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Chapter

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part II:
Asymptotic Solutions
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

We develop asymptotic solutions for near-tip fields of Mode-I and Mode-II
crack problems and for model responses reflected by implicit gradient elasticity.
Especially, a model of gradient elasticity is considered, which is based on Laplacians
of stress and strain and turns out to be derivable as a particular case of
micromorphic (microstrain) elasticity. While the governing model equations of the
crack problems are developed in Part I, the present paper addresses analytical
solutions for near-tip fields by using asymptotic expansions of Williams’ type. It is
shown that for the assumptions made in Part I, the model does not eliminiate the
well-known singularities of classical elasticity. This is in contrast to conclusions
made elsewhere, which rely upon different assumptions. However, there are
significant differences in comparison to classical elasticity, which are discussed in
the paper. For instance, in the case of Mode-II loading conditions, the leading terms
of the asymptotic solution for the components of the double stress exhibit the
remarkable property that they include two stress intensity factors.

Keywords: implicit gradient elasticity, mode-I and mode-II crack problems,
analytical solutions, asymptotic expansions of Williams’ type, near-tip fields,
order of singularity, stress intensity factors

1. Introduction

The 3-PG-Model, discussed in Part I, is a simple model of implicit gradient
elasticity based on Laplacians of stress and strain and has been introduced by
Gutkin and Aifantis [1]. It can be derived as a particular case of micromorphic
(microstrain) elasticity (see, e. g., Forest and Sievert [2]), so that a free energy
function and required boundary conditions are formulated rigorously. In the
present paper, we are looking for near-tip asymptotic field solutions for Mode-I and
Mode-II crack problems, in the context of plane strain states. The asymptotic
solutions are obtained by using expansions of Williams’ type (see Williams [3]).

For the assumptions made in Part I, it is found that both, conventional stress and
conventional strain, are singular. This holds also for the nonconventional stress, the
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so-called double stress. All singular fields have an order of singularity r�
1
2. In

particular, the leading terms of the asymptotic solutions of the conventional stress
are exactly the same as in classical elasticity. Nevertheless, the results are quite
interesting, since the two leading terms of the asymptotic solution of the
macrostrain are different from the corresponding terms of classical elasticity, and
since the form of the asymptotic solution of the double stress exhibits a remarkable
feature. To be more specific, the leading term of the asymptotic solution of the
double stress includes two stress intensity factors, which are independent of each
other. This reflects, from a theoretical point of view, differences in the structure of
the asymptotic solutions in comparison to classical elasticity as well as micropolar
elasticity, where only one stress intensity factor is present in the solutions of Mode-
II crack problems.

There are various works addressing singularities in the field variables. Among
others, we mention for couple-stress elasticity the works of Muki and Sternberg [4],
Sternberg and Muki [5], Bogy and Sternberg [6, 7], Xia and Hutchinson [8], Huang
et al. [9–11] and Zhang et al. [12]. For micropolar elasticity the works of Paul and
Sridharan [13], Chen et al. [14], Diegele et al. [15] and for gradient elasticity the
works of Altan and Aifantis [16, 17], Ru and Aifantis [18], Unger and Aifantis
[19–21], Chen et al. [22], Mousavi and Lazar [23], Shi et al. [24, 25], Vardoulakis
et al. [26], Karlis et al. [27, 28], Georgiadis [29], Askes and Aifantis [30] and Gutkin
and Aifantis [1] are to be mentioned. The latter is an interesting work and proves
that use of the 3-PG-Model eliminates singularities from the”elastic stresses of
defects” (see also Askes and Aifantis [30] as well as Aifantis [31]). This finding is in
contrast to the conclusions of the present paper, but it should be emphasized that
the form of the assumed boundary conditions in Gutkin and Aifantis [1] is different
from the form assumed here.

The scope of the paper is organized as follows: Mode-I and Mode-II crack
problems are considered in the setting of plane strain problems. For the 3-PG-
Model, the reduced governing equations for plane strain states have been derived in
Part I and are summarized in Section 2. Section 3 provides asymptotic solutions for
the near-tip fields by starting from asymptotic expansions of the macrodis-
placement and the microdeformation. An alternative and equivalent aproach,
starting from asymptotic expansions of the stresses, is sketched in Section 4. The
developed asymptotic solutions are summarized and discussed in Section 5. Finally,
the paper closes with some conclusions in Section 6.

Throughout the paper, use is made of the notation introduced in Part I.

2. Summary of the governing equations for plane strain problems

Following equations of Part I will be employed to establish asymptotic solutions
of the crack tip fields.

Free energy function (see section “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

ψ ¼ 1

2
εαβαβρζ ερζ þ

1

2

c2 � c1
c1

γαβαβρζ γρζ þ
1

2
c2 � c1ð Þkαβγβγρζ kαρζ: (1)

Elasticity law for Σ (see section 3:1 “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

Σαβ ¼
c2
c1

αβγρ εγρ �
c2 � c1
c1

αβγρΨγρ (2)

2
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or inversely

εrr ¼
c1

2μc2
Σrr � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c1

Ψrr, (3)

εφφ ¼ c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c1

Ψφφ, (4)

εrφ ¼ c1
2μc2

Σrφ þ
c2 � c1
c1

Ψrφ: (5)

Elasticity law for σ (see section 3:1 “The 3-PG-Model as particular case of
micro-strain elasticity” in Part I)

σαβ ¼
c2 � c1
c1

αβρζ ερζ � Ψρζ

� �

: (6)

Elasticity law for μ (see section 4:5:1 “Elasticity law for double stress” in Part I)

μrrr ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨrr þ λ∂rΨφφ

� �

, (7)

μrφφ ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨφφ þ λ∂rΨrr

� �

, (8)

μrzz ¼ c2 � c1ð Þλ∂r Ψrr þΨφφ

� �

¼ ν μrrr þ μrφφ
� �

, (9)

μrrφ ¼ c2 � c1ð Þ2μ∂rΨrφ, (10)

μφrr ¼
c2 � c1

r
2μ ∂φΨrr � 2Ψrφ

� �

þ λ∂φ Ψrr þΨφφ

� �� �

, (11)

μφφφ ¼ c2 � c1
r

2μ ∂φΨφφ þ 2Ψrφ

� �

þ λ∂φ Ψrr þΨφφ

� �� �

, (12)

μφzz ¼
c2 � c1

r
λ∂φ Ψrr þΨφφ

� �

¼ ν μφrr þ μφφφ
� �

, (13)

μφrφ ¼ c2 � c1
r

2μ ∂φΨrφ þΨrr � Ψφφ

� �

, (14)

μrrz ¼ μrφz ¼ μφrz ¼ μφφz ¼ 0, (15)

μzαβ ¼ 0, (16)

or inversely

∇Ψð Þrrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μrrr � ν 1þ νð Þμrφφ
� �

, (17)

∇Ψð Þrφφ ¼ 1

c2 � c1ð ÞE 1� ν2
� �

μrφφ � ν 1þ νð Þμrrr
� �

, (18)

∇Ψð Þrrφ ¼ 1þ ν

c2 � c1ð ÞE μrrφ, (19)

∇Ψð Þφrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μφrr � ν 1þ νð Þμφφφ
� �

, (20)

∇Ψð Þφφφ ¼ 1

c2 � c1ð ÞE 1� ν2
� �

μφφφ � ν 1þ νð Þμφrr
� �

, (21)

∇Ψð Þφrφ ¼ 1þ ν

c2 � c1ð ÞE μφrφ: (22)
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Material parameters (see section 2 “Preliminaries—Notation” in Part I)

ν ¼ λ

2 λþ μð Þ , E ¼ 2μ 1þ νð Þ: (23)

Strain components (see section 4:1 “Kinematics” in Part I)

εrr ¼ ∂rur, εφφ ¼ 1

r
ur þ ∂φuφ
� �

, εrφ ¼ 1

2

1

r
∂φur þ ∂ruφ �

1

r
uφ

� �

: (24)

Microdeformation components (see section 4:1 “Kinematics” of Part I)

∇Ψð Þrrr ¼ ∂rΨrr, ∇Ψð Þrφφ ¼ ∂rΨφφ, ∇Ψð Þrrφ ¼ ∂rΨrφ, (25)

∇Ψð Þφrr ¼
1

r
∂φΨrr � 2Ψrφ

� �

, (26)

∇Ψð Þφφφ ¼ 1

r
∂φΨφφ þ 2Ψrφ

� �

, (27)

∇Ψð Þφrφ ¼ 1

r
∂φΨrφ þ Ψrr �Ψφφ

� �

, (28)

∇Ψð Þαβz ¼ ∇Ψð Þzαβ ¼ 0: (29)

Classical equilibrium equations (see section 4:2 “Cauchy stress—Classical
equilibrium equations” in Part I)

∂rΣrr þ
1

r
∂φΣrφ þ

1

r
Σrr � Σφφ

� �

¼ 0, (30)

∂rΣrφ þ
1

r
∂φΣφφ þ

2

r
Σrφ ¼ 0: (31)

Nonclassical equilibrium equations (see section 4:5:2 “Nonclassical equilibrium
conditions” in Part I)

∂rμrrr þ
1

r
∂φμφrr þ

1

r
μrrr � 2μφrφ
� �

þ σrr ¼ 0, (32)

∂rμrφφ þ
1

r
∂φμφφφ þ

1

r
μrφφ þ 2μφrφ
� �

þ σφφ ¼ 0, (33)

∂rμrzz þ
1

r
∂φμφzz þ

1

r
μrzz þ σzz ¼ 0, (34)

∂rμrrφ þ
1

r
∂φμφrφ þ

1

r
μrrφ � μφφφ þ μφrr
� �

þ σrφ ¼ 0: (35)

Field equations for Ψ (see section 4:4 “Field equations for Ψ” in Part I)

∂rrΨrrþ
1

r2
∂φφΨrr þ

1

r
∂rΨrr �

4

r2
∂φΨrφ �

2

r2
þ 1

c2

� �

Ψrr þ
2

r2
Ψφφ

þ 1� ν

2μc2
Σrr �

ν

2μc2
Σφφ ¼ 0,

(36)

∂rrΨφφþ
1

r2
∂φφΨφφ þ

1

r
∂rΨφφ þ

4

r2
∂φΨrφ þ

2

r2
Ψrr �

2

r2
þ 1

c2

� �

Ψφφ

þ 1� ν

2μc2
Σφφ �

ν

2μc2
Σrr ¼ 0,

(37)
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∂rrΨrφþ
1

r2
∂φφΨrφ þ

1

r
∂rΨrφ þ

2

r2
∂φΨrr �

2

r2
∂φΨφφ �

4

r2
þ 1

c2

� �

Ψrφ

þ 1

2μc2
Σrφ ¼ 0:

(38)

Classical compatibility condition (see section 4:3 “Classical compatibility
condition” in Part I)

χ1 Ψαβ

� �

þ χ2 Σαβ

� �

¼ 0, (39)

χ1 Ψαβ

� �

≔  
c2 � c1
c2

∂rrΨφφ �
2

r
∂rφΨrφ þ

1

r2
∂φφΨrr

�

� 1

r
∂rΨrr þ

2

r
∂rΨφφ �

2

r2
∂φΨrφ

	

,

(40)

χ2 Σαβ

� �

≔  
1� νð Þ c1
2μc2

∂rr Σrr þ Σφφ

� �

þ 1

r2
∂φφ Σrr þ Σφφ

� �

�

þ 1

r
∂r Σrr þ Σφφ

� �

	

:

(41)

Nonclassical compatibility conditions (see section 4:6 “Nonclassical
compatibility conditions” in Part I)

∂φμrrφ � μφrφ � r∂rμφrφ þ μrrr � μrφφ ¼ 0, (42)

∂φμrφφ þ ∂φμrrr � μφφφ � μφrr � r∂rμφφφ � r∂rμφrr ¼ 0, (43)

∂φμrφφ � ∂φμrrr � μφφφ þ μφrr � r∂rμφφφ þ r∂rμφrr þ 4μrrφ ¼ 0: (44)

Classical boundary conditions (see section 4:7 “Boundary conditions” in Part I)

Σrφ

� �

φ¼�π
¼ 0, (45)

Σφφ

� �

φ¼�π
¼ 0: (46)

Nonclassical boundary conditions (see section 4:7 “Boundary conditions” in
Part I)

μφrr
� �

φ¼�π
¼ μφφφ
� �

φ¼�π
¼ μφrφ
� �

φ¼�π
¼ 0, (47)

or equivalently

∂φΨrr � 2Ψrφ

� �

φ¼�π
¼ 0, (48)

∂φΨφφ þ 2Ψrφ

� �

φ¼�π
¼ 0, (49)

∂φΨrφ þΨrr � Ψφφ

� �

φ¼�π
¼ 0: (50)

Symmetry conditions—Mode-I (see section 4:8 “Symmetry conditions” in
Part I)

Σrr r,φð Þ ¼ Σrr r,�φð Þ, Σφφ r,φð Þ ¼ Σφφ r,�φð Þ, (51)

Σrφ r,φð Þ ¼ �Σrφ r,�φð Þ, (52)
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Ψrr r,φð Þ ¼ Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ Ψφφ r,�φð Þ, (53)

Ψrφ r,φð Þ ¼ �Ψrφ r,�φð Þ, (54)

μrrr r,φð Þ ¼ μrrr r,�φð Þ, μφrr r,φð Þ ¼ �μφrr r,�φð Þ, (55)

μrφφ r,φð Þ ¼ μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ �μφφφ r,�φð Þ, (56)

μrzz r,φð Þ ¼ μrzz r,�φð Þ, μφzz r,φð Þ ¼ �μφzz r,�φð Þ, (57)

μrrφ r,φð Þ ¼ μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ �μφrφ r,�φð Þ: (58)

Symmetry conditions—Mode-II (see section 4:8 “Symmetry conditions” in
Part I)

Σrr r,φð Þ ¼ �Σrr r,�φð Þ, Σφφ r,φð Þ ¼ �Σφφ r,�φð Þ, (59)

Σrφ r,φð Þ ¼ Σrφ r,�φð Þ, (60)

Ψrr r,φð Þ ¼ �Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ �Ψφφ r,�φð Þ, (61)

Ψrφ r,φð Þ ¼ Ψrφ r,�φð Þ, (62)

μrrr r,φð Þ ¼ �μrrr r,�φð Þ, μφrr r,φð Þ ¼ μφrr r,�φð Þ, (63)

μrφφ r,φð Þ ¼ �μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ μφφφ r,�φð Þ, (64)

μrzz r,φð Þ ¼ �μrzz r,�φð Þ, μφzz r,φð Þ ¼ μφzz r,�φð Þ, (65)

μrrφ r,φð Þ ¼ �μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ μφrφ r,�φð Þ: (66)

3. Near-tip asymptotic solutions for Mode-I and Mode-II loading
conditions

We shall solve the given problems by employing asymptotic expansions of
Williams’ type (see Williams [3]).

3.1 Expansions of Williams’ type

As the components of the macrodisplacement and the microdeformation reflect
the independent kinematical degrees of freedom, we assume for uα and Ψαβ

asymptotic expansions of the same form. We fix the crack tip at the origin O of the
coordinate system (see Figure 1 in Part I) and set

uα ¼ rpu 0ð Þ
α þ rpþ

1
2u 1ð Þ

α þ … ¼
X

∞

k¼0

rpþ
k
2u kð Þ

α , (67)

Ψαβ ¼ Ψαβ þ rpΨ
0ð Þ
αβ þ rpþ

1
2Ψ

1ð Þ
αβ þ … ¼ Ψαβ þ

X

∞

k¼0

rpþ
k
2Ψ

kð Þ
αβ , (68)

with

u kð Þ
α ¼ u kð Þ

α φð Þ, Ψ
kð Þ
αβ ¼ Ψ

kð Þ
αβ φð Þ, Ψαβ ¼ Ψαβ φð Þ, (69)

and p being a real number. Since the crack tip is fixed at O, no constant term is

present in the expansion of u in Eq. (67). However, we allow a constant term Ψ ¼
const:, with physical components Ψαβ in conjunction with cylindrical coordinates,

6
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to be present in the expansion of Ψ. While the Cartesian components Ψij are

constant, the physical components Ψαβ are functions of φ. There are the following

well known transformation rules between Ψαβ and Ψij (see any textbook)

Ψrr ¼
1

2
Ψ11 þ Ψ22

� �

þ 1

2
Ψ11 � Ψ22

� �

cos 2φþ Ψ12 sin 2φ, (70)

Ψφφ ¼ 1

2
Ψ11 þ Ψ22

� �

� 1

2
Ψ11 � Ψ22

� �

cos 2φ�Ψ12 sin 2φ, (71)

Ψrφ ¼ � 1

2
Ψ11 �Ψ22

� �

sin 2φþ Ψ12 cos 2φ: (72)

For later reference, we note the relations

∂φΨrr � 2Ψrφ ¼ 0, ∂φΨφφ þ 2Ψrφ ¼ 0, (73)

∂φΨrφ þΨrr � Ψφφ ¼ 0, (74)

which imply that the physical components Ψαβ trivially obey the nonclassical
boundary conditions (32)–(35). Anticipating the results in Section 5, we decompose

Ψ into parts Ψ
I
and Ψ

II
, reflecting symmetries according to Mode-I and Mode-II:

Ψαβ ¼ Ψ
I
αβ þ Ψ

II
αβ, (75)

with

Ψ
I
rr ≔LI,1 þ LI,2 cos 2φ, Ψ

II
rr ≔LII sin 2φ, (76)

Ψ
I
φφ ≔LI,1 � LI,2 cos 2φ, Ψ

II
φφ ≔ � LII sin 2φ, (77)

Ψ
I

rφ ≔ � LI,2 sin 2φ, Ψ
II

rφ ≔LII cos 2φ (78)

and

LI,1 ≔
1

2
Ψ11 þ Ψ22

� �

, LI,2 ≔
1

2
Ψ11 �Ψ22

� �

, LII ≔Ψ12: (79)

The main idea in Williams’ approach is to expand each field variable f r,φð Þ in a
sum of products as in Eqs. (67) and (68). We say that f is of the order rm, and
write f � rm, whenever rm is the power function of r in the leading term of the

expansion of f . It can be deduced, from Eq. (67), that εαβ � rp�1. From this, in
turn, together with Eq. (68) and the elasticity laws (3)–(5), we can deduce, that
Σαβ � rp�1. Thus,

Σαβ ¼ rp�1
Σ

0ð Þ
αβ þ rp�

1
2Σ

1ð Þ
αβ þ … ¼

X

∞

k¼0

rp�1þk
2Σ

kð Þ
αβ , (80)

with

Σ
kð Þ
αβ ¼ Σ

kð Þ
αβ φð Þ: (81)

Expansion (67) suggests that the necessary and sufficient condition for uα to
vanish at the crack tip is

7
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p>0: (82)

This restriction is in agreement with energetic considerations. To verify, we

remark that ∇Ψ ¼ 0, as Ψ is constant. Therefore, from Eq. (68) together with
Eqs. (25)–(29), we may infer that ∇Ψð Þαβγ � rp�1. For the free energy per unit

macrovolume ψ it follows that ψ � r2p�2 [cf. Eq. (1)]. Now, consider a small
circular area r≤R, enclosing the crack tip. The total free energy (per unit length in
z–direction) of this area is

ð2π

0

ðR

0
ψ rdrdφ: (83)

Since ψ r � r2p�1, restriction (82) is the necessary and sufficient condition for
the energy in Eq. (83) to be bounded.

3.2 Consequences of the classical equilibrium equations

Substitute the expansion (80) into Eqs. (30) and (31) and collect coefficients of
like powers of r, to obtain

rp�2 pΣ 0ð Þ
rr þ ∂φΣ

0ð Þ
rφ � Σ

0ð Þ
φφ

n o

þrp�
3
2 pþ 1

2

� �

Σ
1ð Þ
rr þ ∂φΣ

1ð Þ
rφ � Σ

1ð Þ
φφ


 �

þrp�1 pþ 1ð ÞΣ 2ð Þ
rr þ ∂φΣ

2ð Þ
rφ � Σ

0ð Þ
φφ

n o

þ… ¼ 0: (84)

Similarly, we find from Eq. (31) that

rp�2 pþ 1ð ÞΣ 0ð Þ
rφ þ ∂φΣ

0ð Þ
φφ

n o

þrp�
3
2 pþ 3

2

� �

Σ
1ð Þ
rφ þ ∂φΣ

1ð Þ
φφ


 �

þrp�1 pþ 2ð ÞΣ 2ð Þ
rφ þ ∂φΣ

2ð Þ
φφ

n o

þ… ¼ 0:

(85)

3.3 Consequences of the classical compatibility condition

A look at χ1 �ð Þ in Eq. (40) reveals that χ1 is a linear differential operator, i. e.,

χ1 Ψαβ �Ψαβ

� �

¼ χ1 Ψαβ

� �

� χ1 Ψαβ

� �

: (86)

Since Ψαβ is independent of r, we infer from Eq. (40) that

χ1 Ψαβ

� �

¼ c2 � c1
c2

1

r2
∂φ ∂φΨrr � 2Ψrφ

� �

, (87)

and by virtue of Eq. (73),

χ1 Ψαβ

� �

¼ 0: (88)
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Therefore, from Eq. (86),

χ1 Ψαβ

� �

¼ χ1 Ψαβ � Ψαβ

� �

, (89)

and by appealing to expansion (68), we infer from Eq. (40) that

χ1 Ψαβ

� �

¼  
c2 � c1
c2

X

∞

k¼0

rp�2þk
2 pþ k

2

� �

pþ k

2
� 1

� �

Ψ
kð Þ
φφ þ ∂φφΨ

kð Þ
rr




�2 pþ k

2

� �

∂φΨ
kð Þ
rφ � pþ k

2

� �

Ψ
kð Þ
rr

þ2 pþ k

2

� �

Ψ
kð Þ
φφ � 2∂φΨ

kð Þ
rφ

�

:

(90)

Similarly, by appealing to expansion (80), we infer from Eq. (41) that

χ2 Σαβ

� �

¼  
1� νð Þc1
2μc2

X

∞

k¼0

rp�2þk
2 p� 1þ k

2

� �

p� 2þ k

2

� �

Σ
kð Þ
rr þ Σ

kð Þ
φφ

� 





þ∂φφ Σ
kð Þ
rr þ Σ

kð Þ
φφ

� 


þ p� 1þ k

2

� �

Σ
kð Þ
rr þ Σ

kð Þ
φφ

� 


�

:

(91)

Inserting Eqs. (90) and (91) into Eq. (39) and collecting coefficients of like
powers of r gives, after some lengthy but straightforward manipulations,

rp�3 1� νð Þc1
2μc2

p� 1ð Þ2 Σ
0ð Þ
rr þ Σ

0ð Þ
φφ

� 


þ ∂φφ Σ
0ð Þ
rr þ Σ

0ð Þ
φφ

� 
n o

þrp�
5
2
1� νð Þc1
2μc2

p� 1

2

� �2

Σ
1ð Þ
rr þ Σ

1ð Þ
φφ

� 


þ ∂φφ Σ
1ð Þ
rr þ Σ

1ð Þ
φφ

� 


( )

þrp�2 1� νð Þc1
2μc2

p2 Σ
2ð Þ
rr þ Σ

2ð Þ
φφ

� 


þ ∂φφ Σ
2ð Þ
rr þ Σ

2ð Þ
φφ

� 
h i




þ c2 � c1
c2

p pþ 1ð ÞΨ 0ð Þ
φφ þ ∂φφΨ

0ð Þ
rr � 2 pþ 1ð ÞΨ 0ð Þ

rφ

h io

þrp�
3
2

1� νð Þc1
2μc2

pþ 1

2

� �2

Σ
3ð Þ
rr þ Σ

3ð Þ
φφ

� 


þ ∂φφ Σ
3ð Þ
rr þ Σ

3ð Þ
φφ

� 


" #(

þc2 � c1
c2

pþ 1

2

� �

pþ 3

2

� �

Ψ
1ð Þ
φφ þ ∂φφΨ

1ð Þ
rr � 2 pþ 3

2

� �

Ψ
1ð Þ
rφ

� 	�

þ… ¼ 0:

(92)

3.4 Consequences of the classical boundary conditions

By invoking the asymptotic expansion (80) in the classical boundary conditions
(45) and (46), we conclude that

rp�1
Σ

0ð Þ
rφ

h i

φ¼�π
þ rp�

1
2 Σ

1ð Þ
rφ

h i

φ¼�π
þ … ¼ 0, (93)

rp�1
Σ

0ð Þ
φφ

h i

φ¼�π
þ rp�

1
2 Σ

1ð Þ
φφ

h i

φ¼�π
þ … ¼ 0: (94)
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3.5 Cauchy stress

Before going any further, it is convenient to evaluate the results so far. The
necessary and sufficient conditions for the equilibrium Eqs. (84) and (85), the
compatibility condition (92) and the boundary conditions (93) and (94) to hold for
arbitrary r in the vicinity of the crack tip are vanishing coefficients of all powers of r.

For Σ
kð Þ
αβ , k ¼ 0, 1, 2, this leads to the following systems of differential equations and

associated boundary conditions.

Terms Σ 0ð Þ
αβ

∂φΣ
0ð Þ
rφ þ pΣ 0ð Þ

rr � Σ
0ð Þ
φφ ¼ 0, (95)

∂φΣ
0ð Þ
φφ þ pþ 1ð ÞΣ 0ð Þ

rφ ¼ 0, (96)

∂φφ Σ
0ð Þ
rr þ Σ

0ð Þ
φφ

� 


þ p� 1ð Þ2 Σ
0ð Þ
rr þ Σ

0ð Þ
φφ

� 


¼ 0, (97)

with boundary conditions

Σ
0ð Þ
rφ

h i

φ¼�π
¼ 0, Σ

0ð Þ
φφ

h i

φ¼�π
¼ 0: (98)

Terms Σ
1ð Þ
αβ

∂φΣ
1ð Þ
rφ þ pþ 1

2

� �

Σ
1ð Þ
rr � Σ

1ð Þ
φφ ¼ 0, (99)

∂φΣ
1ð Þ
φφ þ pþ 3

2

� �

Σ
1ð Þ
rφ ¼ 0, (100)

∂φφ Σ
1ð Þ
rr þ Σ

1ð Þ
φφ

� 


þ p� 1

2

� �2

Σ
1ð Þ
rr þ Σ

1ð Þ
φφ

� 


¼ 0, (101)

with boundary conditions

Σ
1ð Þ
rφ

h i

φ¼�π
¼ 0, Σ

1ð Þ
φφ

h i

φ¼�π
¼ 0: (102)

Terms Σ 2ð Þ
αβ

∂φΣ
2ð Þ
rφ þ pþ 1ð ÞΣ 2ð Þ

rr � Σ
2ð Þ
φφ ¼ 0, (103)

∂φΣ
2ð Þ
φφ þ pþ 2ð ÞΣ 2ð Þ

rφ ¼ 0, (104)

1� ν

2μc2
∂φφ Σ

2ð Þ
rr þ Σ

2ð Þ
φφ

� 


þ p2 Σ
2ð Þ
rr þ Σ

2ð Þ
φφ

� 
n o

þ c2 � c1
c2

∂φφΨ
0ð Þ
φφ � 2 pþ 1ð Þ∂φΨ 0ð Þ

rφ þ p pþ 1ð ÞΨ 0ð Þ
φφ � pΨ 0ð Þ

rr

n o

¼ 0,
(105)

with boundary conditions

Σ
2ð Þ
rφ

h i

φ¼�π
¼ 0, Σ

2ð Þ
φφ

h i

φ¼�π
¼ 0: (106)
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It can be recognized that coupling between components of Σ and components of

Ψ arises for the first time in the equations for Σ 2ð Þ
αβ . Therefore, we shall focus

attention only on the terms Σ 0ð Þ
αβ and Σ

1ð Þ
αβ .

The solution of the systems of differential equations for Σ 0ð Þ
αβ and Σ

1ð Þ
αβ , subjected

to the restriction (82), can be established by well known methods (see, e. g., A) and
turns out to be identical to the solution of the corresponding problems in classical
elasticity. That means that the stress components Σαβ are singular, with order of

singularity r�
1
2, or equivalently,

p ¼ 1

2
: (107)

The coefficients of the singular terms, Σ
0ð Þ
αβ , are given by

Σ
0ð Þ
αβ ¼

~KI
ffiffiffiffiffiffi

2π
p f Iαβ φð Þ þ

~KII
ffiffiffiffiffiffi

2π
p f IIαβ φð Þ, (108)

where the constants ~KI and ~KII are the stress intensity factors. Here and in the
following, the indices I and II stand for Mode-I and Mode-II, respectively. More-

over, we use the notations ~KI and ~KII, in order to distinguish the stress intensity
factors of the microstrain continuum from the stress intensity factors KI and KII of
classical continua.

The so-called angular functions f Iαβ and f IIαβ are defined through

f Irr

f Iφφ

f Irφ

0

B

B

@

1

C

C

A

¼ 1

4

5 cos
φ

2
� cos

3φ

2

3 cos
φ

2
þ cos

3φ

2

sin
φ

2
þ sin

3φ

2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

,

f IIrr

f IIφφ

f IIrφ

0

B

B

@

1

C

C

A

¼ 1

4

�5 sin
φ

2
þ 3 sin

3φ

2

�3 sin
φ

2
� 3 sin

3φ

2

cos
φ

2
þ 3 cos

3φ

2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

, (109)

and are normalized by the conditions

f Iφφ

h i

φ¼0
¼ 1, f IIrφ

h i

φ¼0
¼ 1: (110)

The constant terms Σ
1ð Þ
αβ are given by

Σ
1ð Þ
rr

Σ
1ð Þ
φφ

Σ
1ð Þ
rφ

0

B

B

@

1

C

C

A

¼ ~kI

cos 2φ

sin 2φ

� 1

2
sin 2φ

0

B

B

@

1

C

C

A

(111)

with ~kI being constant. Constant terms for Mode-II are not present. The first two
terms of the asymptotic expansion of Σαβ are summarized in Section 5.

3.6 Strain

Although the first two terms in the expansion of Σαβ are identical to the ones of
classical elasticity, the corresponding terms of εαβ differ from those of classical
elasticity. This follows from the fact that the elasticity laws (3)–(5) are not classical.
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Evidently, the components εαβ obey the asymptotic expansion

εαβ ¼ r�
1
2 ε

0ð Þ
αβ þ ε

1ð Þ
αβ þ … : (112)

We use this and the asymptotic expansions of Section 3.1, with p ¼ 1
2, in the

elasticity laws (3)–(5), and collect coefficients of like powers of r. Thus, we derive

the following solutions for ε
0ð Þ
αβ and ε

1ð Þ
αβ .

Terms ε
0ð Þ
αβ

ε 0ð Þ
rr ¼ c1

2μc2
Σ

0ð Þ
rr � ν Σ

0ð Þ
rr þ Σ

0ð Þ
φφ

� 
h i

, (113)

ε 0ð Þ
φφ ¼ c1

2μc2
Σ

0ð Þ
φφ � ν Σ

0ð Þ
rr þ Σ

0ð Þ
φφ

� 
h i

, (114)

ε 0ð Þ
rφ ¼ c1

2μc2
Σ

0ð Þ
rφ : (115)

By taking into account the solutions for Σ 0ð Þ
αβ of the last section, we find that

ε 0ð Þ
rr ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi

2π
p 5� 8νð Þ cos φ

2
� cos

3φ

2

� 	

þ c1 ~KII

8μc2
ffiffiffiffiffiffi

2π
p � 5� 8νð Þ sin φ

2
þ 3 sin

3φ

2

� 	

,

(116)

ε 0ð Þ
φφ ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi

2π
p 3� 8νð Þ cos φ

2
þ cos

3φ

2

� 	

þ c1 ~KII

8μc2
ffiffiffiffiffiffi

2π
p � 3� 8νð Þ sin φ

2
� 3 sin

3φ

2

� 	

,

(117)

ε 0ð Þ
rφ ¼ c1 ~KI

8μc2
ffiffiffiffiffiffi

2π
p sin

φ

2
þ sin

3φ

2

� 	

þ c1 ~KII

8μc2
ffiffiffiffiffiffi

2π
p cos

φ

2
þ 3 cos

3φ

2

� 	

: (118)

Terms ε 1ð Þ
αβ

ε 1ð Þ
rr ¼ c1

2μc2
Σ

1ð Þ
rr � ν Σ

1ð Þ
rr þ Σ

1ð Þ
φφ

� 
h i

þ c2 � c1
c2

Ψrr, (119)

ε 1ð Þ
φφ ¼ c1

2μc2
Σ

1ð Þ
φφ � ν Σ

1ð Þ
rr þ Σ

1ð Þ
φφ

� 
h i

þ c2 � c1
c2

Ψφφ, (120)

ε 1ð Þ
rφ ¼ c1

2μc2
Σ

1ð Þ
rφ þ c2 � c1

c2
Ψrφ: (121)

Now, we take into account the solutions for Σ
1ð Þ
αβ , established in the last section,

as well as the representations for Ψαβ, given by Eqs. (75)–(79), to obtain

ε 1ð Þ
rr ¼ ~k

ε

I,1 þ ~k
ε

I,2 cos 2φþ ~k
ε

II sin 2φ, (122)

ε 1ð Þ
φφ ¼ ~k

ε

I,1 � ~k
ε

I,2 cos 2φ� ~k
ε

II sin 2φ, (123)

ε 1ð Þ
rφ ¼ �~k

ε

I,2 sin 2φþ ~k
ε

II cos 2φ: (124)
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The constants ~k
ε

I,1,
~k
ε

I,2 and
~k
ε

II are defined as follows:

~k
ε

I,1 ≔
c1 ~kI 1� 2νð Þ

4μc2
þ c2 � c1ð ÞLI,1

c2
, (125)

~k
ε

I,2 ≔
c1 ~kI
4μc2

þ c2 � c1ð ÞLI,2

c2
, (126)

~k
ε
!

II ≔
c2 � c1ð ÞLII

c2
: (127)

The first two terms of the asymptotic expansion of εαβ are summarized in
Section 5.

3.7 Macrodisplacements

The macrodisplacement components ur and uφ will be determined by integrating
Eqs. (24). For plane strain elasticity, it is well known that the constants of integra-
tion represent rigid body motions. Omitting such motions, we conclude for the
radial component ur that

ur ¼
ð

εrrdr ¼
ð

r�
1
2 ε 0ð Þ

rr þ ε 1ð Þ
rr þ …

� 


dr, (128)

or

r
1
2u 0ð Þ

r þ ru 1ð Þ
r þ … ¼ 2r

1
2 ε 0ð Þ

rr þ rε 1ð Þ
rr þ … : (129)

For the circumferential component uφ, we conclude that

uφ ¼
ð

rεφφ � ur
� �

dφ, (130)

or

r
1
2u 0ð Þ

φ þ ru 1ð Þ
φ þ … ¼ r

1
2

ð

ε 0ð Þ
φφ � u 0ð Þ

r

� 


dφþ r

ð

ε 1ð Þ
φφ � u 1ð Þ

r

� 


dφþ … : (131)

By employing steps similar to those in the last section, we get the following

solutions for u
0ð Þ
α and u

1ð Þ
α .

Terms u 0ð Þ
α

u 0ð Þ
r ¼ 2ε 0ð Þ

rr , (132)

u 0ð Þ
φ ¼

ð

ε 0ð Þ
φφ � u 0ð Þ

r

� 


dφ ¼
ð

ε 0ð Þ
φφ � 2ε 0ð Þ

rr

� 


dφ: (133)

Invoking Eqs. (116) and (117), we get, after some straightforward
manipulations,

u 0ð Þ
r ¼ c1 ~KI

4μc2
ffiffiffiffiffiffi

2π
p 5� 8νð Þ cos φ

2
� cos

3φ

2

� 	
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þ c1 ~KII

4μc2
ffiffiffiffiffiffi

2π
p � 5� 8νð Þ sin φ

2
þ 3 sin

3φ

2

� 	

, (134)

u 0ð Þ
φ ¼ c1 ~KI

4μc2
ffiffiffiffiffiffi

2π
p � 7 � 8νð Þ sin φ

2
þ sin

3φ

2

� 	

þ c1 ~KII

4μc2
ffiffiffiffiffiffi

2π
p � 7 � 8νð Þ cos φ

2
þ 3 cos

3φ

2

� 	

: (135)

Terms u
1ð Þ
α

u 1ð Þ
r ¼ ε 1ð Þ

rr , (136)

u 1ð Þ
φ ¼

ð

ε 1ð Þ
φφ � u 1ð Þ

r

� 


dφ ¼
ð

ε 1ð Þ
φφ � ε 1ð Þ

rr

� 


dφ, (137)

from which, by virtue of Eqs. (119) and (120),

u 1ð Þ
r ¼ ~k

ε
!

I,1 þ ~k
ε
!

I,2 cos 2φþ ~k
ε
!

II sin 2φ, (138)

u 1ð Þ
φ ¼ �~k

ε
!

I,2 sin 2φþ ~k
ε
!

II cos 2φ: (139)

The first two terms of the asymptotic expansion of uα are also summarized in
Section 5.

3.8 Microdeformation

We shall derive differential equations for Ψ 0ð Þ
αβ and Ψ

1ð Þ
αβ by inserting the

asymptotic expansions of Ψαβ and Σαβ (see Eqs. (68) and (80), with p ¼ 1
2) into

Eqs. (36)–(38). Note that, by virtue of Eqs. (73) and (74) and since Ψαβ is
independent of r, the identity

∂rrΨrr þ
1

r2
∂φφΨrr þ

1

r
∂rΨrr �

4

r2
∂φΨrφ �

2

r2
Ψrr þ

2

r2
Ψφφ ¼ 0 (140)

applies. Keeping this in mind and collecting terms of like powers of r, after some
lengthy but otherwise straightforward manipulations, Eq. (36) yields

r�
3
2 ∂φφΨ

0ð Þ
rr � 4∂φΨ

0ð Þ
rφ � 7

4
Ψ

0ð Þ
rr þ 2Ψ 0ð Þ

φφ


 �

þr�1
∂φφΨ

1ð Þ
rr � 4∂φΨ

1ð Þ
rφ � Ψ

1ð Þ
rr þ 2Ψ 1ð Þ

φφ

n o

þ … ¼ 0:

(141)

Similarly, from Eqs. (37) and (38), we get

r�
3
2 ∂φφΨ

0ð Þ
φφ þ 4∂φΨ

0ð Þ
rφ � 7

4
Ψ

0ð Þ
φφ þ 2Ψ 0ð Þ

rr


 �

þr�1
∂φφΨ

1ð Þ
φφ þ 4∂φΨ

1ð Þ
rφ �Ψ

1ð Þ
φφ þ 2Ψ 1ð Þ

rr

n o

þ … ¼ 0,

(142)

r�
3
2 ∂φφΨ

0ð Þ
rφ þ 2∂φ Ψ

0ð Þ
rr �Ψ

0ð Þ
φφ

h i

� 15

4
Ψ

0ð Þ
rφ


 �

þr�1
∂φφΨ

1ð Þ
rφ þ 2∂φ Ψ

0ð Þ
rr � Ψ

0ð Þ
φφ

h i

� 15

4
Ψ

0ð Þ
rφ


 �

þ … ¼ 0:

(143)
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It is worth remarking that if only terms up to order r�1 are retained in

Eqs. (141)–(143), then the terms Ψ 0ð Þ
αβ and Ψ

1ð Þ
αβ are uncoupled from the terms Ψαβ

and Σ
kð Þ
αβ .

In an analogous manner, by substituting the asymptotic expansion (68) into the
nonclassical boundary conditions (48)–(50), we show that

r
1
2 ∂φΨ

0ð Þ
rr � 2Ψ 0ð Þ

rφ

h i

φ¼�π
þ r ∂φΨ

1ð Þ
rr � 2Ψ 1ð Þ

rφ

h i

φ¼�π
þ … ¼ 0, (144)

r
1
2 ∂φΨ

0ð Þ
φφ þ 2Ψ 0ð Þ

rφ

h i

φ¼�π
þ r ∂φΨ

1ð Þ
φφ þ 2Ψ 1ð Þ

rφ

h i

φ¼�π
þ … ¼ 0, (145)

r
1
2 ∂φΨ

0ð Þ
rφ þ Ψ

0ð Þ
rr � Ψ

0ð Þ
φφ

h i

φ¼�π
þ r ∂φΨ

1ð Þ
rφ þ Ψ

1ð Þ
rr �Ψ

1ð Þ
φφ

h i

φ¼�π
þ … ¼ 0: (146)

3.8.1 Differential equations for Ψ
0ð Þ
αβ

Equating to zero the coefficients of power r�
3
2 in Eqs. (141)–(143) leads to the

system of ordinary differential equations

∂φφΨ
0ð Þ
rr � 4∂φΨ

0ð Þ
rφ � 7

4
Ψ

0ð Þ
rr þ 2Ψ 0ð Þ

φφ ¼ 0, (147)

∂φφΨ
0ð Þ
φφ þ 4∂φΨ

0ð Þ
rφ � 7

4
Ψ

0ð Þ
φφ þ 2Ψ 0ð Þ

rr ¼ 0, (148)

∂φφΨ
0ð Þ
rφ þ 2∂φ Ψ

0ð Þ
rr � Ψ

0ð Þ
φφ

h i

� 15

4
Ψ

0ð Þ
rφ ¼ 0: (149)

Similarly, equating to zero the coefficients of power r
1
2 in the boundary

conditions (144)–(146) leads to

∂φΨ
0ð Þ
rr � 2Ψ 0ð Þ

rφ

h i

φ¼�π
¼ 0, (150)

∂φΨ
0ð Þ
φφ þ 2Ψ 0ð Þ

rφ

h i

φ¼�π
¼ 0, (151)

∂φΨ
0ð Þ
rφ þΨ

0ð Þ
rr � Ψ

0ð Þ
φφ

h i

φ¼�π
¼ 0: (152)

Proceeding to solve the system (147)–(149), we note that Eqs. (147) and (148)
imply the ordinary differential equation

∂φφ Ψ
0ð Þ
rr þ Ψ

0ð Þ
φφ

h i

þ 1

4
Ψ

0ð Þ
rr þ Ψ

0ð Þ
φφ

h i

¼ 0 (153)

for the sum Ψ
0ð Þ
rr þΨ

0ð Þ
φφ , which has the solution

Ψ
0ð Þ
rr þΨ

0ð Þ
φφ ¼ A 0ð Þ cos

φ

2
þ B 0ð Þ sin

φ

2
: (154)

For determining the constants of integration A 0ð Þ and B 0ð Þ, we utilize the
boundary conditions. From Eqs. (150) and (151), we derive the equation

∂φ Ψ
0ð Þ
rr þΨ

0ð Þ
φφ

� 
h i

φ¼�π
¼ 0: (155)
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By substituting the solution (154), we see that

A 0ð Þ ¼ 0: (156)

To go further, we notice that Eqs. (147) and (148) imply

∂φΨ
0ð Þ
rφ ¼ 1

8
∂φφ Ψ

0ð Þ
rr �Ψ

0ð Þ
φφ

� 


� 15

4
Ψ

0ð Þ
rr �Ψ

0ð Þ
φφ

� 


� 	

: (157)

Next, we differentiate Eq. (149) with respect to φ and use Eq. (157).
Rearrangement of terms leads to the ordinary differential equation

1

2
∂φφφφ Ψ

0ð Þ
rr þΨ

0ð Þ
φφ

� 


þ 17

4
∂φφ Ψ

0ð Þ
rr þΨ

0ð Þ
φφ

� 


þ 225

32
Ψ

0ð Þ
rr þ Ψ

0ð Þ
φφ

� 


�∂φφφφΨ
0ð Þ
φφ � 17

2
∂φφΨ

0ð Þ
φφ � 225

16
Ψ

0ð Þ
φφ ¼ 0:

(158)

By substituting the solutions (154) and (156), we gain an ordinary differential

equation for Ψ 0ð Þ
φφ ,

∂φφφφΨ
0ð Þ
φφ þ 17

2
∂φφΨ

0ð Þ
φφ þ 225

16
Ψ

0ð Þ
φφ ¼ 6B 0ð Þ sin

φ

2
, (159)

which obeyes the solution

Ψ
0ð Þ
φφ ¼  

1

2
B 0ð Þ sin

φ

2
þ E 0ð Þ sin

3φ

2
þ F 0ð Þ sin

5φ

2
þ C 0ð Þ cos

3φ

2

þD 0ð Þ cos
5φ

2
,

(160)

with C 0ð Þ,D 0ð Þ,E 0ð Þ and F 0ð Þ being new constants of integration. Further, from
Eqs. (154), (156) and (160),

Ψ
0ð Þ
rr ¼  

1

2
B 0ð Þ sin

φ

2
� E 0ð Þ sin

3φ

2
� F 0ð Þ sin

5φ

2
� C 0ð Þ cos

3φ

2

�D 0ð Þ cos
5φ

2
:

(161)

Finally, using the solutions (161) and (160) in Eq. (157), we obtain the solution

Ψ
0ð Þ
rφ in the form

Ψ
0ð Þ
rφ ¼ C 0ð Þ sin

3φ

2
þD 0ð Þ sin

5φ

2
� E 0ð Þ cos

3φ

2
� F 0ð Þ cos

5φ

2
þG 0ð Þ, (162)

where G 0ð Þ is a further constant of integration. For the constants of integration in
the solutions (160)–(162) we can verify, by evaluating the boundary conditions
(150)–(152) that

G 0ð Þ ¼ 0, �D 0ð Þ ¼ C 0ð Þ, � F 0ð Þ ¼ E 0ð Þ
: (163)

In accordance with the symmetry conditions (53) and (54) for Mode-I as well as
(61) and (62) for Mode-II, we set
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C 0ð Þ � C
0ð Þ
I , B 0ð Þ � B

0ð Þ
II , E 0ð Þ � E

0ð Þ
II : (164)

Then, the solutions (160)–(162) become

Ψ
0ð Þ
rr ¼ �C

0ð Þ
I cos

3φ

2
� cos

5φ

2

� �

þ 1

2
B

0ð Þ
II sin

φ

2
� E

0ð Þ
II sin

3φ

2
� sin

5φ

2

� �

,

(165)

Ψ
0ð Þ
φφ ¼ C

0ð Þ
I cos

3φ

2
� cos

5φ

2

� �

þ 1

2
B

0ð Þ
II sin

φ

2
þ E

0ð Þ
II sin

3φ

2
� sin

5φ

2

� �

,

(166)

Ψ
0ð Þ
rφ ¼ C

0ð Þ
I sin

3φ

2
� sin

5φ

2

� �

� E
0ð Þ
II cos

3φ

2
� cos

5φ

2

� �

: (167)

It is of interest to comment the following issue. Obviously not all constants of
integration may be determined, because boundary conditions are prescribed only
on the crack faces. Nevertheless, it is remarkable that the solutions of Mode-I
include only one unknown constant, whereas the solutions of Mode-II depend on
two unknown constants. We shall come back to this specific feature in the next
section as well as in Section 5, while discussing the asymptotic solutions of the
double stresses.

3.8.2 Differential equations for Ψ
1ð Þ
αβ

Equating to zero the coefficients of power r�1 in Eqs. (141)–(143) and the
coefficients of power r in the boundary conditions (144)–(146) furnish the system
of ordinary differential equations

∂φφΨ
1ð Þ
rr � 4∂φΨ

1ð Þ
rφ � Ψ

1ð Þ
rr þ 2Ψ 1ð Þ

φφ ¼ 0, (168)

∂φφΨ
1ð Þ
φφ þ 4∂φΨ

1ð Þ
rφ � Ψ

1ð Þ
φφ þ 2Ψ 1ð Þ

rr ¼ 0, (169)

∂φφΨ
1ð Þ
rφ þ 2∂φ Ψ

1ð Þ
rr � Ψ

1ð Þ
φφ

� 


� 3Ψ 1ð Þ
rφ ¼ 0, (170)

and corresponding boundary conditions

∂φΨ
1ð Þ
rr � 2Ψ 1ð Þ

rφ

h i

φ¼�π
¼ 0, (171)

∂φΨ
1ð Þ
φφ þ 2Ψ 1ð Þ

rφ

h i

φ¼�π
¼ 0, (172)

∂φΨ
1ð Þ
rφ þ Ψ

1ð Þ
rr �Ψ

1ð Þ
φφ

h i

φ¼�π
¼ 0: (173)

Since the steps for solving the above system of differential equations are quite
similar to those in the last section, we omit the details and present only the final
solutions

Ψ
1ð Þ
rr ¼ 1

2
A 1ð Þ cosφ�D

1ð Þ
I cosφþ cos 3φð Þ � E

1ð Þ
II sinφ� F

1ð Þ
II sin 3φ, (174)

Ψ
1ð Þ
φφ ¼ 1

2
A 1ð Þ cosφþD

1ð Þ
I cosφþ cos 3φð Þ þ E

1ð Þ
II sinφþ F

1ð Þ
II sin 3φ, (175)
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Ψ
1ð Þ
rφ ¼ D

1ð Þ
I sinφþ sin 3φð Þ � E

1ð Þ
II

1

2
þ cosφ

� �

� F
1ð Þ
II

1

2
� cos 3φ

� �

: (176)

With regard to the symmetry conditions (53), (54), (61) and (62), the constants

A
1ð Þ
I ,D 1ð Þ

I ,E 1ð Þ
II and F

1ð Þ
II are attributed to loading conditions of Mode-I and Mode-II,

respectively. The solutions Ψ
0ð Þ
αβ and Ψ

1ð Þ
αβ are summarized and discussed in Section 5.

3.9 Double stress

The considerations of Section 3.1, together with p ¼ 1
2 (see Eq. (107)), and the

elasticity laws for μ [see Eqs. (7)–(16)] suggest the asymptotic expansion

μαβγ ¼ r�
1
2μ

0ð Þ
αβγ þ μ

1ð Þ
αβγ þ … ¼

X

∞

k¼0

r�
1
2þk

2 μ
kð Þ
αβγ, (177)

with

μ
kð Þ
αβγ ¼ μ

kð Þ
αβγ φð Þ: (178)

The goal is to determine μ 0ð Þ
αβγ and μ

1ð Þ
αβγ by substituting the asymptotic expansion

for Ψαβ into the elasticity laws (7)–(16). It is readily verified that in view of the

conditions (73) and (74), the terms Ψαβ of the expansion (68) will disappear in the
subsequent equations. Thus, we conclude from Eqs. (7)–(16), by equating the

coefficients of power r�
1
2 that

μ 0ð Þ
rrr ¼ c2 � c1ð Þ λþ 2μ

2
Ψ

0ð Þ
rr þ λ

2
Ψ

0ð Þ
φφ

� �

, (179)

μ 0ð Þ
rφφ ¼ c2 � c1ð Þ λþ 2μ

2
Ψ

0ð Þ
φφ þ λ

2
Ψ

0ð Þ
rr

� �

, (180)

μ 0ð Þ
rzz ¼ c2 � c1ð Þ λ

2
Ψ

0ð Þ
rr þ Ψ

0ð Þ
φφ

� 


, (181)

μ 0ð Þ
rrφ ¼ c2 � c1ð ÞμΨ 0ð Þ

rφ , (182)

μ 0ð Þ
φrr ¼ c2 � c1ð Þ 2μ ∂φΨ

0ð Þ
rr � 2Ψ 0ð Þ

rφ

� 


þ λ∂φ Ψ
0ð Þ
rr þΨ

0ð Þ
φφ

� 
h i

, (183)

μ 0ð Þ
φφφ ¼ c2 � c1ð Þ 2μ ∂φΨ

0ð Þ
φφ þ 2Ψ 0ð Þ

rφ

� 


þ λ∂φ Ψ
0ð Þ
rr þ Ψ

0ð Þ
φφ

� 
h i

, (184)

μ 0ð Þ
φzz ¼ c2 � c1ð Þλ∂φ Ψ

0ð Þ
rr þΨ

0ð Þ
φφ

� 


, (185)

μ 0ð Þ
φrφ ¼ c2 � c1ð Þ2μ ∂φΨ

0ð Þ
rφ þΨ

0ð Þ
rr � Ψ

0ð Þ
φφ

� 


, (186)

and by equating the coefficients of power r0 that

μ 1ð Þ
rrr ¼ c2 � c1ð Þ λþ 2μð ÞΨ 1ð Þ

rr þ λΨ 1ð Þ
φφ

� 


, (187)

μ 1ð Þ
rφφ ¼ c2 � c1ð Þ λþ 2μð ÞΨ 1ð Þ

φφ þ λΨ 1ð Þ
rr

� 


, (188)

μ 1ð Þ
rzz ¼ c2 � c1ð Þλ Ψ

1ð Þ
rr þΨ

1ð Þ
φφ

� 


, (189)
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μ 1ð Þ
rφφ ¼ c2 � c1ð Þ2μΨ 1ð Þ

rφ , (190)

μ 1ð Þ
φrr ¼ c2 � c1ð Þ 2μ ∂φΨ

1ð Þ
rr � 2Ψ 1ð Þ

rφ

� 


þ λ∂φ Ψ
1ð Þ
rr þΨ

1ð Þ
φφ

� 
h i

, (191)

μ 1ð Þ
φφφ ¼ c2 � c1ð Þ 2μ ∂φΨ

1ð Þ
φφ þ 2Ψ 1ð Þ

rφ

� 


þ λ∂φ Ψ
1ð Þ
rr þΨ

1ð Þ
φφ

� 
h i

, (192)

μ 1ð Þ
φzz ¼ c2 � c1ð Þλ∂φ Ψ

1ð Þ
rr þΨ

1ð Þ
φφ

� 


, (193)

μ 1ð Þ
rφφ ¼ c2 � c1ð Þ2μ ∂φΨ

1ð Þ
rφ þΨ

1ð Þ
rr � Ψ

1ð Þ
φφ

� 


: (194)

If we introduce the solutions (160)–(162) into Eqs. (179)–(186) and rearrange

terms, then, for μ 0ð Þ
αβγ, we obtain the representations

μ 0ð Þ
rrr ¼ c2 � c1ð Þ �μC

0ð Þ
I cos

3φ

2
� cos

5φ

2

� �

þ λþ μ

2
B

0ð Þ
II sin

φ

2

�

�μE
0ð Þ
II sin

3φ

2
� sin

5φ

2

� �	

,

(195)

μ 0ð Þ
rφφ ¼ c2 � c1ð Þ μC

0ð Þ
I cos

3φ

2
� cos

5φ

2

� �

þ λþ μ

2
B

0ð Þ
II sin

φ

2

�

þμE
0ð Þ
II sin

3φ

2
� sin

5φ

2

� �	

,

(196)

μ 0ð Þ
rzz ¼ c2 � c1ð Þ λ

2
B

0ð Þ
II sin

φ

2
, (197)

μ 0ð Þ
rrφ ¼   c2 � c1ð Þ μC

0ð Þ
I sin

3φ

2
� sin

5φ

2

� ��

�μE
0ð Þ
II cos

3φ

2
� cos

5φ

2

� �	

,

(198)

μ 0ð Þ
φrr ¼   c2 � c1ð Þ �μC

0ð Þ
I sin

3φ

2
þ sin

5φ

2

� �

þ λþ μ

2
B

0ð Þ
II cos

φ

2

�

þμE
0ð Þ
II cos

3φ

2
þ cos

5φ

2

� �	

,

(199)

μ 0ð Þ
φφφ ¼ c2 � c1ð Þ μC

0ð Þ
I sin

3φ

2
þ sin

5φ

2

� �

þ λþ μ

2
B

0ð Þ
II cos

φ

2

�

�μE
0ð Þ
II cos

3φ

2
þ cos

5φ

2

� �	

,

(200)

μ 0ð Þ
φzz ¼ c2 � c1ð Þ λ

2
B

0ð Þ
II cos

φ

2
, (201)

μ 0ð Þ
φrφ ¼ c2 � c1ð Þ �μC

0ð Þ
I cos

3φ

2
þ cos

5φ

2

� ��

� μE
0ð Þ
II sin

3φ

2
þ sin

5φ

2

� �	

:

(202)

The fact that the solutions μ 0ð Þ
αβγ depend on two unknown constants in case of

Mode-II is a characteristic property. As we shall see in Section 5, this feature leads
to the existence of two stress intensity factors for the double stresses in case of
Mode-II.
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Using steps similar to those above we obtain for μ 1ð Þ
αβγ the representations

μ 1ð Þ
rrr ¼   c2 � c1ð Þ λþ μð ÞA 1ð Þ

I cosφ� 2μD
1ð Þ
I cosφþ cos 3φð Þ

h

�2μE 1ð Þ
II sinφ� 2μF 1ð Þ

II sin 3φ
i

,

(203)

μ 1ð Þ
rφφ ¼   c2 � c1ð Þ λþ μð ÞA 1ð Þ

I cosφþ 2μD
1ð Þ
I cosφþ cos 3φð Þ

h

þ2μE 1ð Þ
II sinφþ 2μF 1ð Þ

II sin 3φ
i

,

(204)

μ 1ð Þ
φzz ¼ c2 � c1ð ÞA 1ð Þ

I cosφ, (205)

μ 1ð Þ
rrφ ¼   c2 � c1ð Þ 2μD 1ð Þ

I sinφþ sin 3φð Þ
h

� 2μE 1ð Þ
II

1

2
þ cosφ

� �

� 2μF 1ð Þ
II

1

2
� cos 3φ

� �	

,

(206)

μ 1ð Þ
φrr ¼ c2 � c1ð Þ � λþ μð ÞA 1ð Þ

I sinφ� 2μD 1ð Þ
I sinφ� sin 3φð Þ

h

þ2μE 1ð Þ
II 1þ cosφð Þ � 2μF 1ð Þ

II 1þ cos 3φð Þ
i

,
(207)

μ 1ð Þ
φφφ ¼ c2 � c1ð Þ � λþ μð ÞA 1ð Þ

I sinφþ 2μD 1ð Þ
I sinφ� sin 3φð Þ

h

�2μE
1ð Þ
II 1þ cosφð Þ þ 2μF

1ð Þ
II 1þ cos 3φð Þ

i

,
(208)

μ 1ð Þ
φzz ¼ c2 � c1ð ÞλA 1ð Þ

I sinφ, (209)

μ 1ð Þ
φrφ ¼   c2 � c1ð Þ �2μD

1ð Þ
I cosφ� cos 3φð Þ

h

�2μE
1ð Þ
II sinφþ 2μF

1ð Þ
II sin 3φ

i

:

(210)

Before going to discuss the obtained solutions, it is perhaps of interest to
rederive the analytical solutions by an alternative approach, starting from asymp-
totic expansions of Σ and μ rather than the asymtptotic expansions of u and Ψ used
in this section.

4. Alternative approach for the determination of the near-tip fields

In Section 3 we determined the near-tip fields by starting from asymptotic
expansions of the same form for the kinematical variables u and Ψ [see Eqs. (67)
and (68)]. Alternatively, it is instructive to start from asymptotic expansions of the
same type for the stresses Σ and μ, i. e.,

Σαβ ¼ rp�1
Σ

0ð Þ
αβ þ rp�

1
2Σ

1ð Þ
αβ þ … , (211)

μαβγ ¼ rp�1μ
0ð Þ
αβγ þ rp�

1
2μ

1ð Þ
αβγ þ … , (212)

where Σ kð Þ
αβ ¼ Σ

kð Þ
αβ φð Þ and μ

kð Þ
αβγ ¼ μ

kð Þ
αβγ φð Þ, k ¼ 0, 1, 2, … . Then, from the elasticity

laws (17)–(22), we recognize that ∇Ψð Þαβγ � rp�1 and hence the components Ψαβ are

of form (67). It follows that all outcomes of sections 3.2–3.6 apply as well and, in
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particular, that p ¼ 1
2. Then, it remains to show, how to determine the terms μ 0ð Þ

αβγ

and μ
1ð Þ
αβγ . The corresponding terms of Ψ will then be established by integrating the

elasticity laws (17)–(22). For the purposes of the present section, however, it suf-

fices to demonstrate only how to determine the terms μ 0ð Þ
αβγ. To this end, we shall

involve the nonclassical equilibrium Eqs. (32)–(35), in conjunction with the elastic-
ity law (6) for σ, as well as the nonclassical compatibility conditions (42)–(44). It is
necessary to involve the latter for we are directly seeking for solutions of μαβγ .

4.1 Nonclassical equilibrium equations

Since εαβ � r�
1
2 and Ψαβ � r0, we recognize from the elasticity law (6) that

σαβ � r�
1
2. On the other hand, by virtue of the expansion (212), ∂rμαβγ � r�

3
2 and

1
r μαβγ � r�

3
2. Therefore, up to terms of order r�1 there will be no contributions of σ

present in the nonclassical equilibrium Eqs. (32)–(35) and we conclude that

r�
3
2 � 1

2
μ 0ð Þ
rrr þ ∂φμ

0ð Þ
φrr þ μ 0ð Þ

rrr � 2μ 0ð Þ
φrφ


 �

þ … ¼ 0, (213)

r�
3
2 � 1

2
μ 0ð Þ
rφφ þ ∂φμ

0ð Þ
φφφ þ μ 0ð Þ

rφφ þ 2μ 0ð Þ
φrφ


 �

þ … ¼ 0, (214)

r�
3
2 � 1

2
μ 0ð Þ
rzz þ ∂φμ

0ð Þ
φzz þ μ 0ð Þ

rzz


 �

þ … ¼ 0, (215)

r�
3
2 � 1

2
μ 0ð Þ
rrφ þ ∂φμ

0ð Þ
φrφ þ μ 0ð Þ

rrφ � μ 0ð Þ
φφφ þ μ 0ð Þ

φrr


 �

þ … ¼ 0: (216)

Equating to zero the coefficients of power r�
3
2 leads to

2∂φμ
0ð Þ
φrr þ μ 0ð Þ

rrr � 4μ 0ð Þ
φrφ ¼ 0, (217)

2∂φμ
0ð Þ
φφφ þ μ 0ð Þ

rφφ þ 4μ 0ð Þ
φrφ ¼ 0, (218)

2∂φμ
0ð Þ
φrφ þ μ 0ð Þ

rrφ � 2μ 0ð Þ
φφφ þ 2μ 0ð Þ

φrr ¼ 0, (219)

and

2∂φμ
0ð Þ
φzz þ μ 0ð Þ

rzz ¼ 0: (220)

The last equation will not be considered further, for it can be established from
Eqs. (217) and (218). To see this, we recall Eqs. (9) and (13) to recast Eq. (220)
equivalently in the form

2∂φμ
0ð Þ
φrr þ 2∂φμ

0ð Þ
φφφ þ μ 0ð Þ

rrr þ μ 0ð Þ
rφφ ¼ 0: (221)

But this equations can also be obtained by adding up Eqs. (217) and (218).

4.2 Nonclassical compatibility conditions

We insert the asymptotic expansion (212) into the nonclassical compatibility
conditions (42)–(44) and collect terms of like powers of r, to get

21

Mode-I and Mode-II Crack Tip Fields in Implicit Gradient Elasticity Based on Laplacians…
DOI: http://dx.doi.org/10.5772/intechopen.93618



r�
1
2 ∂φμ

0ð Þ
rrφ � μ 0ð Þ

φrφ þ
1

2
μ 0ð Þ
φrφ þ μ 0ð Þ

rrr � μ 0ð Þ
rφφ


 �

þ … ¼ 0, (222)

r�
1
2 ∂φμ

0ð Þ
rφφ þ ∂φμ

0ð Þ
rrr � μ 0ð Þ

φφφ � μ 0ð Þ
φrr þ

1

2
μ 0ð Þ
φφφ þ

1

2
μ 0ð Þ
φrr


 �

þ … ¼ 0, (223)

r�
1
2 ∂φμ

0ð Þ
rφφ � ∂φμ

0ð Þ
rrr � μ 0ð Þ

φφφ þ μ 0ð Þ
φrr þ

1

2
μ 0ð Þ
φφφ �

1

2
μ 0ð Þ
φrr þ 4μ 0ð Þ

rrφ


 �

þ… ¼ 0:

(224)

Again, equating to zero the coefficients of power r�
1
2 leads to

∂φμ
0ð Þ
rrφ �

1

2
μ 0ð Þ
φrφ þ μ 0ð Þ

rrr � μ 0ð Þ
rφφ ¼ 0, (225)

∂φμ
0ð Þ
rφφ þ ∂φμ

0ð Þ
rrr �

1

2
μ 0ð Þ
φφφ �

1

2
μ 0ð Þ
φrr ¼ 0, (226)

∂φμ
0ð Þ
rφφ � ∂φμ

0ð Þ
rrr �

1

2
μ 0ð Þ
φφφ þ

1

2
μ 0ð Þ
φrr þ 4μ 0ð Þ

rrφ ¼ 0: (227)

4.3 Determination of μ 0ð Þ
αβγ

Eqs. (217)–(219) and (225)–(227) are 6 differential equations for the 6

unknowns μ
0ð Þ
rrr , μ

0ð Þ
rφφ, μ

0ð Þ
rrφ, μ

0ð Þ
φrr, μ

0ð Þ
φφφ and μ

0ð Þ
φrφ. The required boundary conditions can

be verified to be [cf. Eq. (47)].

μ 0ð Þ
φrr

h i

φ¼�π
¼ μ 0ð Þ

φφφ

h i

φ¼�π
¼ μ 0ð Þ

φrφ

h i

φ¼�π
¼ 0: (228)

It can be shown (cf. A) that the solutions are given by

μ 0ð Þ
rrr ¼ B

2
sin

φ

2
þ C sin

3φ

2
� sin

5φ

2

� �

� A cos
3φ

2
� cos

5φ

2

� �

, (229)

μ 0ð Þ
rφφ ¼ B

2
sin

φ

2
� C sin

3φ

2
� sin

5φ

2

� �

þ A cos
3φ

2
� cos

5φ

2

� �

, (230)

μ 0ð Þ
rrφ ¼ C cos

3φ

2
� cos

5φ

2

� �

þ A sin
3φ

2
� sin

5φ

2

� �

, (231)

μ 0ð Þ
φrr ¼

B

2
cos

φ

2
� C cos

3φ

2
þ cos

5φ

2

� �

� A sin
3φ

2
þ sin

5φ

2

� �

, (232)

μ 0ð Þ
φφφ ¼ B

2
cos

φ

2
þ C cos

3φ

2
þ cos

5φ

2

� �

þ A sin
3φ

2
þ sin

5φ

2

� �

, (233)

μ 0ð Þ
φrφ ¼ C sin

3φ

2
þ sin

5φ

2

� �

� A cos
3φ

2
þ cos

5φ

2

� �

: (234)

If we define

A≔ c2 � c1ð ÞμC 0ð Þ
I , B≔ c2 � c1ð Þ λþ μð ÞB 0ð Þ

II , (235)

C≔ � c2 � c1ð ÞμE 0ð Þ
II (236)

then these are nothing more but the solutions for μ
0ð Þ
αβγ of Section 3.9.
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5. Discussion of the asymptotic solutions

As suggested in Section 3.5, it is common to represent the leading terms of the
asymptotic expansion of stresses by introducing stress intensity factors and angular
functions. For the Cauchy stress, this is indicated in Eq. (108). Eqs. (108)–(110)
also reveal that

~KI
ffiffiffiffiffiffi

2π
p ¼ Σ

0ð Þ
φφ

h i

φ¼0
,

~KII
ffiffiffiffiffiffi

2π
p ¼ Σ

0ð Þ
rφ

h i

φ¼0
: (237)

To accomplish a representation for μ 0ð Þ
αβγ similar to the one for Σ 0ð Þ

αβ in Eq. (108),

we remark that there is only one unknown constant for Mode-I, namely C
0ð Þ
I , but

there are two unknown constants for Mode-II, B 0ð Þ
II and E

0ð Þ
II [cf. Eqs. (195)–(202)].

Therefore, in analogy to Eq. (108), we set

μ
0ð Þ
αβγ ¼

~LI
ffiffiffiffiffiffi

2π
p gIαβγ φð Þ þ

~LII,1
ffiffiffiffiffiffi

2π
p gII,1αβγ φð Þ þ

~LII,2
ffiffiffiffiffiffi

2π
p gII,2αβγ φð Þ, (238)

and define for Mode–I (cf. Eq. (202))

~LI
ffiffiffiffiffiffi

2π
p ≔ μ 0ð Þ

φrφ

h i

φ¼0
¼ � c2 � c1ð Þ2μC 0ð Þ

I , (239)

rendering gIφrφ

h i

φ¼0
to be normalized,

gIφrφ

h i

φ¼0
¼ 1: (240)

To define ~LII,1 and ~LII,2 unambiguously, we note that B 0ð Þ
II can be determined by

adding Eqs. (199) and (200) while taking φ ¼ 0. Similarly, E
0ð Þ
II can be determined

by substracting Eqs. (199) and (200) from each other while taking φ ¼ 0. We

intend to normalize the angular functions gII,1αβγ and gII,2αβγ by

gII,1φrr

h i

φ¼0
¼ gII,2φrr

h i

φ¼0
¼ 1, (241)

and therefore define the stress intensity factors ~LII,1 and ~LII,2 by (cf. Eqs. (199)
and (200))

~LII,1
ffiffiffiffiffiffi

2π
p ≔

1

2
μ 0ð Þ
φrr þ μ 0ð Þ

φφφ

h i

φ¼0
¼ 1

2
c2 � c1ð Þ λþ μð ÞB 0ð Þ

II , (242)

~LII,2
ffiffiffiffiffiffi

2π
p ≔

1

2
μ 0ð Þ
φrr � μ 0ð Þ

φφφ

h i

φ¼0
¼ c2 � c1ð Þ2μE 0ð Þ

II : (243)

The angular functions will be determined by comparison of Eqs. (238)–(243)
with Eqs. (195), (196), (198)–(200) ,and (202). Explicitely, we find that
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, (244)
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C

C

C

C

C

C

C

C
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: (245)

Some comments addressing Mode-I and Mode-II crack problems are in order at
this stage. In classical elasticity, there are two intensity factors in the expansion of
the Cauchy stress, one for each mode. In micropolar elasticity (see, e. g., Diegele
et al. [15]), there are also two stress intensity factors in the expansion of the Cauchy
stress and in addition two nonclassical intensity factors in the expansion of the
couple stress, one for each mode. In the present case of microstrain elasticity, there
are also two stress intensity factors in the expansion of the Cauchy stress, one for
each mode. However, in the expansions of the double stress there is one intensity
factor for Mode-I, but there are two intensity factors for Mode-II. Actually, there

are no further conditions to relate ~LII,1 and ~LII,1 and the numerical simulations in
Part III confirm this fact.

It is also convenient to replace the constants A
1ð Þ
I ,D

1ð Þ
I ,E

1ð Þ
II and F

1ð Þ
II by the

definitions

~lI,1 ≔ c2 � c1ð Þ λþ μð ÞA 1ð Þ
I , (246)

~lI,2 ≔ � c2 � c1ð Þ2μD 1ð Þ
I , (247)

~lII,1 ≔ � c2 � c1ð Þ2μE 1ð Þ
II , (248)

~lII,2 ≔ � c2 � c1ð Þ2μF 1ð Þ
II : (249)

Evidently, the new constants for Mode-I and Mode-II in the expansions of μ
0ð Þ
αβγ

and μ
1ð Þ
αβγ can be employed to rewrite Ψ 0ð Þ

αβ and Ψ
1ð Þ
αβ . In particular, we can conclude

from Eqs. (160)–(162) and (239)–(243) that
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Ψ
0ð Þ
αβ ¼  

~LI

c2 � c1ð Þ2μ
ffiffiffiffiffiffi

2π
p hIαβ þ

~LII,1

c2 � c1ð Þ λþ μð Þ
ffiffiffiffiffiffi

2π
p hII,1αβ

þ
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ffiffiffiffiffiffi
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(250)

with
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hIrφ

0

B

B

@

1

C

C

A

¼

cos
3φ

2
� cos

5φ

2

� cos
3φ

2
þ cos

5φ

2

� sin
3φ

2
þ sin

5φ

2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (251)

Table 1 summarizes the first two terms of the asymptotic solutions of the near-

tip fields. All stresses are singular with order of singularity r�
1
2. Especially, the terms

Σαβ ¼
~KI
ffiffiffiffiffiffiffiffi

2π r
p f Iαβ þ

~KII
ffiffiffiffiffiffiffiffi

2π r
p f IIαβ þ Σ
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αβ þ … , (252)
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Ψαβ ¼ Ψαβ þ
ffiffiffiffiffiffi

r

2π

r

~LI

c2 � c1ð Þ2μ hIαβ þ
ffiffiffiffiffiffi

r

2π

r

~LII,1

c2 � c1ð Þ λþ μð Þ h
II,1
αβ

þ
ffiffiffiffiffiffi

r

2π

r

~LII,2
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(254)
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Σ
0ð Þ
αβ and Σ

1ð Þ
αβ are identical to those of classical elasticity. However, the terms ε 0ð Þ

αβ and

ε
1ð Þ
αβ are different from the corresponding terms of classical elasticity. In particular,

ε
1ð Þ
αβ includes terms arising from Ψαβ. There are also qualititative differences to

micropolar elasticity. For instance, terms of couple stresses corresponding to μ
0ð Þ
αβγ in

Mode-II and to μ
1ð Þ
αβγ in Mode-I do not exist.

6. Concluding remarks

Closed form analytical solutions, predicted by the 3-PG-Model for Mode-I and
Mode-II crack problems, have been developed in the present paper. The solutions
are based on asymptotic expansions of Williams’ type of the near-tip fields. The
main conclusions, which can be drawn on the basis of the preceding developements,
can be briefly stated as follows.

1.The first two terms in the asymptotic expansion of the components of the
Cauchy stress are identical to the ones of classical elasticity. In particular, the

Cauchy stress is singular with order of singularity r�
1
2.

2.This is in contrast to statements in other works, which rely upon boundary
conditions different from the ones adopted here.

3.There are, however, significant differences in comparison to classical
elasticity, in what concerns the components of macrostrain and
macrodisplacement.

4.There are also significant qualitative differences in comparison to micropolar
elasticity concerning the nonclassical stresses.

5.For instance, the leading terms of the double stress of Mode-II problems
include two different stress intensity factors. This is a remarkable feature of
the 3-PG-Model.
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Table 1.

Analytical solutions of the fields.
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eq. = equation

Appendix

In order to make the present work self-contained, we sketch briefly how to
ascertain the solutions (107)–(111) from Eqs. (95)–(102). We start with the system
of differential Eqs. (95)–(97), which can be proved to posses the solutions
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Σ
0ð Þ
rr ¼ �C cos pþ 1½ �φð Þ �D sin pþ 1½ �φð Þ

þ 3� p

4
A cos p� 1½ �φð Þ þ 3� p

4
B sin p� 1½ �φð Þ ,

(A1)

Σ
0ð Þ
φφ ¼ C cos pþ 1½ �φð Þ þD sin pþ 1½ �φð Þ

þ pþ 1

4
A cos p� 1½ �φð Þ þ pþ 1

4
B sin p� 1½ �φð Þ ,

(A2)

Σ
0ð Þ
rφ ¼ C sin pþ 1½ �φð Þ �D cos pþ 1½ �φð Þ

þ p� 1

4
A sin p� 1½ �φð Þ þ p� 1

4
B cos p� 1½ �φð Þ :

(A3)

Here, A,B,C and D are constants of integration. In order to determine these
constants, we incorporate the solutions in the boundary conditions (98). After
some manipulations, we gain the following two homogeneous systems for the
constants A, B, C, and D:

2 cos pþ 1½ �πð Þ p� 1

2
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2 sin pþ 1½ �πð Þ p� 1

2
sin p� 1½ �πð Þ

2 cos pþ 1½ �πð Þ pþ 1

2
cos p� 1½ �πð Þ

0

B

B

@

1

C

C

A

C

A

� �

¼
0

0

� �

: (A5)

The conditions for the existence of nontrivial solutions are vanishing determi-
nants of the coefficient matrices of Eqs. (A4) and (A5). It turns out that both
conditions lead to the same equation

2 cos pπð Þ sin pπð Þ ¼ sin 2pπð Þ ¼ 0, (A6)

which has the solutions

p ¼ 0, � 1

2
, � 1, � 3

2
, … : (A7)

The smallest value of p compatible with the restriction (82) is p ¼ 1
2, as stated in

Eq. (107). For this case, the systems (A4) and (A5) imply

D ¼ � 3

8
B, C ¼ 1

8
A, (A8)

and the solutions (A1)–(A3) become
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8
A sin

φ

2
þ sin

3φ

2

� �

þ 1

8
B cos

φ

2
þ 3 cos

3φ

2

� �

: (A11)
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These solutions, in turn, are equivalent to those of Eqs. (108)–(109). Moreover,
it can be shown that for p ¼ 1

2, the solutions of Eqs. (99)–(102) might be expressed
in the form (111).
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