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Chapter

Genetic Alterations of Malignant 
Pleural Mesothelima
Benjamin Wadowski, David T. Severson, 

Raphael Bueno and Assunta De Rienzo

Abstract

Malignant pleural mesothelioma (MPM) is a highly aggressive tumor that arises 
from the mesothelial cells lining the pleural cavity. Asbestos is considered the major 
factor in the pathogenesis of this malignancy, with more than 80% of patients with 
a history of asbestos exposure. MPM is characterized by a long latency period, typi-
cally 20–40 years from the time of asbestos exposure to diagnosis, suggesting that 
multiple somatic genetic alterations are required for the tumorigenic conversion of 
a mesothelial cell. In the last few years, advancements in next-generation sequenc-
ing and “–omics” technologies have revolutionized the field of genomics and 
medical diagnosis. The focus of this chapter is to summarize recent studies which 
explore the molecular mechanisms underlying this disease and identify potential 
therapeutic targets in MPM.

Keywords: pleural mesothelioma, next-generation sequencing, transcriptome, 
exome sequencing, tumor suppressor gene

1. Introduction

Malignant pleural mesothelioma (MPM) is a lethal cancer of the mesothelial 
cells lining the pleural cavity and, less frequently, the pericardium, peritoneum, 
and tunica vaginalis [1]. Many years after the peak of asbestos use in United States, 
3200 cases of MPM continue to be diagnosed annually, indicating that the U.S. 
population remains at risk of exposure to asbestos and development of mesothe-
lioma [2]. There are two major histological variants: epithelioid, which accounts for 
about 60% of cases and has the more favorable prognosis, and sarcomatoid, whose 
incidence is 10%. The remaining cases demonstrate histologic characteristics of 
both types and are classified as biphasic [3]. The prognosis for patients with MPM is 
poor, with a median survival of 5–15 months [3]. However, some patients with early 
MPM who undergo multimodality therapy including surgical resection and chemo-
therapy demonstrate longer-term survival of up to 25% at 5 years [4].

Many studies have shown a causal relationship between exposure to asbestos and 
mesothelioma (reviewed by Bianche et al. [5]). Although it has been suggested that 
brief asbestos exposure is sufficient to induce disease, MPM is the consequence of 
prolonged exposure in most cases. However, only a small percentage of individu-
als exposed to asbestos develop MPM, suggesting that genetic predisposition may 
modulate the effect of exposure to asbestos. In addition, 20% of MPM cases with 
unknown asbestos exposure have been related to other risk factors such as radiation 
therapy and thorotrast [6].
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Studies conducted on large numbers of patients indicate that the time between 
asbestos exposure and diagnosis of MPM is generally more than 20 years. The 
molecular mechanisms for the transformation of mesothelial cells are unknown; 
it has been suggested that asbestos induces multiple chromosomal aberrations, 
particularly deletions, facilitating oncogenesis [7].

Investigations prior to the advent of next-generation sequencing (NGS) revealed 
the complexity of the genetic alterations observed in MPM tumors by using karyo-
typic and comparative genomic hybridization (CGH) analyses [8, 9]. Chromosomal 
losses were found to be more frequent than gains and particular chromosomal 
regions (1p22, 3p21, 4q, 6q, 9p21, 13q13–14, 15q11–15, and 22q12) were deleted 
at higher frequency in MPM tissues and cell lines [10–12]. Two tumor suppres-
sor genes (TSGs) were identified by positional cloning approaches: CDKN2A at 
9p21 and NF2 at 22q12. In the last few years, the genetic landscape of MPM has 
been characterized using high-throughput technologies [13–15]. The focus of this 
chapter is to summarize the major genetic changes occurring in MPM as identified 
by high-throughput sequencing and to describe the novel insights obtained through 
transcriptomic studies.

2. Exome sequencing studies

NGS technologies have allowed the sequencing of DNA and RNA at unprec-
edented speed, uncovering potential driver genes and creating novel biological 
applications [16]. In the last decade, NGS has been used to detect driver genetic 
mutations in cancer and provide new insights into tumorigenesis.

Shotgun pyrosequencing was used to characterize RNA expression levels and 
mutations of four patients in the first effort to investigate MPM by NGS. Several 
different mutations were found in the four transcriptomes. In addition, RNA edit-
ing gene deletions and gene silencing were identified [17].

In 2010, the first whole genome sequence of one MPM tumor and matching 
normal tissue was conducted using a combination of sequencing-by-synthesis 
and pyrosequencing methodologies [18]. This study showed that aneuploidy and 
chromosomal rearrangements were more numerous than point mutations in this 
tumor. One large deletion in the dipeptidyl peptidase like 10 (DPP10) gene, alter-
ing the expression of the corresponding transcript, was further investigated in 53 
additional MPM tumors. Patients expressing DPP10 had statistically longer survival 
compared to patients lacking DPP10 expression [18].

In 2016, Bueno et al. conducted an extensive analysis of the mutational 
landscape of MPM. Ninety-nine MPM tumors were examined by whole exome 
sequencing, whereas additional 103 samples were characterized by targeted exome 
sequencing [13]. BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, 
SETDB1 and DDX51 were found to be significantly mutated (q-score ≥ 0.8), and 
recurrent mutations were found in SF3B1 (2%) and TRAF7 (2%).

In 2018, The Cancer Genome Atlas (TCGA) program performed a comprehen-
sive molecular profiling of 74 primary MPM samples including exome sequencing, 
copy-number arrays, mRNA sequencing, noncoding RNA profiling, DNA methyla-
tion, and reverse-phase protein arrays [15]. The significantly mutated genes in this 
study were BAP1, NF2, TP53, LATS2, and SETD2. Furthermore, this study identi-
fied a new near-haploid molecular MPM subtype.

The TCGA study performed a comparison of the significantly mutated genes 
between the Bueno and TCGA cohorts [15]. This analysis identified five genes that 
were frequently mutated in both studies: BRCA1-associated protein-1 (BAP1), neu-
rofibromin 2 (NF2), tumor protein P53 (TP53), SET domain containing 2, histone 
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lysine methyltransferase (SETD2), and SET domain bifurcated histone lysine 
methyltransferase 1 (SETDB1). The large tumor suppressor kinase 2 (LATS2) gene 
was found frequently altered in the TCGA cohort alone, whereas four additional 
genes, DEAD-box helicase 3 X-linked (DDX3X), Unc-51-like autophagy-activating 
kinase 2 (ULK2), ryanodine receptor 2 (RYR2), and DEAD-box helicase 51 (DDX51) 
were identified as commonly mutated in the series from Bueno et al. (Table 1).

2.1 BAP1

BAP1 is located on the short (p) arm of chromosome 3, at position 21.1., a region 
frequently deleted in MPM [9]. This gene encodes for a deubiquitinase involved in 
cell cycle regulation, modulation of gene transcription, cellular differentiation, and 
DNA repair [19]. BAP1 is one of the most commonly mutated genes in MPM [13, 15, 
20, 21]. Germline BAP1 mutations have been linked to the development of BAP1 
tumor predisposition syndrome, which includes uveal and cutaneous melanoma, 
atypical Spitz tumors, renal cell carcinoma, and MPM. In all these malignancies 
but MPM, BAP1 mutations are associated with poor prognosis [22, 23]. In contrast, 
some studies have shown that patients with MPM carrying BAP1 mutations have 
longer overall survival compared to patients with wild-type BAP1 [24, 25]. In one 
study, BAP1 immunohistochemistry (IHC) was performed using tissue microarray 
including 229 MPM tumors. The results showed that loss of BAP1 nuclear staining 
was associated with longer median survival of 16.11 months (95% CI: 12.16–20.06) 
versus 6.34 months for patients with nuclear BAP1 staining (95% CI: 5.34–7.34) 
(P < 0.01) [24]. Baumann et al. compared the survival in 23 patients with MPM car-
rying germline mutations in BAP1 with a control group of MPM patients from the 
Surveillance, Epidemiology, and End Results (SEER) database and found a 7-fold 
increase in long-term survival in patients with BAP1 mutation [25].

Given its prevalence in MPM, loss of nuclear BAP1 expression by IHC is com-
monly used as a diagnostic marker in MPM [26, 27].

Recently, BAP1 status has been associated with drug response [28, 29]. In vitro 
studies showed MPM cell lines carrying BAP1 mutations were significantly less 
sensitive to gemcitabine compared to wild-type cells. Silencing of BAP1 in MPM 

Gene 

symbol

Gene ID Chromosomal 

location

Number of 

mutations 

in Bueno’s 

cohort

Number of 

mutations 

in Hmeljak’s 

cohort

Total

BAP1 ENSG00000163930 3p21.1 55 17 72

NF2 ENSG00000186575 22q12.2 39 19 58

TP53 ENSG00000141510 17p31.1 17 10 27

SETD2 ENSG00000181555 3p21.31 18 8 26

SETDB1 ENSG00000143379 1q21 7 3 10

LATS2 ENSG00000150457 13q12.11 2 9 11

DDX3X ENSG00000215301 Xp11.4 8 0 8

RYR2 ENSG00000198626 1q43 4 1 5

ULK2 ENSG00000083290 17p11.2 4 0 4

DDX51 ENSG00000185163 12q24.33 3 0 3

Total 157 67 224

Table 1. 
Number of mutations in each gene in the two studies.
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wild-type cells significantly increased resistance to gemcitabine, suggesting a 
role of BAP1 in drug response [28]. Kumar et al. performed a retrospective study 
 analyzing presence or absence of nuclear BAP1 by IHC in MPM tumors from 
60 patients in the MS01 trial (NCT00075699) [29]. Nuclear BAP1 expression 
was  associated with a small but statistically nonsignificant decrease in survival in 
patients treated with vinorelbine.

2.2 NF2

NF2 is located on the long (q) arm of chromosome 22 at position 12.2. Loss of 
chromosome 22 is a common alteration in MPM [9]. This gene codes for a protein 
known as merlin (moesinezrin-radixin-like protein) or schwannomin, which regu-
lates key signaling pathways involved in cell growth, adhesion, and microtubule 
stabilization [30]. Germline mutation or chromosomal deletion of NF2 causes the 
neurofibromatosis type 2 syndrome, which is associated with tumors of the cranial 
and peripheral nerves as well as meningioma and ependymoma [31]. Germline 
mutations in NF2 have also been linked to MPM; however, patients with both neu-
rofibromatosis type 2 syndrome and MPM are extremely rare [32]. Recent studies 
have shown that NF2 mutations occur in 14–19% of MPM [13–15, 20]. In addition, 
karyotype and/or FISH analyses demonstrated that 56% MPMs have shown loss of 
chromosome 22q. Deletions of 22q are more frequently associated with epithelioid 
than non-epithelioid MPM (p = 0.037) [20].

In 2009, a study suggested that NF2 may be inactivated by upstream regulators 
in MPM tumors where no NF2 aberration can be detected [33]. In an investigation 
of 204 MPM patients, low cytoplasmic merlin expression was found to predict 
shorter recurrence interval and shorter overall survival [34]. Lopez-Lago et al. 
investigated the association between loss of merlin and mTORC1 activation in MPM 
cell lines and found that merlin-negative or merlin-depleted cell lines were more 
sensitive to the growth-inhibitory effect of rapamycin [35]. In 2014, low merlin 
expression was found to be associated to increased sensitivity of MPM cell lines to a 
FAK inhibitor, VS-471 [36]. However, in clinical trials, the FAK inhibitor defactinib 
did not improve progression free or overall survival in patients with MPM after 
first-line chemotherapy [37].

2.3 TP53

Located at 17p31.1, TP53 codes for tumor protein p53 (p53), which is a sequence-
specific DNA binding protein that regulates transcription and has a tumor suppres-
sor function controlling cell apoptosis in presence of DNA damage [38]. Named 
“the guardian of the genome,” p53 is involved in many cellular processes such as 
checkpoint control, cellular senescence, and BCL-2 mediated apoptosis [39]. TP53 
is, overall, the most frequently altered gene in human cancer [40]. The frequency 
of TP53 mutations in MPM across different studies is variable, but overall it is much 
lower than in other solid tumors [13–15, 20]. TP53 was significantly more fre-
quently mutated in women (10/40; 25%) compared to men (17/169, 10%) (Fisher’s 
exact P = 0.044) when all samples included in two large MPM studies [13, 15] were 
analyzed. In addition, Bueno et al. reported that MPM patients with mutations in 
TP53 had shorter overall survival than those with wild-type TP53 (p = 0.0167) [13].

2.4 SETD2

SETD2 maps to 3p21.31. It encodes a histone methyltransferase specific 
for lysine-36 of histone H3 which regulates transcription through epigenetic 
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mechanisms [41]. Inactivating SETD2 mutations have been identified in mul-
tiple cancers [42]. In particular, targeted sequencing revealed SETD2 bi-allelic 
inactivation in clear cell renal cell carcinoma tumors suggesting for the first time 
that SETD2 may contribute to tumor formation [43]. In MPM, single nucleotide 
mutations in SETD2 as well as 3p losses are frequently observed [13, 15, 44]. In the 
last few years, SETD2 alterations have been linked to mechanisms of resistance to 
DNA-damaging chemotherapy in several cancers [45, 46].

2.5 SETDB1

SETDB1 is positioned at 1q21, another region frequently deleted in MPM [9], 
and codes for histone-lysine N-methyltransferase SETDB1 which trimethylates 
Lys-9 of histone H3 [47]. As an epigenetic modulator, SETDB1 has a critical role in 
several biological processes such as embryonic development, adipocyte differentia-
tion, and inflammation, as well as providing regulation of several signaling path-
ways including the P13K-AKT axis, p53, the STAT1-CCND1/CDK6 axis, and gene 
promoter methylation [48].

Targeted deep sequencing has revealed somatic SETDB1 mutations in 10% (7/69) 
patients with MPM [49]. No significant correlation between mutation in SETDB1 
and survival was found (p = 0.351). Mutations in SETDB1 were also identified in 
3% (7/202) of MPMs in a different cohort [13]. Hmeljak et al. found that SETDB1 
mutations were present together with TP53 and extensive loss of heterozygosity in 
3% of MPM. This rare genomic subtype was associated with female sex and younger 
age at diagnosis [15].

2.6 LATS2

LATS2, located on 13q12.11, encodes for a serine/threonine kinase which is 
involved in a broad array of programs such as cell cycle regulation, cell motility, and 
differentiation [50]. Loss of LATS2, either through copy number alteration or muta-
tion, has been identified in several different cancer types [51], as well as in MPM 
[15, 52]. In a cohort of 266 MPM samples, mutations in LATS2 were observed in 5% of 
the samples, with lower frequency in epithelioid compared to non-epithelioid samples. 
In addition, LATS2 mutations were more frequent in patients without asbestos expo-
sure (7%) than those exposed (2%) [53]. Another study identified a new molecular 
subgroup of MPM characterized by a co-occurring mutation in LATS2 and NF2. MPM 
patients in this subgroup had poor prognosis compared to the cohort at large [54].

Several investigations have linked LATS2 to the transcription regulator YAP 
involved in the Hippo pathways. Mizuno et al. found that inactivation of LATS2 
leads to YAP overexpression, which, when knocked down, inhibits cell motility 
and invasion in vitro [55]. Another study demonstrated that LATS2 is a key binding 
partner of AJUBA, which suppresses YAP activity in mesothelioma [56].

2.7 DDX3X

DDX3X resides on Xp11.4 and encodes an ATP-dependent RNA helicase with 
RNA-independent ATPase activity stimulated by either DNA or RNA [57]. DDX3X 
has both cytoplasmic and nuclear functions including translation, regulation 
of transcription, pre-mRNA splicing, and mRNA export [58]. Its functions are com-
plex and varied: DDX3X has been recognized as both an oncogene and a tumor sup-
pressor, sometimes within the context of a single type of cancer [59]. An analysis of 
the COSMIC database found that 12% of genetic abnormalities in DDX3 are typical 
for tumor suppressors, while 81% are more typical for gain of function [59].
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2.8 RYR2

RYR2 is located at 1q43. It encodes a member of the ryanodine receptor family 
of calcium channels, highly expressed in cardiac muscle but also found in smooth 
muscle and the nervous system [60]. The release of calcium from the sarcoplasmic 
reticulum into the cytoplasm via RyR2 triggers contraction in myocytes, whereas in 
the brain, it aids in functions related to learning and memory [60]. Although muta-
tions in RYR2 have been reported in other cancers [61], RYR2 mutations in MPM 
have been identified only in one study [13].

2.9 ULK2

ULK2 maps on 17p11.2. It codes for an Atg1 homolog and serine/threonine 
kinase which normally localizes to the membrane of autophagosomes and plays a 
key role in autophagy, particularly in the setting of nutrient deprivation or mTOR 
inhibition [62]. ULK2 has been linked to the development of astrocytoma [63], and 
colorectal cancer [64]. Rare ULK2 mutations have been identified in MPM [13]. 
In spheroid models of MPM, autophagy was successfully inhibited by the ULK1/2 
inhibitor MRT 68921 [65].

2.10 DDX51

DDX51 resides on 12q24.33. It is a ribosome synthesis factor required for the 
formation of the 3′ end of 28S rRNA [66]. Abnormal function of DDX51 has been 
linked to NSCLC, leukemia, and breast cancer [67–69]. Few DDX51 mutations have 
been found in MPM [13].

3. Transcriptome sequencing studies

Since gene expression is linked to tumor behavior, bulk expression profiling of 
tumors has revolutionized our understanding of cancer by giving insight into the 
expression levels of thousands of genes measured at once. In addition, the allocation 
of cancer specimens into molecular clusters having similar biological and clinical 
characteristics has improved the understanding of the molecular biology of tumors 
and identified both actionable targets for therapies as well as biomarkers for predic-
tion of response [70].

In 2005, Gordon et al. profiled 40 MPM tumors using microarray  technologies 
[71]. Four normal pleura specimens and four normal lung tissues were included 
in the analysis as controls because MPM arises from mesothelial cells of the 
pleura and often involves the lung parenchyma [71]. Unsupervised cluster 
analysis revealed four distinct subclasses with two, named C1 and C2, consist-
ing only of MPM samples. These two clusters had epithelial (88%) and mixed 
(78%) subtypes, respectively, showing a partial correlation with tumor histology. 
Differential gene expression analysis demonstrated genes related to cytoskeletal/
support, such as keratins, cadherins, and other proteoglycans, were over-expressed 
in cluster C1, whereas genes associated with extracellular matrix and structural 
proteins such as collagen, actin, biglycan, and fibronectin were highly expressed in 
 subclass C2 [71].

In 2014, a study from de Reynies et al. generated a transcriptomic classification 
of MPM using 38 primary cultures [72]. Consensus clustering of the expression 
profiles identified two groups of MPM, C1 and C2, which are partially related to 
histology. Epithelioid MPM were found in both clusters, whereas sarcomatoid 
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tumors clustered only in C2. In addition, tumor samples in C1 tended to have more 
frequent mutations in BAP1 (P = 0.09) and deletions of the chromosomal region 
3p21 (P < 0.01), where BAP1 is located. Furthermore, 40 genes that discriminated 
the two groups were used to validate the molecular classification in 108 MPM 
tumors. Survival analyses showed that patients in C2 had shorter survival compared 
to the survival of patients in cluster C1 (P = 0.02). This difference persisted when 
only epithelioid samples were included (P < 0.01) [72]. Pathway analyses revealed 
that the most deregulated pathways were those related to the epithelial-to-mesen-
chymal transition (EMT) process [72].

In 2016, a seminal publication on genomics in MPM described unsupervised 
consensus clustering of RNA sequencing data from 211 MPM tumors. This analysis 
classified the samples into four distinct molecular clusters: epithelioid, biphasic-
epithelioid (biphasic-E), biphasic-sarcomatoid (biphasic-S), and sarcomatoid 
[13]. The clusters were loosely associated with the spectrum from epithelioid to 
sarcomatoid histology. Epithelioid and biphasic samples were distributed in all 
four subgroups, whereas sarcomatoid tumors were only in one cluster. Biphasic 
samples clustered according to the proportion of epithelioid and sarcomatoid cells 
contained in the specimen; biphasic tumors with the highest portion of sarcomatoid 
cells grouped with the sarcomatoid samples. Notably, patients in the epithelioid 
cluster had longer overall survival compared to the survival of patients in the other 
three groups. Differential expression analysis of the sarcomatoid and epithelioid 
clusters revealed that genes related to the EMT process were differently expressed 
between the two groups, and that ratio of two genes CLDN15 and VIM (C/V score) 
significantly differentiated the four clusters [13].

A different approach to classify MPM tumors was used by Hmeljak et al. [15]. 
To determine whether a multi-platform molecular profiling may offer additional 
power to identify subsets of MPM, two clustering algorithms, iCluster [73] and 
PARADIGM [74] were used to integrate somatic copy-number alteration, gene 
expression, and epigenetic data from 74 MPM samples. Both algorithms grouped 
the samples into four distinct clusters with high concordance between the two 
methods in the assignment of the sample into the groups. Survival analyses showed 
significant differences in survival across the four groups. In addition, the four 
clusters were significantly associated with histology: cluster 1 contained many epi-
thelioid samples, whereas cluster 4 was enriched for sarcomatoid tumors as found 
in previous studies [13, 71, 72]. This study, using a small number of samples, mostly 
epithelial, confirmed that genes related to the EMT process were differentially 
expressed between the two most extreme clusters [15].

In 2019, unsupervised clustering of microarray profiles assigned 63 primary 
MPMs into four groups (C1A, C1B, C2A, and C2B) [75]. Then, a meta-analysis of 
mesothelioma expression profiles was conducted to compare these clusters with the 
groups from previous classifications [13, 15, 71, 72, 75, 76]. This analysis identified 
two highly correlated MPM clusters present in all expression profiles, which cor-
responded to the extreme epithelioid and the sarcomatoid phenotypes. The remain-
ing groups did not associate closely suggesting that they may represent different 
points of a continuum or “histo-molecular gradient” of epithelioid and sarcomatoid 
components. A deconvolution approach was used to identify novel insights into the 
intra-tumor heterogeneity of MPM by dissecting whole tissue RNA-sequencing sig-
natures into biologically relevant components. This analysis produced two molecu-
lar signatures of 150 genes, E-score and S-score, which were related to histology and 
recapitulated the molecular classification. These signatures reflected the proportion 
of epithelioid-like and sarcomatoid-like components within each MPM tumor. In 
addition, the proportions of these cellular components were significantly associated 
with prognosis [75].
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Regardless of the metric used, the whole transcriptome studies indicate that 
MPM is characterized by a molecular gradient associated with the EMT process. 
Most recently, the relationship between the C/V score [18] and other published 
metrics [75, 77] associated with the EMT process has been investigated [78] demon-
strating a significant correlation of the C/V score with other molecular signatures. 
These results indicate that the ratio of just two genes can be sufficient to determine 
the “EMT-component” in each MPM [78].

4. Clinical significance

While further work is needed before these data can be applied directly to patient 
care, an understanding of the molecular heterogeneity of MPM and the mutations 
that contribute to different subtypes can have a meaningful impact on the direction 
of clinical research in this field. In 2014, in vitro and tumor xenograft experiments 
suggested that low Merlin (NF2 protein) expression may predict increased sensitiv-
ity of MPM cells to a FAK inhibitor, VS-4718 [36]. Subsequently, the use of defac-
tinib, a FAK inhibitor, was investigated in the neoadjuvant setting for surgically 
resectable disease (a “window of opportunity” study). The treatment was well tol-
erated and resulted in successful inhibition of FAK, as well as inhibition of multiple 
cancer stem cell markers such as CD133 and SOX2 (Bueno et al., 2018 personal com-
munication, International Mesothelioma Interest Group (IMIG) Conference, 2016 
Birmingham UK). The use of defactinib as maintenance therapy following first-line 
chemotherapy in advanced MPM was also assessed in the COMMAND trial, a phase 
II randomized placebo-controlled study. Three hundred forty-four patients were 
stratified by merlin expression and randomized; however, there was no significant 
improvement in progression-free survival (4.1 [95% CI: 2.9–5.6] versus 4 [95% CI: 
2.9–4.2] months) or overall survival (12.7 [95% CI: 9.1–21] versus 13.6 [95% CI: 9.6 
to 21.2] months) of patients treated with defactinib compared to placebo [37].

Knowledge of key mutations in MPM has guided investigations into other forms 
of targeted therapy, although many are still at the preclinical stage. For example, 
LaFave and colleagues found evidence that loss of Bap1 expression increases Ezh2 
expression in xenograft and Bap1 knock-out mice and enhances sensitivity to EZH2 
inhibition in vitro. Szlosarek and colleagues studied arginine deprivation in 68 
patients with advanced ASS1-deficient malignant pleural mesothelioma (defined 
by >50% low expressor cells on immunohistochemical analysis) [79]. Treatment 
with the deprivation agent ADI-PEG20 improved progression-free survival 
(3.2 vs. 2 months, p = 0.03) with no significant difference in life expectancy or 
adverse events.

Beyond identifying therapeutic targets, multi-omic data have enhanced the 
understanding of tumor biology, providing novel ways to stratify patients, determin-
ing prognosis and predicting sensitivity to existing treatments (reviewed in [80]).

We have developed a gene expression ratio-based method to translate expression 
profiling data into clinical tests based on the expression levels of a small number 
of genes [81]. This method uses standard supervised methods for microarray 
analysis to compare gene expression in two types of tissues differing by a single 
clinical parameter such as histology or outcome. Genes with the most significant 
difference in expression are selected and used in combination to calculate ratios 
of gene expression able to predict the clinical parameter associated with a random 
patient sample.

Using this method, a 6-gene 3-ratio test has been developed to distinguish MPM 
from adenocarcinoma using resection specimens and fine needle biopsies [81, 82]. 
A similar approach was used to generate a 4-gene 3-ratio prognostic test to identify 
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patients likely to benefit from tumor resection in the preoperative setting [83, 84], 
as well as a 4-gene 3-ratio signature to distinguish the epithelioid from the sarcoma-
toid MPM subtype [85].

Despite rapidly decreasing sequencing costs [86], there remain several barriers 
to introducing the use of NGS technology in clinical practice, especially in MPM. In 
many solid tumors, the development of targeted sequencing panels has led to targeted 
therapies and prediction of survival of cancer patients. MPM is rare, making large-
scale validation studies difficult to perform, and heterogeneous, characterized by 
mutations highly variable among tumors. In addition, loss of TSGs is a common fea-
ture of MPM making potential treatments associated with these genes difficult to be 
applied to real life treatment. Clinical trials focused on specific mutated genes [29, 37] 
have been infrequent and the results never translated to practice. Transcriptome 
analyses have classified MPM patients into several groups stratifying patients into 
categories of risk; however, a substantial margin of error in these predictions per-
sists because the sensitivity and specificity of these tests are difficult to define [87]. 
Precision medicine based on cancer genomics is still far from being applied in clinical 
practice in MPM. Nevertheless, we are confident in the value of NGS for personalized 
medicine and believe additional efforts are needed for the implementation of NGS in 
identifying patients who might benefit from targeted treatments.

5. Conclusions

NGS has revolutionized the study of human genetics by transforming our ability 
to analyze the causes of disease, develop new diagnostics, and identify potential 
therapeutic targets. NGS studies have led to the discovery of several commonly 
mutated genes in MPM [13, 15]. Although analyses of transcriptome data have 
contributed to the understanding of the molecular biology of MPM subtypes, these 
studies were based on bulk profiling where tumors were profiled as a single entity 
averaging the gene expression of all the cells in the specimen and ignoring the 
intra-tumor heterogeneity that regulates many critical aspects of tumor biology 
[88]. The importance of intra-tumor heterogeneity in MPM is becoming evident. 
Future single-cell RNA sequencing work will be able to elucidate molecular roles of 
immune infiltrates and stroma in MPM as well as to clarify whether the molecular 
mechanisms associated with the genetic heterogeneity are due to subclonal muta-
tions, epigenetic programs, or other environmental factors such as cell-cell interac-
tion or nutrient availability.
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