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Chapter

Delineation of Open-Pit Mining 
Boundaries on Multispectral 
Imagery
Ioannis Kotaridis and Maria Lazaridou

Abstract

During the last decades, monitoring the spatial growth of open-pit mining 
areas has become a common procedure in an effort to comprehend the influence 
that mining activities have on the adjacent land-use/land-cover types. Various case 
studies have been presented, focusing on land-cover mapping of complex mining 
landscapes. They highlight that a rapid as well as accurate approach is critical. This 
paper presents a methodological framework for a rapid delineation of open-pit 
mining area boundaries. For that purpose an Object-Based Image Analysis (OBIA) 
methodology is implemented. Sentinel-2 data were obtained and the Mean-Shift 
segmentation algorithm was employed. Among the many methods that have 
been presented in literature in order to evaluate the performance of an image 
segmentation, an unsupervised approach is carried out. A quantitative evalua-
tion of segmentation accuracy leads to a more targeted selection of segmentation 
parameter values and as a consequence is of utmost importance. The proposed 
methodology was mainly conducted through python scripts and may constitute a 
guide for relevant studies.

Keywords: OBIA, image segmentation, lignite mine, open-pit mining, Sentinel-2

1. Introduction

1.1 Mining activity and remote sensing

Mining comprises the activity that includes the extraction of geological materials 
from earth with tunnels, shafts or pits. Mining and mines can be classified in several 
ways. According to materials commonly mined, three classes of mining can be distin-
guished: metallic, non-metallic and fuel minerals. Based on the nature of excavation, 
mineral extraction can be categorized into two classes: underground and surface 
mining. The latter includes open-pit mining (also known as open-cast mining) that 
is implemented to extract deep and massive deposits that are not covered by a thick 
overburden. Underground mining of such deposits would be disadvantageous, since 
the material is mainly close to the surface [1].

Greece has been commonly included in the top lignite producers in Europe [2]. 
Mining of fuel minerals constitutes a critical activity, since a large percentage of 
the country’s energy needs is covered by a solid fuel, lignite. The first lignite mine 
in Greece appeared in 1873, whereas systematic exploitation commenced after 
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1950. Nowadays, the primary lignite extraction basins are located in Ptolemaida 
and Amyntaio. Lignite exploitation in Greece is conducted by surface mining and 
specifically open-pit mining [3].

Mining and specifically coal mining activities may cause severe environmental 
impacts [4]. Landscapes formed by mining activities are vulnerable to several 
geomorphic hazards, for instance, landslides and rockfalls [1]. The stability of 
excavations is a critical aspect of Greek lignite mines which become larger and 
deeper in comparison with those in the past. During the last few years, many events 
of severe deformations and disastrous slope failures occurred [2]. In addition, flood 
is a probable hazard, since water can enter pits and tunnels [1]. Surrounding areas 
are affected by mining with economic, environmental and social impacts [5].

Taking into consideration their synoptic coverage and multitemporal data 
acquisition capabilities, remote sensing methods have been widely implemented in 
applications related to mining activities. Availability of high spatial resolution data 
resulted in an increased interest of using satellite data to monitor surface mining 
activities [4]. Remote sensing offers a valuable tool for acquiring rigorous data, 
while decreases the cost of field surveys both in time and money [6].

Remote sensing applications related to mining activities include the following: 
mapping of the surface mineralogy, topography and related changes that are quite 
valuable throughout the operation and planning of mine, identifying and moni-
toring environmental effects and mapping surface movements of mine structures 
in order to monitor safety features [7]. Furthermore, the size and location of mine 
areas as well as land-cover changes due to mining can be extracted from satellite 
images [5]. Remote sensing can make mine planning procedures easier, enhance 
safety during and after mine operation and monitor environmental effect as well 
as rehabilitation [7].

1.2 Image segmentation in OBIA

In contrast with traditional pixel-based approaches, the primary methodological 
component in Object-Based Image Analysis (OBIA) is the image object [8, 9]. OBIA 
produces meaningful image objects only if the imagery is partitioned into similar or 
relatively similar areas. This requires a low value of internal heterogeneity regarding 
the parameter that is examined in comparison with its adjoining areas [8].

Image segmentation is the first but also fundamental procedure to produce the 
core elements of OBIA [10]. It is about the partitioning of an image into spatially 
adjoining and homogenous groups of pixels (segments) that constitute the founda-
tion for further analysis [8, 11]. These regions have similar spatial and spectral 
features, which, if considered as meaningful, depict a real-world object [9, 12]. By 
implementing image segmentation, the level of detail is decreased to make image 
content more comprehensive by lessening image complexity [9]. By transitioning 
from pixel to image object-based framework, in an effort to follow the example 
of visual interpretation, better management of spatial information can be accom-
plished, thus a more beneficial integration with Geographic Information System 
(GIS) can be achieved [13].

During the last decades, several segmentation methods were matured and 
employed in remote sensing applications [10]. Commonly, segmentation methods 
are classified into three broad categories: pixel-based, edge-based and region-based 
methods [14]. The selection of segmentation method is substantially influenced 
by the objective of image analysis study and it is typically acknowledged that it 
does not exist a perfect algorithm that will demonstrate adequate results with every 
satellite image. It has to be mentioned that most segmentation methods do not 
instantly produce meaningful image objects. However, clusters are generated with 
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generic labels, for example, region A, region B, etc. Then, these clusters have to be 
converted to meaningful image objects through a post-segmentation process [15].

A fairly demanding task in image segmentation procedure is the selection of 
segmentation parameters’ values in order to generate segments that will comply 
with the needs of user and the purpose of study [10]. Since there is not a commonly 
accepted method to determine optimal segmentation parameters’ values, image 
segmentation continues to be an interactive procedure that includes trial-and-error 
approaches.

A typical OBIA approach includes two main steps, image segmentation and object 
classification. On the other hand, there are studies that propose a methodology that 
includes only the step of image segmentation. It hast to be noted that the application 
objective is the definitive factor concerning the methodology implemented. This 
study does not follow the traditional OBIA approach.

1.3 Relevant studies

Several studies have utilized satellite data and remote sensing methods to 
investigate an issue related to mining activities. Monitoring and evaluating rec-
lamation procedure in mining areas is a common application [16]. LaJeunesse 
Connette et al. [17] developed a methodology to detect mining areas and evaluate 
mining expansion in Myanmar. For this reason they used data free of charge and 
open-source software. Likewise, Li et al. [18] employed multitemporal Landsat 
data to monitor the expansion of coal mining activity. Demirel et al. [6] proposed 
a methodology for detecting land use changes in surface coal mines with the use 
of multi-temporal high-resolution satellite data. Similarly, Guan et al. [19] investi-
gated land use changes in a surface coal mine area located in the northeast China. 
In addition, Latifovic et al. [20] presented a methodology for land-cover change 
evaluation in the Athabasca Oil Sands region, northeast Alberta, Canada. For this 
purpose Landsat data were obtained. Maxwell et al. [21] combined very high resolu-
tion imagery and LIDAR data for mapping land-cover of a surface coal mine area 
in the southern coalfields of West Virginia, USA. Demirel et al. [22] investigated 
the potential implementation of a machine learning classifier (Support Vector 
Machines) for classifying high spatial resolution multispectral data of an open-cast 
mine area. Lechner et al. [23] carried out a spatial assessment of mine disturbance 
and rehabilitation of an open-pit mining study area. Townsend et al. [24] presented 
a methodology for quantifying land-use and land-cover change patterns due to 
surface mining and reclamation in the Central Appalachian Mountain region of the 
Eastern U.S., during a 30-year timeframe.

1.4 Scope of the study

The primary objective of the present work is to provide an object-based meth-
odology for rapid detection and delineation of an open-pit mining area boundaries 
located nearby Amyntaio town, in northwestern Greece. Since image segmenta-
tion quality is a critical part in our analysis, an unsupervised evaluation of image 
segmentation performance was conducted, quantifying the internal homogeneity 
of segments and between segment separability.

2. Study area and data

The study area that was selected for this paper covers the Public Power 
Corporation (PPC) SA Amyntaio lignite mine. It has an extended mining history 
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that includes opencast mining with depths that reach 180 m, since the mid-1980s 
and is considered a critical mine for energy production in Greece. It is located in the 
north west part of mainland Greece. A subset was extracted from the main scene 
for analysis in order to include the mining operations as it appears in Figure 1, that 
is presented below.

In this paper Sentinel-2A, Level 2A (Bottom-Of-Atmosphere) corrected 
reflectance imagery was obtained. The scene acquisition date is 30 June 2020 (Tile 
T34TEK). The criteria for the selection of scene were limited cloud coverage and 
high quality.

3. Methodological procedure

The methodology implemented in order to delineate the boundaries of this 
open-pit mining area is presented in Figure 2.

3.1 Tools

Orfeo Toolbox (OTB) was used for digital processing of the imagery. It is an 
open-source project that supports processing of remote sensing data including high 
resolution optical, multispectral and radar images [25]. The algorithms utilized for 
the purpose of this study were accessed from Python through the otbApplication 
module. Spatial analysis procedures were carried out in QGIS, a free and open-
source Geographic Information System that supports the creation, editing visualiza-
tion and publication of geospatial data [26].

3.2 Initial processing of data

Initial processing of Sentinel-2A imagery includes resampling the 20 m bands 
to 10 m, clipping the scene to the boundaries of Area Of Interest (AOI) and concat-
enating the spectral bands to produce a single stacked image.

Figure 1. 
Study area located in Greece (left) and the subset of Sentinel-2A imagery (2020) (right).
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3.3 Image segmentation

The stacked image was used as input for image segmentation. For the purpose 
of this study, Mean-Shift segmentation algorithm was implemented. It is a non-
parametric clustering approach that is widely utilized in image analysis [27]. 
Mean-Shift segmentation algorithm has depicted adequate results regarding 
object extraction [28, 29]. It can handle different remote sensing satellite data, for 
instance, medium or high spatial resolution images. Critical factors that are related 
to its popularity are the simplicity of filtering step, the multivariate nature and the 

Figure 2. 
Methodological framework.
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existence of various implementations [30]. The vector output of segmentation and 
the selected parameter values of Mean-Shift algorithm are presented in Figure 3.

As shown in Figure 3, range radius and minimum region size parameter values 
were increased drastically compared to default values. This is necessary in order 
not to confuse mine areas with different land-cover types and not to have a large 
number of segments, so that they are manageable.

3.4 Evaluation of segmentation

A qualitative evaluation of segmentation output is commonly implemented 
through visual assessment [31]. This is a rather subjective mean of segmentation 
accuracy evaluation. Conversely, several supervised and unsupervised approaches 

Figure 3. 
Segmentation results. The boundaries of segments are symbolized with red color (spatial radius: 4, range 
radius: 160, minimum region size: 700).
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have been presented in order assess image segmentation accuracy. Supervised 
methods typically compare segmentation output with a reference layer and measure 
the overlapping area [32]. Unsupervised approaches measure particular features 
of segments, for example, spectral homogeneity and between object heterogeneity 
[33]. However, there is not a standard methodology [32].

For the purpose of this study, an unsupervised approach was selected. In 
specific, the objective function proposed by Espindola et al. [33] was calculated 
to evaluate the quality of image segmentation results. This function consists of a 
measure of intrasegment homogeneity and one of intersegment heterogeneity. The 
first part is intrasegment variance of segments, a weighted average, where the area 
of each segment represents the corresponding weight. Thus, probable variabilities 
produced by smaller segments are eliminated. Furthermore, in order to evaluate 
intersegment heterogeneity, the function employs Moran’s I autocorrelation index 
[34] that measures the spatial association as derived from the total of segments. 
Moran’s I reflects how, on average, mean values of each segment vary from mean 
values of its adjacent segments. Small values of Moran’s I suggest low spatial auto-
correlation, hence the adjacent regions are statistically different. This denotes large 
intersegment heterogeneity. In other words, image segmentation produces segments 
with discrete boundaries. Employing spatial autocorrelation for evaluating image 
segmentation quality is especially suitable for region growing algorithms that 
generate closed polygons [33].

An adequate selection of parameters’ values incorporates low intersegment 
Moran’s I index with low intrasegment variance. The proposed function from 
Espindola [33] adds the normalized values of variance and autocorrelation mea-
sures. The objective function and its components were computed for each spectral 
band of Sentinel-2 imagery. Following, the value of objective function for the entire 
imagery was calculated by averaging the values of each spectral band. The results 
are presented in Table 1.

As shown in Table 1, the mean normalized value of variance slightly changes 
for different parameters’ values and the lowest values corresponds to the low-
est values of range radius and minimum region size, as expected. Moran’s I 
index value is decreasing when range radius value and minimum region size 
are increasing, which means that segments get larger in size but also fewer in 
number. The selected Mean-Shift parameters’ values for this specific study area 

Mean-Shift parameters’ values (Spatial 

radius/Range radius/Minimum region size)

Variance Moran’s I 

index

Objective 

function

5/15/100 0.53 0.57 1.10

4/80/700 0.59 0.38 0.97

4/120/700 0.60 0.35 0.95

4/160/700 0.60 0.34 0.95

4/200/700 0.60 0.38 0.98

4/240/700 0.59 0.36 0.95

4/200/1500 0.61 0.27 0.89

4/300/2000 0.59 0.28 0.87

Table 1. 
The values of variance, Moran’s I index and objective function for specific Mean-Shift parameters’ values.
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(4/160/700) correspond to relatively low Moran’s I index value which denotes 
that neighboring segments are statistically discrete.

3.5 NDVI calculation

Normalized Difference Vegetation Index (NDVI) was computed among several 
spectral indices. The relevant bands for NDVI are Red and NIR. NDVI is a simple 
but also undoubtedly effective and extensively implemented index for quantifying 
green vegetation. NDVI values range from −1 to +1. Negative values suggest the 
existence of water bodies. Values close to zero (−0.1–0.1) typically correspond to 
barren land. Values above 0.1 commonly indicate the existence of green vegetation 
[35]. NDVI of the study area is presented in Figure 4.

As shown in Figure 4, values from 0 to 0.2 clearly indicate the existence of 
mine areas, as it can be visually recognized from the natural color image. This 

Figure 4. 
NDVI of the imagery.
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observation lead to the exploitation of this specific feature to extract the bound-
aries of mine areas.

3.6 Zonal statistics

Zonal statistics of segments were computed from NDVI raster layer. In specific, 
min, max, standard deviation and mean statistics were calculated over each seg-
ment. Following, they were exported in a vector layer (shapefile). It was ascertained 
that mean value statistic comprise an ideal indicator to identify mine areas. Mean 
value of NDVI for each segment is presented in Figure 5 superimposed on the 
natural color image of the study area.

3.7 Delineation of mine area

Following the identification of mine areas, isolation of these areas is the next 
step. Since some areas outside mines share the same mean NDVI values with mines, 

Figure 5. 
Mean NDVI value of segments.
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further processing of the vector layer is required. A dataset with rough boundaries 
of mine areas forms an auxiliary layer that can help to remove non-mine areas. In 
specific, Corine Land Cover (CLC) 2018 polygon of mine class was employed. A 
buffer area was computed using a fixed distance of 500 m for two main reasons. 
Minimum mapping unit of CLC datasets is 25 hectares, thus it is not appropriate for 
the scale of the analysis of this study and cannot be used unchanged. In addition, 
the reference year of satellite data used for the production of the latest CLC status 
layer is 2018, while the reference year of the imagery used in this paper is 2020. 
Several changes regarding mine boundaries occurred during this timeframe. CLC 
2018 mine polygon and 500 m buffered polygon are presented in Figure 6.

A segment, in order to be characterized as mine area has to satisfy two condi-
tions. It has to intersect with CLC 2018 buffered boundaries and its mean NDVI 
value has to be in the range of 0.00 to 0.25. Through this approach, segments 
were filtered and non-mine areas (polygons outside buffer zone) were erased. 
Furthermore, a manual more precise removal of non-mine areas was carried out 
to the remaining segments. The final step includes the implementation of dissolve 
algorithm in order to dissolve adjacent segments that share a common boundary. 

Figure 6. 
CLC 2018 mine polygon (in orange color) and 500 m buffered polygon (in red color).
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In this way, several segments were converted to a single meaningful image object 
(the mine area), that is demonstrated in Figure 7.

4. Discussion

An effective way of accomplishing adequate environmental management of 
mining areas requires the integration of remote sensing methods and Geographic 
Information Systems. Remote sensing provides image analysis fundamentals while 
a Geographic Information System offers spatial data analysis and geo-visualization 
tools. If these are exploited in a proper way, then continuous monitoring of mining 
activity can lead to efficient reclamation. In addition, freely-available data and 
open-source software drastically facilitates the efforts in this direction. This study 
utilized both of them in an effort to develop a comprehensive and at the same time 
rapid methodology for identifying mining areas and precisely delineating their 
boundaries. Of course, this approach can be beneficial for a multitemporal analysis 
in order to evaluate mining expansion.

Figure 7. 
Mine area in crosshatch pattern.
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The implemented approach for image segmentation evaluation that is demon-
strated in this study does not require ground truth data, since it is an unsupervised 
method that is characterized by two features included in the following. Each 
segment should be internally homogeneous (weighted variance metric) and at the 
same time discrete from its adjacent segments (Moran’s I spatial autocorrelation 
index). These two indicators are calculated for each spectral band and then com-
bined into a global evaluation metric, the objective function. The main advantage of 
this approach is its robustness, since it exploits well-established statistical methods. 
However, since it is a global evaluation metric, it may not perform well when two 
segmentation results depict very similar performance but have dissimilar local error 
distributions. An approach that is capable of quantifying both locally and globally 
segmentation performance may be more suitable for the aforementioned situation.

5. Conclusion

In this study a methodology for rapid identification of mines and precise 
delineation of theirs boundaries is presented, with the use of both freely-available 
data and open-source software. For this reason a cloudless Sentinel-2A imagery was 
obtained covering the area of interest. Following the initial processing steps, image 
segmentation was carried out using Mean-Shift algorithm and an unsupervised 
segmentation evaluation metric was calculated for different parameters’ values. It is 
combined by an autocorrelation index that identifies separability between segments 
and variance, an indicator that depicts the global homogeneity of segments. Then, 
NDVI and its mean values for each segment were computed. Finally, the mine 
area was extracted by implementing some spatial analysis tools including dissolve 
algorithm in order to aggregate segments that share a common boundary.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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