
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Application of Artificial 
Intelligence (AI) in Prosthetic and 
Orthotic Rehabilitation
Smita Nayak and Rajesh Kumar Das

Abstract

Technological integration of Artificial Intelligence (AI) and machine learning 
in the Prosthetic and Orthotic industry and in the field of assistive technology 
has become boon for the Persons with Disabilities. The concept of neural network 
has been used by the leading manufacturers of rehabilitation aids for simulating 
various anatomical and biomechanical functions of the lost parts of the human 
body. The involvement of human interaction with various agents’ i.e. electronic 
circuitry, software, robotics, etc. has made a revolutionary impact in the rehabilita-
tion field to develop devices like Bionic leg, mind or thought control prosthesis and 
exoskeletons. Application of Artificial Intelligence and robotics technology has a 
huge impact in achieving independent mobility and enhances the quality of life in 
Persons with Disabilities (PwDs).

Keywords: artificial neural network, deep learning, brain computer Interface (BCI), 
electromyography (EMG), electroencephalogram (EEG)

1. Introduction

Human is the most intelligent creature in the planet for their brain power and 
neural network. The human brain is extremely complex with more than 80 billion 
neurons and trillion of connections [1]. Simulation scales can array from molecular 
and genetic expressions to compartment models of subcellular volumes and individual 
neurons to local networks and system models [2]. Deep Neural Network nodes are an 
over simplification of how brain synapses work. Signal transmission in the brain is 
dominated by chemical synapses, which release chemical substances and neurotrans-
mitters to convert electrical signals via voltage-gated ion channels at the presynaptic 
cleft into post-synaptic activity. The type of neurotransmitter characterizes whether a 
synapse facilitates signal transmission (excitatory role) or prevents it (inhibitory role). 
Currently, there are tenths of known neurotransmitters, whereas new ones continu-
ously emerge with varying functional roles. Furthermore, dynamic synaptic adapta-
tions, which affect the strength of a synapse, occur in response to the frequency and 
magnitude of the presynaptic signal and reflect complex learning/memory functions, 
(Spike time dependent plasticity) [3, 4]. Recently, evidence has found that surrounding 
cells, such as glia cells that are primarily involved in ‘feeding’ the neurons, can also 
affect their function via the release of neurotransmitters. This new vision of “tripartite 
synapses,” composed of perisynaptic glia in addition to pre- and postsynaptic terminals 
certainly makes this one of the most exciting discoveries in current neurobiology [5]. 
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The functional loss due to amputation, spinal cord injury, brachial plexus injury or 
traumatic brain injury resulting loss of connection from brain to extremity and those 
residual/weakened extremities are not able to function as of healthy/intact limb. 
These lost structure & functions of extremities were being replaced by fitment of 
prosthetics and orthotic devices or rehabilitation aids. The conventional prosthesis 
which is a mechanical device only provide the basic function, similarly Orthosis 
provides the support to weaken parts not fully with out completely mimicking the 
lost section. The concept of biomechatronic is a sub-discipline of mechatronics. It is 
related to develop mechatronics systems which assist or restore to human body gave the 
prosthetics and orthotics concept to a new direction. A biomechatronic system has four 
units: Biosensors, Mechanical Sensors, Controller, and Actuator [6]. Biosensors detect 
intentions of human using biological reactions coming from nervous or muscle system. 
The controller acts as a translator among biological and electronic structures, and also 
monitors the activities of the biomechatronic device. Mechanical sensors measure data 
about the biomechatronic device and relay to the biosensor or controller. The actuator 
is an artificial muscle (robot mechanism) that produces force or movement to aid or 
replace native human body function. The areas of use of biomechatronic are orthotics, 
prosthesis, exoskeleton and rehabilitation robots, and neuroprosthesis. Robots are the 
intelligent devices that easily fulfill the requirements of cyclic movements in rehabilita-
tion, better control over introduced forces; accurately reproduce required forces in 
repetitive exercises and more precise in different situations [7].

2. History of artificial intelligence (AI) in prosthetics and orthotics

The first intelligent prosthesis developed by Chas. A. Blatchford & Sons, Ltd. in 
1993 [8] and the improved version in 1995 named as Intelligent Prosthesis Plus [9] 
Blatchford in 1998 developed Adaptive prosthesis combining three actuation mech-
anisms of hydraulic, pneumatics and microprocessor. The fully microprocessor 
control knee developed in 1997 by Ottobock known as C-leg [10]. Rheo knee and 
power knee both developed by OSSUR in 2005 and 2006 subsequently uses onboard 
AI mechanism [11]. In late 2011 Ossur introduced the world first bionic leg with 
robotics mechanism known as “symbionic leg” and this time period the Genium X3 
was lunched by Ottobock which allow backward walking and provide intuitive and 
natural motion during gait cycle [12]. On 2015 Blatchford group introduced Linx 
the world’s first fully integrated limb has seven sensor and four CPU throughout the 
body of Leg. It allows coordination and synchronization of knee and ankle joint by 
sensing and analyzing data on user movement, activities, environment and terrain 
making standing up or walking on ramp more natural. The iwalk BiOM is the world 
first bionic foot with calf system commercially available from 2011 developed by Dr. 
Hugh Herr uses robotics mechanism to replicate the function of muscle and tendon 
with proprietary algorithm [13, 14]. The commercially available microprocessor 
control foot are Meridium (OttoBock, Germany), Elan (Blatchford, UK), Pro-prio 
(Össur, Iceland), Triton Smart Ankle (hereinafter referred as TSA) (Otto Bock, 
Germany), and Raize (Fil-lauer, USA) etc. available from 2011 in the market [15].

The first commercially available bionic hand lunched by Touch bionics in 2007 with 
individually powered digits and thumb has a choice of grip. The design again embedded 
with rotating thumb known as i- limb ultra and i- limb revolution designs implanted 
with Biosim and My i- limb app [16]. Bebionic was commercially available in the 
market in 2010 manufactured by RSL steeper and lunched by World congress, in 2017 it 
owned by Ottobock. Bebionic3 allows 14 different hold with two thumb position [17]. 
Michelangelo hand is the fully articulated robotic hand with electronically actuated 
thumb first fitted in the year 2010 developed by Ottobock [18]. The concept of brain 
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computer interface (BCI) implemented neuroprosthesis or mind control prosthesis 
which can able to recognize the real time data and a gadget to get nearly normal func-
tion is the demand of the day. The EEG based mind controlled smart prosthetic arm 
was presented in 2016 IEEE conference but till now this concept is not commercialized 
[19]. Researchers are on the path of developing more complex devices that mimic the 
natural brain by implementing artificial intelligence to on board computer that read 
and reply the nerve signal that transmitted to robotic prosthesis and Orthosis which 
enhance the function of amputated and paralyzed part of the body.

3. Basic concept of AI and machine learning (ML)

3.1 Machine learning

Machine learning contains elements of mathematics, statistics, and computer 
science, which is helping to drive advances in the development of artificial intel-
ligence. It is the study of computer algorithms which expands and develops through 
experiences. This is a subset of AI as shown in Figure 1. The ML algorithm methods 
generally categorized two types supervised and unsupervised learning [20, 21].

3.1.1 Supervised learning

The method of predicting a model on a trained range of inputs learning func-
tion to maps the known output, which discover the pattern of new sets of data.

Example 1: To predict the model for microprocessor knee joint which is trained 
with numerous input or labeled data of the knee angle variation in different sub 
phase of gait cycle and apply on new amputee to predict the new data by the phase 
dependent pattern recognition approach.

Example 2: Intuitive myoelectric prosthesis or pattern recognition control 
prosthesis, FES.

Pattern recognition is an automatically recognition of pattern applied in data 
analysis, signal processing etc. when the pattern of algorithm trained from labeled 
data that is supervised learning. When the model of algorithm is fruitfully trained, 
the model can be used for the prediction of a new data. The ultimate goal of this ML 
is to develop a successful predictor function. The models of discrete or categorical 
categories of dependent variables are known as classification algorithm and with con-
tinuous value known as regression algorithm. Three basic steps followed to finalize a 
model are training, validating and application of algorithm to new data. Algorithm 
used for supervised learning are support vector machines, linear regression, linear 
discriminant analysis (LDA) etc. This is error based learning.

Figure 1. 
Relationship between artificial intelligence (AI), machine learning (ML) and deep learning (DL).
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Example: Prediction of a model to relate the patient’s energy consumption using 
Trans femoral prosthesis with the function of walking velocity in level surfaces.

The linear regression model for the above statement is:

 = + +Y b aX e  (1)

Y = Energy consumption (dependent variable)
b = Y intercept
a = Slope of the Line
X = Walking velocity (Independent variable), e = Error
The Logistic regression model is used to model the probability of a certain class 

or event such as pass fail, win/loss, healthy/sick etc. This is fall between 0 and 1 
with categorical dependent variables.

Example: To predict a model for the successful or failed prosthetic rehabilitation 
within the categories of 50 meter walk test in level surface with combatable use of 
any assistive devices for successful and considered as fail if they could not complete 
the 50 meter walk test.

The model is predicted in terms of the probability (p) which are passing the 50 
meter test are pass and could not cross 50 meter as fail.

 The model of this Statement is : ln
 
 
 1−

p
= a+bX

p
 (2)

p = No of patient cross the level of 50 meter
1-p = No of patient could not able to cross
The dependent variable Y (predictive) = p/(1-p)
Independent Variable X = Type of prosthesis

3.1.2 Unsupervised learning

The algorithm of unsupervised learning finds a solution to unknown or unlabeled 
data which is not required any kind of supervision from human. It works of its 
own to gather information and allow performing more complex task compared to 
supervised learning. Cluster analysis and k means are the methods used for pattern 
formation for the new data.

Example: Intent detection algorithm with unlabeled data based on reference 
pattern is an unsupervised learning method used in microprocessor knee.

3.1.3 Reinforcement learning (RL)

This is concerned with how a software agent must take action in an environment 
to maximize the cumulative reward. The agent learns from the consequences of its 
actions and selects the choice from its past experiences and the new choices by the 
trial and error learning. This is generally output based learning. The components 
of the RL are agent and environment. The agent (Learner) learns about a policy (π) 
(strategy or approach that the agent uses to determine the next action based on the 
current state) by observing or interacting with the environment. All the possible 
steps followed by the agent during the process of learning are known as the “action” 
and current condition returned by the environment is “state”. The approach that 
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the agent uses to determine the next action based on the current state is known as 
“policy”. The artificial intelligence gets either reward or penalties for the action the 
agent performs. The reward is an instant return from the environment to appraise 
the last action. The goal of an agent to maximize the reward based on the set of 
actions. The agent follows the concept of exploration and exploitation to get the 
optimal action value or rewards. The exploration is about exploring and capturing 
more information from the environment and exploitation uses the already known 
information to get the reward.

Example: Learning from demonstration (LfD) of myoelectric prosthesis. In this 
method the policy to determine the next action is learned by different methods 
i.e. demonstration provided by the Prosthetist, learned from the action of similar 
prosthetic user or intact limb movement of prosthetic user. During process of 
demonstration the sequence of state action pairs are recorded for the training of 
prosthetic limb. The learning process for movement of amputated side with intact 
limb happens simultaneously. The intact limb considered as training limb and the 
amputated side prosthetic limb as control limb. During training procedure the agent 
or learner or amputee asked to perform same motion for both the limb the informa-
tion from training limb create a prosthetic policy that map the state of action of the 
control limb. Robotic prosthesis can use its learned and state conditional policy for 
user during post training use. The training arm demonstrated the desired move-
ment, position and grasp pattern to robotic or control arm. During initial training 
process the opening of the prosthetic arm may not be the similar to the training 
limb but when the training preceded the gradual opening of the hand work as a 
reward to the agent to pick up the appropriate movement and position for required 
opening of the prosthetic hand and proportional control for graded prehension. The 
schematic diagram of Bento arm using reinforcement learning shown in Figure 2 
[22]. Another example to understand the strategy of exploring and exploitation is 
to find out the exact position for placement of surface electrode in the residual limb 
of amputee. This is a trial and error method where surface electrodes are placed in 
different locations around the residual limb of the amputee to get the desired action 
potential to operate the prosthetic hand. The simultaneous activities of residual 

Figure 2. 
Schematic diagram of flow of information with bento arm [22].
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muscle EMG signal and operation of connected Prosthetic hand provide a visual 
feedback to amputee and Prosthetist. Based on the feedback the Prosthetist keeps on 
exploring new site of the electrode in the residual limb until optimization is achieved. 
This technique helps the amputee to learn about the amount of muscle contrac-
tion which operates the prosthesis. The opening and different grasping pattern in 
sequence acts as a reward to perform more complex activities. In some cases many 
old user or experienced Prosthetist use the strategy of the exploitation rather than 
exploring the new site for electrode placement based on their past learning and 
experiences. Other examples are adaptive switch control myoelectric prosthesis, 
Power leg Prosthesis, etc.

3.2 Deep learning

This is a form of machine learning uses both supervised and unsupervised and 
subset of machine learning and AI. It uses the method of artificial neural network 
(ANN) with representation learning. ANN is inspired by the human brain neural 
network system whether human brain network is dynamic (Plastic) and analog at 
the same time the ANN is static and symbolic. It can learn, memorize, generalized 
and prompted modeling of biological neural system. ANNs are more effective to 
solve problems related to pattern recognition and matching, clustering and clas-
sification. The ANN consist of standard three layer input, output and hidden layer, 
the output layer can be the input layer for the next output the simple network 
of neural system shown in Figure 3 [23], if there many hidden layer are present 
that ANN known as Deep Neural Networks”, or briefly DNN, can be successfully 
expert to solve difficult problems. Deep learning models yield results more quickly 
than standard machine learning approaches. The propagation of function in ANN 
through input layer to output layer and the mathematical representation for this is:

 ( )( ),=s f w xϕ  (3)

(s = output, x = Input, w = corresponding weight of link between input and 
transfer function, ( ), w xϕ  = linear combination of w and x, f (.) = transfer 
function.)

Example: EEG based pattern recognition which uses brain computer Interface 
(BCI) to control prosthetic arm, Neuroprosthesis etc.

3.3 Other artificial intelligence (AI) techniques

Artificial Intelligence is the intelligence of machine that simulates the human 
intelligence which programmed in such way that it thinks and act like human. It 
includes; reasoning, knowledge representation, planning, learning, natural language 
processing, perception, the ability to move and manipulate objects and many more 
subjects. AI has four main components Expert systems, Heuristic problem solving, 
Natural Language Processing (NLP) and Vision. In human the intelligent agents like 
eyes, ears, and other organs act as sensors, and hands, legs, mouth, and other body 
parts act as per instruction known as effectors similarly the robotic agent substitutes 
cameras and infrared range finders for the sensors and various motors for the effec-
tors. A software agent has encoded bit strings as its precepts and actions. Similarity 
between human and artificial intelligence is shown in Table 1. AI can be divided into 
two categories as per its function as symbolic learning (SL) and machine learning 
(ML). SL is perform the functions like image processing through computer vision 
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and understands the environment through robotics. ML computes the large amount 
of data to get a solution to the problem in terms of pattern recognition. Statistical 
machine learning embedded with speech recognition and natural language processing. 
Deep learning recognizes objects by computer vision through convolution neural 
network (CNN) and memorize past by recurrent neural network (RNN). The 
schematic diagram of AI and its functions are shown in Figure 4.

The methods or techniques used for the AI are classifier and prediction. 
Classifier is an algorithm that implements classification; the classifiers are 
Perceptron, Naïve Bayes, Decision trees, Logistic regression, K nearest Neighbor, 
AANN/DL and support vector machine [24]. Perceptron is the basic building block 
of the neural network it breakdown the complex network to smaller and simpler 
pieces. The classifier used in the myoelectric prosthetic hand is LDA classifier, 
Quadratic discriminant classifier and Multilayer perceptron neural network with 
linear activation functions etc. LDA (linear discriminant classifier) is a simple 
one that helps to reduce the dimension of the algorithm for application of neural 

Human can perform AI can perform

Speak and Listen Speech recognition based on statistical learning system

Write and learn Natural Language processing (NLP)

Eye can see Computer vision or symbolic vision

Recognize the scene and create 
image

Image processing by symbolic learning

Understand the environment Robotics

Ability to recognize pattern Pattern recognition by Machine learning

Human brain formed by the 
networks of neurons

Artificial neural networks

Human memorize the past Recurrent neural network (RNN) can use previous output as the 
input, so it remembers the data.

Recognize objects Convolutional neural network (CNN) recognizes the object and 
also differentiates from others.

Table 1. 
Similarity between human intelligence and artificial intelligence (AI).

Figure 3. 
Layers of ANN (artificial neural network) [23].
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network model. Prediction is a method to predict a pattern an output noise free data 
with a model from input data in hidden layer.

Examples: EMG CNN based prosthetic hand, EGG based Mind controlled 
prosthesis with sensory feedback, robotic arm, exoskeleton Orthosis.

4. Application of AI in prosthetics and orthotics

Implementation of artificial intelligence in controlling prostheses has increased 
drastically and thus enables the amputee to operate the prosthesis more desirably. 
Adaptive controlling would enable a system to perform closer to the desired output 
by adjusting the input with the help of a feedback system. Recently, a mind-
controlled limb (type of myoelectric controlling) was introduced as the latest 
advancement in the artificial intelligence-aided control system. A joint project 
between the Pentagon and Johns Hopkins Applied Physics Laboratory (APL) 
has come up with a modular prosthetic limb which would be fully controlled 
by sensors implanted in the brain, and would even restore the sense of touch by 
sending electrical impulses from the limb back to the sensory cortex [25]. Chang 
et al. (2009) proposed a multilayer artificial neural network (ANN)-based model 
to discover the essential correlation between the intrinsic impaired neuromuscular 
activities of people with spina bifida (SB) and their extrinsic gait behaviors [26]. 
The application of AI in prosthetics and orthotics is divided into various subparts 
according to the involvement of the region that get affected i.e. Lower extremity 
prosthesis and Orthosis, Upper extremity Orthosis and prosthesis, and rehabilita-
tion aids like motorized mobility devices.

4.1 AI in upper extremity prosthesis and orthosis

The artificial Intelligence in upper extremity prosthesis used as direct control 
and indirect control from the neural network by various signal, sensor, controller 
and algorithm. The control signals are coming from the human in the two form 
for operation of upper extremity prosthesis i.e. electromyography (EMG) and 
Electroencephalogram (EEG). Prior attempts at voluntary control of the elements 
of prosthesis have focused on the use of electromyography (EMG) signals from 
muscle groups that remain under voluntary control. Most of this work has cen-
tered on control systems for upper extremity prostheses. The first commercialized 
powered hand myoelectric prosthesis was introduced by USSR in 1960 [27]. 
The advancement in EMG control myoelectric prosthesis was with use of EMG 
pattern recognition based control strategy [28]. This approach allows the user 

Figure 4. 
AI and its functions.
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to control the prosthesis with multiple degrees of freedom. The most advanced 
and developed neural machine interface technology was TMR or targeted muscle 
reinnervation [29].

The conventional Electromyography (EMG) technique uses bipolar surface elec-
trodes, placed over the muscle belly of the targeted group of muscles. The electrodes 
are noninvasive, inexpensive, and readily incorporated into the socket of the pros-
thesis. These surface electrode have limitations like inability to record the signal from 
different muscle group at a time, inconsistency in signal magnitude and frequency, 
due to change in skin electrode interface associated in physiological and environ-
mental modifications and also the EMG signals may encounter noise and interfer-
ence from other tissues. Apart from these limitations it is easy to use by amputee and 
risk free. The amplitude of the EMG signal is mostly proportional to the contraction 
of the remaining muscle. To enhance the quality of the signal the Myoelectric control 
of prosthesis or other system utilizes the electrical action potential of the residual 
limb’s muscles that are emitted during muscular contractions. These emissions are 
measurable on the skin surface at a microvolt level. The emissions are picked up by 
one or two electrodes and processed by band-pass filtering, rectifying, and low-pass 
filtering to get the envelope amplitude of EMG signal for use as control signals to the 
functional elements of the prosthesis. The myoelectric emissions are used only for 
control. In simultaneous control (muscle co contraction) and proportional control 
(fast and slow muscle contraction) controls the two different mode from wrist to 
terminal device and vice versa.

The advance method over the conventional technique of EMG signal which 
replace the complicated mode of switching is the pattern recognition. This new 
control approach is stranded on the assumption that an EMG pattern contains 
information about the proposed movements involved in a residual limb. Using a 
technique of pattern classification, a variety of different intended movements can 
be identified by distinguishing characteristics of EMG patterns. Once a pattern 
has been classified, the movement is implemented through the command sent to a 
prosthesis controller. EMG pattern-recognition-based prosthetic control method 
involves performing EMG measurement (to capture reliable and consistent myo-
electric signals), feature extraction (to recollect the most important discriminating 
information from the EMG), classification (to predict one of a subset of intentional 
movements), and multifunctional prosthesis control (to implement the operation 
of prosthesis by the predicted class of movement) [30]. EMG pattern recognition 
block diagram of Trans radial prosthesis shown in Figure 5.

In pattern recognition control for a multifunctional prosthesis, multi-channel 
myoelectric recordings are needed to capture enough myoelectric pattern informa-
tion. The number and placement of electrodes would mainly depend on how many 
classes of movements are demanded in a multi-functional prosthesis and how many 
residual muscles of an amputee are applicable for myoelectric control. For myoelec-
tric transradial prostheses, the EMG signals are measured from residual muscles 
with a number of bipolar electrodes (8-16) which are placed on the circumference 
of the remaining forearm in which 8 of the 12 electrodes were uniformly placed 
around the proximal portion of the forearm and the other 4 electrodes were posi-
tioned on the distal end. A large circular electrode was placed on the elbow of the 
amputated arm as a ground [31].

For acquisition of EMG signal 50 Hz-60 Hz can be used to remove or reduce 
more low-frequency to increase the control stability of a multifunctional myo-
electric prosthesis [32]. EMG feature extraction is performed on windowed EMG 
data, all EMG recordings channels are segmented into a series of analysis windows 
either with or without time overlap (WL (window length) is 100-250 ms) shown in 
Figure 6 [33].
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Overlapping analysis windows are used to maximally utilize the continuous 
stream of data and to produce a decision stream, for analysis, the duration of the 
overlapping (e.g., 50 ms) due to data buffering is the operational delay in real-time 
control and 50% of overlapping is suitable for the real time embedded system. 
The features are categorized as time domain (TD), frequency domain (FD) and 
time- frequency domain (TFD). The EMG features are extracted from each analysis 
window as a representation of EMG signal pattern. A feature set is extracted for 
each analysis window and all the recording channels, producing an L-dimensional 
feature vector. After computing the feature sets of all the channels, the entire EMG 

Figure 5. 
Process of EMG pattern recognition control.

Figure 6. 
Windowing techniques, time to process each window analysis is ‘t’ and decisions (d1, d2, d3). In adjacent 
windows the processing time is less and the classifier is idle most of the time but in overlapping windows 
increase frequency of class decision because the analysis window slides with small increment (inc), the amount 
of overlap is equal to processing time which help the controller to process next class decision before the previous 
decission has been completed [33].
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feature matrix (L × C × W, where L, C, and W are the number of features, the 
number of channels, and the number of analysis windows, respectively) from  
the training set is provided to a classifier for training shown in Figure 7. Example: 
The features extracted from four channels of surface EMG in each window is 44 
and the data analyzed for the three windowed length, the EMG feature matrix for 
this situation (L × C × W = 44 × 4 × 3 i.e. L = 44, C = 4, W = 3).

The aim of pattern recognition based classifier is to discriminate the intended 
movements from the EMG recordings as accurately as possible. Many classifica-
tion techniques have been investigated, including linear discriminate analysis, 
Bayesian statistical methods, artificial neural networks, and fuzzy logic [34, 35]. 
The LDA classifier is much simpler to implement and much faster to train without 
compromising the accuracy (>93%). Then the performance of a trained classifier in 
identifying a movement is evaluated using the testing data set and measured by the 
classification accuracy, which is defined as:

 
Number correctly classified samples

100%
Total number of testing samples

×  (4)

The classification accuracies in identifying all the classes of movements are 
averaged to calculate the overall classification accuracy for a subject uses convo-
lutional neural network (CNN). Block diagram for classification and regression 
pattern shown in the Figure 8 [36].

EMG pattern recognition based prosthesis control strategy is not suitable for 
people with shoulder disarticulation amputations because few muscles remain in 
their residual arm from which to extract myoelectric control signals. To address 
this challenge, a new neural machine interfacing (NMI) technology called targeted 
muscle reinnervation (TMR) have been proposed and developed at Rehabilitation 
Institute of Chicago (RIC), which has the ability to improve control performance of 
multifunctional myoelectric upper-limb prostheses shown in Figure 9 [37].

TMR uses the remaining nerves from an amputated limb and transfers them 
onto substitute muscle groups that are not biomechanically functional because they 
are no longer attached to the missing arm. During this transfer procedure, target 
muscles are denervated so that they can be reinnervated by the residual arm nerves 

Figure 7. 
EMG windowing in continuous feature extraction. Size of successive window for analysis is L, the sEMG data 
for classification is divided into C segments for every L that is the length of integrated samples as a feature 
extraction and the start point is shifted every S.
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that previously traveled to the arm prior to amputation. The reinnervated muscles 
then assist as biological amplifiers of the amputated nerve motor commands. 
During the surgery subcutaneous tissue is removed that, surface EMG signals are 
optimized for power and focal recording.

Another advanced technique to control the multifunctional limb is Virtual 
reality (VR) based platforms have been developed for the purposes of development 
and performance quantification of multifunctional myoelectric prosthesis control 
system These VR platforms are designed to create an efficient, flexible, and user-
friendly environment for prosthetic control algorithm development in the labora-
tory, application in a clinical setting, and eventual use in an embedded system. The 
major function modules of this platform include multi-electrode EMG recording 
(up to 16 channels), classifier training and testing in offline, virtual and physical 
prosthesis control in real time to regulate performance shown in Figure 10 [38].

Apart from EMG signal the Electroencephalography (EEG) is the widely 
used non-invasive method by placing the electrode on the scalp for picking brain 
signal that has been utilized in brain machine interface (BCI/BMI) applications. 
It has high temporal resolution (about 1 ms) in comparison with other brainwave 
measurements such as electrocorticograms (ECoGs), magneto encephalograms 

Figure 8. 
a. Pattern recognition is able to classify different movement patterns, but only in sequence, which limits 
multifunctional control. b. Regression control is able to identify different movements at the same time, leading 
to more intuitive prosthetic control [36].

Figure 9. 
Targeted muscle reinnervation (TMR) [37].
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(MEGs), functional magnetic resonance imaging (fMRI) and near-infrared 
spectroscopy (fNIRS). The advanced prostheses may best control by EEG signal 
with BCI, connected by ANN. The neural signals associated with arm movements 
as control signals of artificial neuroprosthesis collected from either the cortex of 
brain directly or from residual nerves. The diagram of EEG based control and EMG 
pattern recognition based control in utilized in upper extremity prosthesis is shown 
in schematic Figure 11.

Figure 10. 
Virtual reality system (VR), subjects can operate a simulated prosthetic arm to interact with virtual objects. 
Multiple input modalities such as motion tracking systems and EMG/EEG electrodes provide maximum 
flexibility when evaluating different control approaches. Figure shows a subject operating a prosthetic arm 
prototype in VR (right side). Subject controls the arm via real-time motion tracking (left side), and 3-D visual 
feedback is provided via stereoscopic goggles for closed loop operation [38].

Figure 11. 
Brain computer Interface (BCI), controlling prosthetic and orthotics devices.
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Examples: Ottobock Dynamic Arm Plus is a combination of Myo Hand Vari Plus 
Speed terminal device and Wrist rotator with custom TMR socket which control the 
six DOF [39]. Mind or thought controlled prosthesis uses EEG signal and ANN.

4.1.1  Recent advancement in control strategy in upper extremity prosthetics and 
orthotics

Jafarzadeh M (2019) uses the novel deep convolutional neural network (6 con-
volutional layers and 2 deep layers) and FIFO memory for operation of prosthetic 
hand in real time. The novel CNN was implemented in Python 3.5 using tensor flow 
library [40].

Chih-Wei-Chen et al. (2009) developed BCI based hand Orthosis used cursor 
control interface with a simple LDA classifier, that classify the EEG signals to 
control the hand orthosis in to three state right, left and nil and the corresponding 
command as +1, −1 and 0. The four states of activities like grasp, open, holding 
and standby can control by these three commands. The +1 and − 1 command 
signifies grasp and open, command ‘0’ is for standby mode depending on the 
feedback signals which are grasping force (F) and angular position (Ꝋ) collected 
from FSR and encoder [41].

4.2 AI in lower extremity prosthesis and orthosis

The first Artificial intelligence method used in the lower extremity as 
Intelligence prosthesis which is a knee joint that replace the hydraulic mechanism by 
combination of microprocessor controlled and hydraulic or pneumatic actuator.

The microprocessor as name suggests process the signal received by the first 
sensor known as knee angle sensor provides information about the knee’s angle of 
flexion and extension and velocity of lateral and angular movement, unlike the 
human body, the sensor determines the direction of movement because of a magnetic 
implant and second sensor gathers information about weight placement.

Microprocessor receives the data or signals by the motion employed by the 
amputee and that data are analyzed and interpret to get the closer approximation 
to natural gait. This data provides information to the microprocessor about the 
device’s position and the extent of its motion, which are essentially propriocep-
tive sensations. The data are stored in the memory of the microprocessor for the 
future use like a recurrent neural network (RNN). A series of wire networks which 
are similar in function to the body’s nervous system. That is, it enables the sen-
sors, microprocessor, servo motors, and hydraulic cylinder to communicate with 
each other. These networks connect the two sensors to the microprocessor, which 
transmits sensory data much like the ascending sensory pathways send information 
to the brain. The wires exiting the microprocessor leading to the servo motors carry 
“motion commands,” mimicking the descending motor pathways which instruct 
muscles to contract and produce a desired movement.

As in the human nervous system, these wires are dedicated to specific communica-
tion circuits between the sensors, microprocessor, servo motors, and hydraulics. This 
computed data are used to control the resistance generated by the hydraulic cylinders 
through the small valve passes into and out of the cylinder which regulate extension 
and flexion of the knee joint in different sub phases of gait cycle. It controls knee joint 
motion from 0° to maximum 60-700. This mechanism helps the amputee to do various 
activities like stair climbing, jogging, running and walking in uneven terrain.

The microprocessor knee joint uses various algorithms to achieve gait sym-
metry, motion analysis, stumble control and comfort. These algorithm are control 
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logic, Intent detection algorithm, Genetic algorithm, Fuzzy logic based classifier, 
Expectation maximization algorithm and Impedance control algorithm [42, 43]. The 
operation principle of a smart leg or intelligent prosthesis is shown in block diagram 
(Figure 12).

The Prosthetic knee joints uses this microprocessor control mechanism 
with machine learning Artificial Intelligence are Otto Bock’s C leg (1997), 
OssurRheo knee (2005), Power knee by Ossur (2006), Self-learning knee by 
DAW Industries, Plie knee from freedom Innovation, Intelligent Prosthesis (IP) 
(Blatchford, United Kingdom), Linx (Endolite, Blatchford Inc. United Kingdom), 
Orion 2 (Endolite, Blatchford Inc. United Kingdom), X2 prostheses (Otto Bock 
Orthopedic Industry, Minneapolis, MN), X3 prostheses (Otto Bock Orthopedic 
Industry, Minneapolis, MN) etc.

The volitional EMG control robotics Transtibial prosthesis was developed in 
2014 by Baojun Chen et al., which adapt the amputee to walk on slope with different 
angles. The combination of myoelectric and intrinsic controller reduces the fatigue 
of muscle and attention during walking [44]. The prototype design of prosthesis 
and schematic diagram of this mechanism showed in Figure 13.

Figure 12. 
Block diagram of controller based intelligent prosthesis.

Figure 13. 
(a) Schematic diagram of prosthesis control by integrating the proposed myoelectric controller with the 
intrinsic controller. (b) Strategy of extracting amputee users’ movement intention with a 200-ms window in 
swing phase [44].



Service Robotics

16

To mimic the normal foot and ankle motion several prosthetic feet uses AI 
mechanism are élan Foot (Blatchford, United Kingdom), iPED (developed 
by Martin Bionics LLC and licensed to College Park Industries), Proprio Foot 
(Össur, Iceland), Power Foot BiOM (developed at MIT and licensed to iWalk) 
and Meridium foot (Ottobock) etc. These feet are integrated with foot and ankle 
sensor to sense the terrain, angle and force required in different phases to mimic the 
normal foot.

Apart from EMG Control lower extremity prosthesis can be controlled by EEG 
signal using BCI, the example of EEG based control prosthesis is BiOM.

Lower Extremity Orthosis is a supportive device to the patients those have lost 
their function due to traumatic, neurologic and congenital abnormalities. The 
working principle of the Orthosis for the patient like hemiplegia, paraplegia and 
traumatic brain injury is changed vigorously with the implementation of artificial 
intelligence like functional electrical stimulation, Brain computer Interface and 
myoelectric controller. The concept of machine learning implemented in some 
sensor embedded stance control Orthosis which help the paraplegic to achieve near 
to normal gait with some limitations. The concept of functional electrical stimula-
tion (FES) started in the year of 1960. This is used in case of damage of brain or 
spinal cord, stroke, Multiple Sclerosis (MS) and cerebral palsy.

The Functional electrical stimulation (FES) is the application of electrical 
stimulus to a paralyzed nerve or muscle to restore or achieve function. FES is most 
often used in neuro rehabilitation and is routinely paired with task-specific practice. 
Neuroprosthesis is a common example in orthotic substitution [45]. Control system 
can be open loop or Feed forward control, closed-loop or Feed backward control 
and adaptive control can be applied to both Feed forward and Feed backward 
controller. In open-loop controlled FES, the electrical stimulator controls the output 
and closed-loop FES employs joint or muscle position sensors to facilitate greater 
responsiveness to muscle fatigue, or to irregularities in the environment [46].

Electrodes act as interfaces between the electrical stimulator and the nervous 
system. The FES utilizes electrical current to stimulate muscle contraction so that the 
paralyzed muscles can start functioning again. The desired purpose is to stimulate 
a motor response (muscle contraction) through activation of a specific group of 
nerve fibers, typically using fibers of peripheral nerves. This may be achieved by the 
activation of motor efferent nerve fibers showed in Figure 14. FES uses Adaptive 

Figure 14. 
Controlled functional electrical stimulation [47].
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logic Network (ALN) and Inductive Learning Algorithm (IL) [47]. ALN is a type of 
artificial neural network for supervised learning which produces binary decision 
tree. This is a special type of feed forward multilayer perceptron the signal restricted 
to the Boolean logic. IL is a supervised learning produces decision tree in the form of 
IF, THEN, ELSE, etc. [48, 49].

AI implemented Gait Orthosis for spinal cord injury patients are powered ankle 
foot Orthosis (PAFO) and Exoskeletons. PAFO is incorporated with EMG controller 
to control the activity of soleus muscle to perform the actions of plantar flexion and 
inhibit the artificial dorsiflexion. Exoskeletons are uses BCI or EMG controller to 
control the orthotic devices [50].

4.3 AI in mobility devices

Wheel chair and walking aids is the important gadget for the disable to perform 
daily activities and transfer. In this robotic world the smart wheel chairs and intelli-
gent walking aid reduced the area of work limitation. Application of artificial neural 
network in state of art robotics and AI technologies in smart wheels enhances the 
quality of life with ease in performance. The smart wheeler robotic wheelchair 
was developed by using Inverse Reinforcement Learning (IRL) techniques which 
was able to achieve maximum safety and set of tasks easily as compared to joystick 
control wheel chair [51]. Visual joystick control intelligent wheel chair is most 
advanced wheelchair prototype control by “Hand Gesture’ incorporate recurrent 
neural network (RNN) in joystick control makes it a smart joystick having driving 
flexibility to different kind of disability [52]. The schematic diagram of virtual 
simulation for visual joystick control showed in Figure 15.

Smart cane is a boon for the visually impaired persons; it incorporated with 
raspberry PI 3 microcontroller, HC-SRC04 ultrasonic sensor for obstacle detection, 
WTV-SR IC recognition module for record and fix voice playback and GPS/GSM 
module to save different locations [53].

5. Conclusion

Human being is the most intelligent and complex engineered structure created 
by almighty. It is really a tough challenge for the Prosthetist & Orthotist to replicate 
its lost anatomical structure and function. However with advancement in the field 
of AI and robotics has created a ray of hope for millions of persons with disabilities. 
The application of AI in the field of prosthetics and orthotics are in the initial stage 
and not so widely being practiced. Many projects using AI are in prototype Stage 
and not yet commercialized. High costs of these devices are being major limitations 

Figure 15. 
Virtual simulation of visual joystick control wheelchair.
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