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Chapter

Nuclear Fuel Transmutation
Akbar Abbasi

Abstract

Nuclear power plants to generates electric energy used nuclear fuel such as 
Uranium Oxide (UOX). A typical VVER−1000 reactor uses about 20–25 tons of 
spent fuel per year. The fuel transmutation of UOX fuel was evaluated by VISTA 
computer code. In this estimation the front end and back end components of fuel 
cycle was calculated. The front end of the cycle parameter are FF requirements, 
enrichment value requirements, depleted uranium amount, conversion require-
ments and natural uranium requirements. The back-end component is Spent Fuel 
(SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes.

Keywords: nuclear power plant, nuclear fuel, front end, back end, actinide inventory

1. Introduction

VVER −1000 (Water-Water Energetic Reactor-1000) is a type of pressurized 
water reactor with 1000 MW thermal power planned to generate a 330 MWe [1]. 
Production actinide consequently of using nuclear power reactors as electric energy 
source. Actinide Inventory (AI) elements cumulative in spent fuel (SF) and are 
a part of spent fuel that useable as MOX fuel in nuclear power reactors. Recently, 
some researchers have been studied the actinide inventory in spent fuel of nuclear 
power reactors [2–4].

VISTA computer code is available for the calculation of nuclide inventories in 
spent fuel. The neutron transmutation (fission) of the long-lived actinide isotopes 
in SF with decay times on the order of millennia into fission products with decay 
times of a few hundred years would profoundly impact the problem of storing 
SF that confronts the expansion of nuclear power. For the actinides, the creation 
comprises of neutron catch or decay of a forerunner nuclide. Evacuation may 
comprise of neutron-actuated or unconstrained fission; neutron catch and radioac-
tive decay [5].

The estimation of the response rates requires nuclide fixation and cross-area 
information, the neutron transition level and vitality range in the fuel. As the 
energy spectrum in the fuel is subject to the grid structure and arrangement, such 
counts include rehashed iterative answers for the range and cross-section. The 
degree to which this is completed relies upon the precision expected of the last 
arrangement. After every burnup span, the combined range is utilized to get the 
neutron cross-segments which are accordingly utilized for the count of the nuclide 
response rates. The focuses to be considered in making an assessment of the acces-
sible strategies are:
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• data of nuclide cross-section

• energy spectrum evaluation

• neutron flux level calculation during the irradiation

• burnup equations numerical solution.

The treatment of these amounts in the few elective codes has been analyzed [6].

2. Nuclear fuel cycle

Nuclear fuel cycle definition is the set of cycles to utilize nuclear materials and 
to restore it to conclusive state. The fuel cycle begins with the mining of unused 
atomic materials from nature and closures with the protected removal of utilized 
nuclear materials in nature. Figure 1 shows the nuclear fuel cycle diagram by 
indicating main processes in a recycle mode.

The first step is mining in a nuclear fuel cycle. After this step the next step is 
milling prosses. The feed for mining and processing measure is U metal and the 
item is U3O8 concentrate, which is generally called yellowcake because of its shading 
and shape [7]. The third step is change term that alludes to the way toward purging 
the U concentrate and changing over it to the synthetic structure required for the 
following phase of the nuclear fuel cycle.

Figure 1. 
The nuclear fuel cycle diagram.
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In this stage U element can be produced in three forms of metal, oxide (UO2 or 
UO3) and uranium hexafluoride (UF6). UF6 is the overwhelming item at this phase 
of the nuclear fuel cycle since it is handily changed over to gas for the advance-
ment stage, as utilized on the planet’s most regular reactor type. (LWRs) (see 
Figure 2).

The next process after conversion is enrichment step. In general, there are two 
industrially accessible advancement innovations: vaporous dispersion and rotator. 
The two strategies depend on the slight mass contrast somewhere in the range 
of 235U and 238U. Along these lines, the improvement is characterized as the way 
toward expanding the measure of 235U contained in a unit amount of uranium. 
The feed for this stage is regular UF6 and the item is enhanced UF6. The other 
yield of the cycle is the uranium which has lower 235U substance than the regular 
uranium. It is known as enhancement tail or exhausted uranium. Fuel fabrica-
tion is another term that the enrichment fuel was made as pellets. Fuel pellets 
are loaded into tubes of zircaloy or stainless steel, which are sealed at both ends. 
These fuel rods are spaced in fixed parallel arrays to form the reactor fuel assem-
blies (see Figure 3).

The whole process is referred as fuel fabrication. The reactor unit itself is 
irradiator for nuclear fuel. It burns the fuel, produces energy and spent fuel. The 
feed for reactor is new fuel containing U or U/Pu, if there should arise an occur-
rence of blended oxide (MOX) fuel, for existing atomic fuel cycle alternatives. The 
item is the spent fuel comprising of recently created nuclides, for example, splitting 
items (I. Cs, Sr, …) minor actinides (Np, Am, Cm) and Pu just as the uranium. The 
greatest aspect of the spent fuel is still U (over 95% for the most reactor types). 
Reprocessing process is based on chemical and physical processes to separate the 
required material from spent nuclear fuel. The feed of this process is spent fuel and 
the products are reusable material and high-level wastes (HLW) [6].

The other unit of nuclear cycle fuel is spent fuel storage, which could be put 
away briefly for some time later or could be put away uncertainly. Spent fuel could 
be put away in pools (wet sort, briefly) or in storehouses (dry sort). Likewise, 
the loss from fuel manufacture and reprocessing offices are delegated HLW and 
requires cautious treating. HLW is put away in uncommon storerooms after 
 legitimate treatment.

Figure 2. 
Main components of a light water reactors (LWR) [8].
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3. The composition of transuranic in the spent fuel of VVER reactor

The following nuclides have been studied and the transmutation chain which is 
given in Figure 4. These radionuclides are: 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 
242Pu, 237Np, 241Am, 242mAm, 243Am, 242Cm and244Cm.

The actinide transmutations to each chine are calculated by [10]:

 d tr d tri
ji ji i ij ij j

i j j i

dN
N N

dt
l s j l s j

¹ ¹
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where iN is atomic content of ith –isotope; d
jil  is decay constant, (1/s); tr

jis  

transmutation cross section from isotope i to isotope j, (barn) and j  is average 
neutron flux, (n/s·cm2).

If the neutron flux and cross sections are constant on a time interval, the equa-
tion has a simple analytical solution.

An example to solve the transmutation chain starting from 238U up to 240Pu is 
shown below, using Bateman’s Equation.
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Figure 3. 
The fuel fabrication [9].
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where.
AFi = Isotope(i) atomic content in the chain
σ c = Cross-section of capture (barns)
σ f = Cross-section fission (barns)
σ n,2n = Cross-section of (n,2n) (barns)
σ ex = Cross-section of excited (barns)
σ t = Cross-section totally (barns)

 
24

1

2

0.693

.365.24.3600.10 .
decay

T
s =

F
 (7)

 t c f ex decays s s s s= + + +  (8)

T 1/2 = Half-life (years)
Φ = Neutron average flux (n/cm/cm/sec). (the energy range of 0 to 10 MeV 

total flux)
T = Time of irradiation (sec)

Figure 4. 
The actinide transmutation chains [6].
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1000.

3600. .24

dET
KWKG

=  (9)

Ed = Burnup discharge (GW·d/t)
KWKG = Specific power (MW/tonne)
The condition solver initially computes the isotopic piece in nuclear division. The 

acquired nuclear portions at that point are changed over to the weight divisions [6].
Nowadays, it is estimated that >2000 t of actinides has been accumulated as 

nuclear waste, most of which are plutonium isotopes. Table 1 shows the composi-
tion of transuranic elements in the fresh and spent fuel of a VVER after recycling 
process [10]. The most significant commitment to the drawn-out radiation peril 
originates from 239Pu (t½ = 24,110 a), from other Pu isotopes, and from other 
actinides, i.e., 237Np (t½ = 2.1 × 106 a), 241Am (t½ = 432 a), 243Am (t½ = 7370 a) 
and 245Cm (t½ = 8500 a) [11]. Pu and MA represent only 1.5% of the waste volume. 
Nonetheless, their radio toxicity becomes dominant after around 300 years and 
remains extensively high for a huge number of years, a period too long to even 

Figure 5. 
The flowchart of nuclear material amounts calculated by VISTA.

Radiation Mass (u) Charge Range (air) Range (tissue)

α 4 +2 ~3 cm ~40 μm

β 1

1840

-1 or + 1 ~300 cm ~5000 μm

X or gamma emission 0 0 Very large Through body

Fast neutron (n) 1 0 Very large Through body

Thermal neutron (n) 1 0 Very large ~15 cm

Table 1. 
Properties of nuclear emission.
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consider guaranteeing a sheltered disengagement from nature by methods for 
building obstructions [12]. Besides, actinides present criticality and multiplication 
concerns. The fission cross-section of numerous actinides is portrayed by edges of 
a couple of 100 keV. Hence, they do not undergo fission in thermal reactors, rather 
reduce reactor critically as thermal neutron absorbers. However, they have signifi-
cantly high fission cross-sections at high neutron energies [13].

The amount of nuclear materials for a VVER-1000 reactor was calculated and 
shown as diagram in Figure 5.

For VVER-1000 reactor, the fresh fuel, actinide elements and fission product 
values in spent fuel was calculated by VISTA simulation code.

The total amount of FF is 23.792 t/year with 22.915 t/year of 238U and 0.877  
t/year of 235U. The grade of enrichment is 3.6% on average. The actinide martials 
content in SF of calculated by VISTA are 235U (0.232123 t/year), 236U (0.107850  
t/year), 238U (22.177277 t/year), 238Pu(0.004352 t/year), 239Pu(0.156181  
t/year), 240Pu(0.047959 t/year), 241Pu(0.049525 t/year), 242Pu(0.017008 t/year), 
241Am(0.001297 t/year), 237Np(0.001239 t/year), 242m Am(0.000019 t/year), 
243Am(0.003554 t/year), 242Cm(0.000463 t/year) and 244Cm(0.001142 t/year) 
radioelements. The values of above radioelements except 235U and 238U isotopes 
were compared in Figure 6.

Figure 7. 
Discharged UOX spent fuel content in VVER-1000 reactor.

Figure 6. 
The actinide elements content in spent fuel of the VVER-1000 reactor calculated by VISTA.
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Also, the content of discharged UOX burned fuel in VVER-1000 nuclear power 
plant is presented in Figure 7.

4. Radiation and protection of nuclear fuel cycle

There are two type radiation sources naturally occurring radioactive materials 
(NORM) and technologically enhanced naturally occurring radioactive materials 
(TENORM) consist of materials in nuclear industry. The NORM radionuclides like 
232Th, 238U, and 40K that occur mostly in minerals such present all over the Earth’s 
crust in varying quantities depending on the ambient geological end geochemical 
properties of local. NORM radioactive are present in soil [14–19], water [20–23] 
and building materials [24–30]. The TENORM materials is upset or changed from 
regular settings or present in a mechanically improved state due to past or introduce 
human exercises and practices, which may bring about a relative increment in 
radionuclide fixations, radiation presentations and dangers to people in general, 
and danger to the open condition above foundation radiation levels.

The properties and ranges of the various nuclear radiations are summarized in 
Table 1. The ranges are only approximate since they depend on the energy of the 
radiation [31].

The alpha particle has mass higher than beta particle, so these partials travels 
relatively slowly into matter. Alpha particle interaction is a high likelihood of with 
iotas along its way and will surrender a portion of its vitality during every one of 
these cooperation’s. As an outcome, α particles lose their vitality quickly and travel 
without a doubt, extremely short separations in thick media.

Beta particles are a lot of littler than particles and travel a lot quicker. They 
consequently go through less associations per unit length of track and surrender 
their vitality more gradually than α particles. This implies β particles travel further 
in thick media than α particles.

Gamma radiation loses its vitality mostly by interfacing with nuclear electrons. 
It ventures enormous separations even in thick media and is hard to ingest totally.

Neutrons surrender their vitality through an assortment of collaborations, the 
general significance of which are reliant on the neutron vitality. Therefore, it is 
regular practice to separate neutrons into in any event three vitality gatherings: 
quick, moderate and warm. Neutrons are infiltrating and will travel enormous 
separations even in thick media.

An office ought to have set up a radiation assurance program that is satis-
factory to secure the radiological wellbeing and wellbeing of laborers and the 
general population and guarantee that the presentations are ALARA. To achieve 
this, offices assess and describe the radiological hazard and regularly give 
adequate hearty controls to limit this danger. Potential mishap arrangements are 
considered in evaluating the ampleness of the controls, which expect to limit 
radiological danger and sullying.

The fuel cycle office radiation assurance rehearses incorporate [32]:

• A viable reported program to guarantee that word related radiological  
introductions are ALARA;

• An association with sufficient capability prerequisites for the radiation  
insurance work force;

• Approved composed techniques for directing exercises including radioactive 
materials;
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• Radiation protection preparing for all faculty who approach limited zones;

• A program to control airborne convergence of radioactive material with 
 building controls and respiratory insurance;

• A radiation overview and checking program that incorporates prerequisites for 
control of radioactive sullying inside the office and observing of outside and 
inward radiation presentations;

• Other projects to look after records, to report radiation introductions to the 
managing authority, and to restore an adequate in-plant radiological condition 
in case of an occurrence.

The execution of such projects with respect to coordinate radiation is currently 
made a lot simpler with the utilization of individual electronic dosimeters of Visa 
size that can immediately alarm the holder when momentary or cumulated portion 
reach modified edges, that keep in memory the historical backdrop of presentation 
and whose information can be downloaded to PCs, for instance each time the admin-
istrator enters or leaves the controlled zone, so these information can be naturally 
recorded and investigated. In this manner, point by point presentation previsions 
can be checked versus real introductions, permitting improvement of both working 
techniques and previsions. The improvement of mechanized screens that permit the 
perception of portion rates is likewise an incredible asset for radiation protection.

5. Conclusions

The content of this chapter is overall reviewing the nuclear fuel transmutation 
discussion. For this purpose, the nuclear fuel cycle of UOx type fuel was presented. 
In the next section the composition of transuranic in the spent fuel of VVER reactor 
was survived. Also, the amount of minor actinide and fission product in a VVER-
1000 reactor was calculated and finally, the radiation protection principles of 
nuclear fuel cycle were presented and discussed.
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