces anti-proliferation in 
uterine fibroid.

Steroid hormones and thyroid hormone stimulate TGF-β expression [165]. 
Resveratrol blocks TGF-β expression and functions [166]. Cross talk among TGF-β 
signaling pathways, integrins, and ECM [88] is essential for uterine fibroid growth. 
Both Agarwal discussed the ability of resveratrol to infer with ECM formation and 
deposition in multiple diseases in their review article [53]. Resveratrol suppresses 
not only expression of fibronectin, fibromodulin, biglycan, and collagen types I and 
III, but also their protein levels in different cell lines [43]. Resveratrol also reduces 
MMP-9 protein accumulation but increases TIMP2 protein in ELT-3 cells and 
healthy uterine smooth muscle cells [43].

Resveratrol inhibits TGF-β signal downstream molecule AKT phosphorylation. 
Studies of confocal microscopy have shown resveratrol inhibits nuclear pAKT 
translocation in uterine fibroid cells. Alternatively, resveratrol does not interfere 
with pAKT nuclear translocation in normal uterine smooth muscle cells even 
though there are limited pAKT translocated [12]. Resveratrol reduces cellular levels 
of the phosphorylated/active form of anti-apoptotic kinase AKT in uterine cancer 
cells [167]. Sequentially, treatment of resveratrol reduces the endogenous cyclooxy-
genase-2 (COX-2) protein and produces PGE2 and PGF2α [167]. Evidence indicates 
that endogenous COX-2 is involved in inflammation, therefore, resveratrol inhibits 
AKT signaling pathway and COX-2 activity to induce anti-inflammation which 
plays vital roles in uterine fibroid cell growth.

β-catenin modulates and stimulates the stem cell renewal [168]. The regulation of 
the biologic functions for β-catenin is highly complex and not fully understood. Wnt 
proteins bind to a special cell-surface receptor, Frizzled, where it promotes activation 
of a cascade of proteins that leads to decreased β-catenin degradation in the cytosol 
and reduces nuclear β-catenin levels [7, 95]. The increased β-catenin expression is 
observed in uterine fibroids compared to the adjacent myometrium samples [169]. 
Ovarian steroids interact with the Wnt/β-catenin pathway to accelerate tumorigen-
esis [168]. Our studies also indicate that thyroid hormone increases nuclear β-catenin 
accumulation, thus β-catenin-dependent gene expression and proliferation [170, 171]. 
Resveratrol reduces expression and nuclear accumulation of β-catenin.

The expression of resveratrol-induced pro-apoptotic genes such as COX-2 and 
p21 induced in uterine fibroid cells. On the other hand, the expression of prolifera-
tive (anti-apoptotic) genes was either inhibited such as BCL2, and CDKN2 or no 
changed as Cyclin D1 and PCNA. The pro-apoptotic proteins such as caspase 3 and 
caspase 9, were also increased in resveratrol-treated cells [12]. Resveratrol-induced 
COX-2 facilitates p53-dependent anti-proliferation [172, 173]. Therefore, resveratrol 
induces anti-proliferation in uterine fibroid cells [12]. Kim et al. have also shown 
the extraction of herb medicine, Scutellaria barbata D. Don (Lamiaceae), down-
regulates the IGF-I expression [174] and inhibits the proliferation of leiomyoma 
cells. Scutellaria barbata D. Don (Lamiaceae) induces the uterine smooth muscle 
cell differentiation markers in uterine smooth muscle cells and uterine leiomyoma 
smooth muscle cells, such as α smooth muscle actin (α-SMA), calreductin h1, and 
cyclin p27-dependent kinase inhibitor. In contrast, gene products linked to the G1 
phase of the cell cycle, such as cyclin E and cdk2, are not affected by Scutellaria 
barbata D. Don (Lamiaceae) [175]. These observations agree with our studies. The 
expression of anti-apoptotic genes, such as BCL2 and CDKN2 are suppressed or 
unmodified Cyclin D1 and PCNA [12].

Estrogen stimulates proliferation in breast cancer cells [176, 177], endometrial 
cancer [178, 179] and leiomyoma cells [180]. Estrogen also stimulates cell growth in 
uterine fibroid cells [12]. Resveratrol can inhibit estrogen-dependent cancer growth 
[176] and suppresses the proliferation of six sensitive uterine fibroid cases both in 
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the absence and presence of estradiol [12]. These results indicate the suppressing 
effect of resveratrol on uterine fibroid growth may not go through ER-α.

The immunomodulatory factor, checkpoint PD-1/PD-L1 has been shown to play 
an important role in uterine fibroid pathogenesis. They also attack attention to be 
therapeutic targets. Resveratrol suppresses PD-L1 expression. In the presence of 
thyroid hormone, resveratrol traps PD-L1 in the cytosol, meanwhile, resveratrol-
induced COX-2, an inducible transcriptional co-activator [181], is trapped with 
thyroid hormone-induced PD-L1 in the cytosol [173].

Summarily, in the primary cell culture of patients with resveratrol-sensitive pri-
mary uterine fibroids, resveratrol can inhibit uterine fibroid proliferation, induce 
apoptosis, and transmit integrin-dependent signaling αvβ3. The transduction path-
way promotes uterine fibroids cell cycle arrest. Additionally, resveratrol inhibits 
the activation of IGF-1R dependent signal transduction pathways, which play an 
important role in uterine fibroid proliferation. Resveratrol may or may not inhibit 
the expression of proliferation genes. Resveratrol also induces the expression of p21 
and COX-2. Analysis of the DNA content of the PI stain indicates that resveratrol 
induces uterine fibroid cells cell cycle arrest at sub-G1 population [12]. Crosstalk 
between αvβ3 integrin and IGF-1R plays a crucial role in resveratrol-induced uterine 
fibroid anti-growth. In addition, resveratrol inhibits signal transduction pathways 
and gene expression dependent on TGF-β and β-catenin. Therefore, resveratrol can 
effectively prevent leiomyoma overgrowth and treat uterine fibroids.

3.3 Extract of He-Shou-Wu, 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside

The stilbene glucoside 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) 
is one of the major bioactive components of Polygonum multiflorum Thunb (He Shou 
Wu). It is glycosylated resveratrol and it has been used as antiaging medicine [182]. 
THSG suppresses experimental colitis effectively by reducing the level of oxygen 
and nitrogen free radicals [48]. It also has been shown to exert a protective effect 
on cardiotoxicity induced by doxorubicin in vitro and in vivo [183]. THSG can also 
diminish peroxidation levels in the brain of a mouse model with Alzheimer’s disease 
or cerebral ischemia–reperfusion. Administration of THSG not only prevents 
learning-memory deficits but also reverses the learning-memory deficit in disease-
like mouse models with Alzheimer’s [184].

Mechanism involved in P. multiflorum-induced anti-atherosclerosis may be 
caused by THSG-induced antagonistic effects on oxidation of lipoprotein, prolifera-
tion, and decrease of nitric oxide content of coronary arterial smooth muscle cells 
[185] which partially explains the antiatherosclerosis mechanism of Polygonum 
multiflorum. Recently, the pharmacological effects of P. multiflorum on atheroscle-
rosis have been revealed with anti-inflammation and guy microbiota regulation 
of THSG in ApoE−/− mice [186]. The protective effects of THSG are mediated by 
modulation of JNK, SirT1, and NF-κB pathways [187] (Figure 2). As resveratrol, 
THSG can activate signal transduction pathways as AMPK. Treatment with THSG 
reduces the LPS-induced neuroinflammatory response, and that the mechanism by 
which THSG induces anti-neuroinflammatory effects may include the Nrf2/AMPK 
signaling pathways [38]. Consequently, THSG treatment leads to a decrease in the 
level of iNOS, TNF-α, and IL-6 production [184]. THSG-induced neuroprotective 
effects are via Akt signaling and TrkB activity [51]. THSG possessed an anti-inflam-
matory effect that may also be related to the inhibition of COX-2 enzyme activity 
and expression [188].

As a glycosylated analogue of resveratrol, THSG has similar effects as resve-
ratrol. Studies indicate that resveratrol significantly stimulates cell proliferation 
of human gingival fibroblasts at low concentration (10 μM) but inhibited cell 
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proliferation at high concentrations (100 and 200 μM) significantly. On the other 
hand, THSG significantly enhances growth of human gingival fibroblasts when 
the concentration is over 25 μM and does not show any cytotoxic effect in human 
gingival fibroblasts [151]. It is evidenced that THSG may not cause cytotoxicity in 
normal human cells. Although there are no studies regarding effect of THSG on 
uterine fibroid, it should be more effective than resveratrol. THSG may not enter 
cells to induce superoxide which causes cytotoxicity to cells. However, studies also 
indicate that crude extract may cause damage in hepatocellular cells.

3.4 Pycnogenol, French maritime pine bark extract

Pycnogenol is a standardized extract of the bark of French maritime pine. 
Pycnogenol is composed of flavonoids, mainly proanthocyanidins, and phenolic 
compounds. It is a known potent antioxidant [49]. Owing to the basic chemical 
structure of its components, the most obvious feature of pycnogenol is its strong 
antioxidant activity. In fact, phenolic acids, polyphenols, and in particular flavo-
noids, are composed of one or more aromatic rings bearing one or more hydroxyl 
groups. The compositions are hence potentially able to quench free radicals by 
forming resonance-stabilized phenoxyl radicals [189]. Pycnogenol is a strong 
antioxidant that may interfere with different pathways, and it plays an important 
role in diseases associated with oxidative stress. Hyperglycemia is characteristic 
of diabetic nephropathy and induces renal tubular cell apoptosis. Pycnogenol has 
been demonstrated to significantly suppress the high glucose-induced morphologi-
cal changes and the reduction in cell viability associated with cytotoxicity in high 
glucose-treated renal tubular cells [49]. Pycnogenol is able to protect high glucose-
induced apoptosis increasing Bcl2/Bax protein ratio level. Combination treatment 
of pycnogenol and metformin improves blood glucose levels, vascular reactivity, 
and left ventricular hypertrophy in induced diabetic rats [33]. Furthermore, com-
bined treatment increases expression of AMPK, glucose transporter 4 (GLUT4), 
and calcium/calmodulin-dependent protein kinase II (CaMKII) in left ventricle of 
the hearts. However, the combination of these interventions has failed to possess 
higher efficacy [33].

Pycnogenol has anti-oxidative and anti-inflammatory efficacy in suppressing 
lipid peroxidation, total reactive species, superoxide ·O2, nitric oxide NO·, per-
oxynitrite (ONOO−), pro-inflammatory inducible nitric oxide synthase (iNOS) and 
COX-2 [49]. It also inhibits NF-κB nuclear translocation [49]. The safety of use of 
pycnogenol is demonstrated by the lack of side effects or changes in blood biochem-
istry and hematologic parameters. Therefore, pycnogenol has been recommended 
both for prevention and treatment of chronic venous insufficiency and related 
veno-capillary disturbances [190].

3.5 Therapeutic orchid Anoectochilus formosanus extract

Traditional herb medicine, golden thread (Anoectochilus formosanus Hayata) has 
been used to treat various diseases in Asia. A. formosanus extracts (AFEs) have been 
reported to possess hepatoprotective, anti-inflammatory, and anti-tumor activates. 
AFEs reduced blood glucose in hyperglycemic mice while there was no change in 
control group [191]. AFE and metformin at the same administrated dose of 50 mg/
kg showed a similar effect on intraperitoneal glucose tolerance test in hyperglyce-
mic mice. Free-radical scavenger capacity of AFE was concentration-dependent 
and 200 μg/ml of AFE was able to reduce more than 41% of the free radical [191]. 
The immunomodulatory protein from A. formosanus (IPAF) stimulated the TNF-α 
and IL-1β production, upregulated the expression of CD86, MHC II, IL-12, and 
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Th1-associated cytokines/chemokines [28]. It also enhanced the phagocytic activity 
of macrophages [28]. AFE inhibited constitutive PD-L1 expression and its protein 
accumulation in cancer cells. AFE also induced expression of pro-apoptotic genes 
but inhibited proliferative and metastatic genes. Furthermore, it induced anti-
proliferation in cancer cells. The results suggested that AFE not only reduced blood 
glucose concentration as metformin but also showed its potential use in cancer 
immune chemoprevention/therapy via hypoglycemic effect, ROS scavenging, and 
PD-L1 suppression [191]. In addition, IPAF stimulated expressions of TLR signal-
related genes and the activation of NF-κB. IPAF could induce classically activated 
macrophage differentiation via TLR4-dependent NF-κB activation and had poten-
tial of IPAF to modulate the Th1 response [28].

3.6 Epigallocatechin gallate

The green tea polyphenol epigallocatechin gallate (EGCG) has not shown cyto-
toxicity to normal cells but induces apoptosis and growth inhibition of cancer cells 
[192, 193]. EGCG inhibits uterine leiomyoma cell growth in vitro and in vivo. The 
use of a green tea extract with 45% EGCG content has demonstrated clinical activ-
ity without side effects in women with uterine fibroid symptoms [194]. However, 
there are several shortcomings of EGCG including low stability, poor bioavailabil-
ity, and high metabolic transformations under physiological conditions. All present 
challenges for its development as a therapeutic agent [194].

The signal transduction pathway by which EGCG exerts cell cycle arrest and 
induction of apoptosis remains to be clarified. Several mechanisms of cell-cycle 
arrest by EGCG have been postulated [195]. Transcription factor, p53 regulates 
downstream genes important in cell cycle arrest, DNA repair, and apoptosis. Loss 
of p53 in many cancers leads to genomic instability, impaired cell cycle regulation, 
and inhibition of apoptosis [196]. EGCG-treated HuLM cells exhibited increased 
expression of several genes that represent p53 pathway such as BAX, p21, trans-
formed 3 T3 cell double minute 2 (MDM2) and tumor protein p53 inducible protein 
3 (TP53I3) [30]. The NF-κB signal pathway was impaired by EGCG and the expres-
sion of bcl2A1, a key factor in NF-κB pathway, was reduced 11.8-fold in 100 μM 
EGCG-treated uterine fibroid HuLM cells [30] compared to untreated control.

The BCL family includes proapoptotic members and antiapoptotic members, such 
as BAX and BCL-2, respectively. The effects of apoptosis or anti-apoptosis supple-
mentary depend on the balance between BCL2 and BAX rather than on the BCL2 
quantity alone [197]. EGCG treatment causes BCL2 to dramatically decrease while 
BAX up-regulates [30]. Additionally, the D-type cyclins, through the interaction with 
CDKs-forming cyclin d1-CDK4/6 complexes, are mainly responsible for driving the 
cell cycle from G1 to S phase [198]. A significant decrease was observed in the expres-
sion of CDK4 and PCNA in EGCG treated uterine fibroid HuLM cells [30].

4. Conclusion remarks

The current clinical uterine fibroid therapies are restricted to their short-term 
efficacy and unpleasant side effects. Unless the patients are postmenopausal, hys-
terectomy is generally not recommended. In terms of expanding medical options, 
alternative therapies for uterine fibroids have been explored. In addition to herbal 
medicines we discussed, natural products such as vitamin D, berberine, and others 
are being used for alternative uterine fibroid treatments. Moreover, it may be more 
effective when natural compounds combined with hormonal agents for uterine 
fibroid therapy. We have shown that resveratrol combined with thyroid hormone 
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analogue, tetrac can compensate for resveratrol-induced RRM2 side effects in 
colorectal cancer animal xenograft model [199]. However, to search for a safe and 
effective medication for uterine fibroid requires further human clinical trials of 
these herbal compounds before promoting widespread usage.
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