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Chapter

Life Is Not on the Edge of Chaos
but in a Half-Chaos of Not Fully
Random Systems. Definition and
Simulations of the Half-Chaos in
Complex Networks
Andrzej Gecow

Abstract

The research concerns the dynamics of complex autonomous Kauffman net-
works. The article defines and shows using simulation experiments half-chaotic
networks, which exhibit features much more similar to typically modeled systems
like a living, technological or social than fully random Kauffman networks. This
represents a large change in the widely held view taken of the dynamics of complex
systems. Current theory predicts that random autonomous systems can be either
ordered or chaotic with fast phase transition between them. The theory uses shift of
finite, discrete networks to infinite and continuous space. This move loses impor-
tant features like e.g. attractor length, making description too simplified. Modeled
adapted systems are not fully random, they are usually stable, but the estimated
parameters are usually “chaotic”, they place the fully random networks in the
chaotic regime, far from the narrow phase transition. I show that among the not
fully random systems with “chaotic parameters”, a large third state called half-
chaos exists. Half-chaotic system simultaneously exhibits small (ordered) and large
(chaotic) reactions for small disturbances in similar share. The discovery of half-
chaos frees modeling of adapted systems from sharp restrictions; it allows to use
“chaotic parameters” and get a nearly stable system more similar to modeled one. It
gives a base for identity criterion of an evolving object, simplifies the definition of
basic Darwinian mechanism and changes “life on the edge of chaos” to “life evolves
in the half-chaos of not fully random systems”.

Keywords: Kauffman networks, complex networks, chaos, edge of chaos,
damage spreading, connectivity
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1. Introduction

This is empirical work1 using simulation. It concerns dynamics in complex
autonomous Kauffman networks that are finite and discrete, shows that current
theory used for them, based on Lyapunov coefficient in infinite, continuous space,
implies false expectations.

Kauffman [5, 6] has considered as a general model of a system an autonomous,
dynamic, deterministic, complex, random Boolean networks (known as RBN). The
discovery of chaos, order, and phase transition between them in such the networks,
allowed to look into this very complex world. Lot of works are based on this model
[5, 7–17]. Now, slowly become aware of new important aspects that we have not yet
considered adequately. In this paper, such the way is developed, but considered
networks are not fully random and use more signal variants than only two. A new
obtained vision is clearly different and more adequate for description of adapted
objects than now widely accepted. The discovery of half-chaos is the main new
element here, which above all frees from strong limitations in systems modeling
imposed by the contemporary vision. The statistical properties of the systems are
easiest to investigate for fully random systems and from these, we should have
started (like Kauffman did), but the systems we model are usually suited to some
tasks and are certainly not completely random.

Lyapunov exponents are the most widely used measures to describe chaotic
behavior of dynamical systems, however, to check an adequateness of theory by
observation of the behavior of finite dynamical networks it must be defined using
its main features expected by the theory. The main characteristic of the chaotic
behavior of dynamic systems is a high sensitivity to initial conditions, leading to
maximally different effects for very similar initial conditions. A small disturbance is
a small change in initial conditions. An effect of such small disturbance is called
damage. Distribution of damage size [6] (“size distribution of avalanches” in [17])
is then the main feature observed in experiment and expected by the theory that
may be compared. It is original; theories using Lyapunov exponents or percolation
are derivative. The term ‘chaos’ is used here in such the meaning, similarly as
Kauffman does (see ch.2.3). To fit the current theory the damage distributions
should fit a Derrida’s annealed approximation model [18] and for chaotic systems -
an equilibrium level found in it.

It is commonly believed, that system can be only either chaotic or ordered, but
not simultaneously both of them - this is shown to be false. On this believing, a
“criticality hypothesis” (critical regions have also been said to be “at the edge of

1 The description of the investigation and the arguments for introducing the half-chaos given in this

article is necessarily shortened and simplified. A much more extensive description is available in

supplement [1, 2] to this article. Earlier, simpler versions of the article are available in preprints [3, 4].

The data (programs and its sources, results of simulations) analyzed during the current study are

available from the author on any request.

Wider list of abbreviations and new terms is placed on the end.

In this work a few abbreviations that are not standard are used: s - number of equally probable signal

variants.

Network types: sf - scale-free; ss - single scale; er - Erdős-Rényi “random”; sh and si are respectively sf

and ss with 30% removal of nodes.

tmx - maximum number of counting steps of time t;

dmx - mean maximal damage d, i.e. Derrida equilibrium for chaotic behavior;

q - degree of order, fraction of damage which are a small change of network functioning at tmx, capacity

of left peak of P(d).

2

A Collection of Papers on Chaos Theory and Its Applications



chaos” in parameter space of systems) is formulated (see e.g. [17]). Evolution needs
small changes which practically occur only in critical regions in such the systems.
Current theory and this believing (see e.g. [17]) are based on the assumption that
networks are fully random. However, interesting phenomena concerning life occur
in not fully random networks due to natural selection. The current theory of chaos
was built for functions in infinite and continuous space, but it is used for finite
discrete networks [7, 8], such a method is an approximation. It loses a few impor-
tant phenomena present in such the networks, but absent in the infinite and con-
tinuous space. Due to such the reasons, expectations of the theory that life is on the
edge of chaos can be and are inadequate. Here such phenomena are shown; they
need much more complex theory which will not use the assumption of full ran-
domness of network and infinite continuous space, but to build such theory is the
next step, which is the task for mathematicians. The description of this experiment
in the language of mathematical equations seems to me inadequate and
unattainable, and in my opinion useless, but mathematicians may have a different
opinion. Programming languages are a natural and appropriate tool for describing
such issues. I can share the program, but it is complex. It is not true that the below
description of experiment is not exact enough to be repeated by every IT specialist.
Therefore it is enough exact to understand by mathematicians too.

Indication of adequate ranges of parameters of a complex “purposeful” (adapted)
system describing living, technological or social object is a key for modeling their
processes. An important parameter is a connectivity [19], which current theory
strongly limits. The system can be any, e.g. the solar system is also a system, but
usually, in human intuition, the system has to somehow work (therefore above
“purposeful”), and despite some changeability, it has to keep its identity. The evolu-
tion of the system is a term that reconciles two adversities - variability that is the
essence of evolution, and the identity of the evolving object. This is not a philosoph-
ical problem, but a particular problem for modeling. In this work a base for solving
this problem is found. A good approximation of the system description is a dynamic
complex network, although it undoubtedly has many important simplifications. We
are just entering this subject and it is difficult for our intuitions to operate on more
complex, more adequate descriptions, such as process algebras [20].

Half-chaos is a state of the system that is not fully random, with parameters that
make the random system strongly chaotic (hereinafter we will call them “chaotic
parameters”, such the parameters are usually estimated for real systems), however
small disturbances give an ordered reaction (small damage) with a similar proba-
bility to a chaotic reaction (damage near the Derrida balance [18], Figure 1c,d).
Acceptance of changes that trigger ordered reactions preserves the half-chaotic
state allowing for a long evolution of the slowly changing system (the system retains
identity), but acceptance of one change that gives a chaotic reaction leads to prac-
tically irreversible entry into normal chaos (the system works completely different,
ceases to be itself). Thus, the basic Darwinian mechanism emerges - this has large
interpretational consequences.

The assessment of whether a given system is chaotic or ordered is currently
based on parameters that in the case of a half-chaotic system indicate chaos for the
fully random system (I call them “chaotic parameters”), but the behavior of the
system turns out to be inconsistent with such prediction. This work presents half-
chaotic systems and simple ways to obtain such systems. The experimental results
are unambiguous and easy to repeat. The constraints forming the half-chaotic
system are small, which means that there are a lot of such systems, though
undoubtedly significantly less than of fully random.

The practical result of this work is the realignment of the acceptable range of
parameters for system modeling. This is a fundamental change. First and foremost,
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“chaotic parameter” for the Kauffman (Boolean) network - connectivity is included
in this scope, but also a larger number than two of signal variants, also omitted due
to the effect in the form of a chaotic system (for fully random systems). The need to
introduce a larger number of signal variants for statistical investigations was already
explained in [21]. The maintenance of the name of the ‘Kauffman network’ for
such a network was there postulated, to be no longer synonymous with Boolean
networks. However, these postulates acquire practical significance only after
demonstrating half-chaos.

Figure 1.
Comparison of models based on p and s; - of influence of s and K on Derrida equilibrium, Derrida plot; d(t).
a - Comparison of models based on probability p of one Boolean signal variant and on s equally probable signal
variants in dependency on K. As the basic argument s is taken. For it p is added as 1/s, it is for the case if in
reality there are s different equally probable signal variants, but we are interested only in one of them, and rest
we collect to the second one. Values of the coefficient of damage propagation ws for s,K and wp for p and K are
used. The equation for wp is taken from [5, 14]. Both models give very different results, it means, that they
cannot replace each other. (See also ([21] Fig. 4)). b - Derrida equilibrium (dmx) for chaotic response in the
system of s,K. Kauffman using Boolean networks has considered only K as the most interesting variable, but s
influences dmx more hardly. However, he cannot use s other than 2, because for each s > 2 the chaos is present
(dmx > 0 exists), like for any K > 2. Among sensible s,K, only for 2,2 exist order, it is an especially extreme
case. c,d - theoretical damage spreading calculated using the Derrida’s annealed approximation model. d - The
change of damage in one step of the time in synchronous calculation known as the ‘Derrida plot’, extended [21]
for the case s > 2. The crossing of curves dt+1(dt, s, K) with diagonal dt+1 = dt shows equilibrium levels dmx up
to which damage can grow. Case s,K = 2,2 has a damage equilibrium level in d = 0. These levels are reached on
the left which shows damage size in time dependency. For s > 2 they are significantly higher than for Boolean
networks. All cases with the same K have the same color to show the influence of s. c - In this plot expected d(t)
for N = 2000 is shown. It is an effect of ‘Derrida plot’ shown in d. A simplified expectation d(t) = d0ws

t based
on coefficient ws is shown for the first critical period when d is still small - three short curves to the left of the
longer curves reaching equilibrium. Parameter s,K (treated as a vector) is the main variables in the simulations.
Most of the studies are made for s,K = 4,3, also sometimes for s,K = 2,4 (that is, for Boolean network). They
provide highly chaotic random systems - ‘coefficient w of damage propagation’ is significantly higher than one.
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2. Main assumptions

2.1 Variables K, k, t, N, A and d in Kauffman networks

The considerations concern the statistical stability of the deterministic discrete
Kauffman networks [5, 6, 22] (a little bit extended). The network consists ofN nodes.
A node in such a network receives signals at the K inputs, converts them uniquely
using its function to the output signal called the state of the node, and then sends it to
other nodes by k output links. States of all N nodes together creates a state of the
network. The calculation of function takes a time step. Up to now, 2 (logical) signal
states (variants) have been used. In the simplest case, it was assumed the same
probability of signal variants and full randomness of connections, functions, and initial
states of each node, such networks were called RBN (Random Boolean Networks).
Here, deviation from this full randomness is made2 by assuming short attractor (a
small number of time-steps until meeting the same network state), especially – point
attractor (next network state is the same). In other here described investigations
(met7, ch.3.5) – by controlled construction of in-ice-modular network (ch.3.3) or
(met1-4b, ch.4) – by an increase of the fraction of negative feedbacks or classic
modularity. K (called “connectivity”, see [19]) was the basic variable for Kauffman.

Synchronous computing is used, i.e., the states of nodes from the discrete time t
are input signals and arguments of the function of other nodes, and the results of
these functions are nodes states at the next moment (t + 1). Variable t – is the
number of time steps from a disturbance initiation. As the disturbance a permanent
change in the value of the function of the node for its input state is used at the time
t = 0; in method ‘8’ (met8) it was an addition or removing a node. Parameter tmx -
the maximum number of calculated time steps is chosen arbitrarily, but it is
checked whether its increase does not change the results (Figures 2, 3 and 5).

Considerations have been limited to autonomous systems – they do not take
signals from the environment. Determining the states and functions of all nodes and
the connections between nodes uniquely determines the trajectory - consecutive
states of the whole network (sets of states of all nodes). We simulated the process of
transformation of the disturbed system on the section tmx, then we compared the
resulting state of the system with the undisturbed system. It is also looked after the
node functions are correctly random, but this assumption cannot always be fully
met, so the impact of the derogations is checked.

The size of a change in a network function at time t after a small disturbance is
measured by the number A (from Avalanche [23]) of the nodes, which have a
different state in the pattern network – identical network, but without disturbance.
The value d = A/N is called damage. The distribution of damage size at the time tmx
as P(d) or P(A) is an especially important result (Figure 6).

For random networks, this result creates two system states – ordered and cha-
otic. In system parameters space they occupy areas which Kauffman calls ‘solid’ and
‘gas’ respectively. Between them, there is a fairly quick transition (near K = 2, if
Boolean signals are equally probable) treated as a phase transition. Only in systems
in the vicinity of this transition (Kauffman calls it ‘liquid’ - the area between ‘solid’
and ‘gas’) changes in the system function (damage) often enough are small, there-
fore suitable for biological evolution. This is the main basis for the Kauffman’s
hypothesis: life on the edge of chaos. However, this conclusion aroused doubts [21],
therefore, it has been subjected to a deeper analysis presented here.

2 It is made using few method, in short: ‘met’. Each of them is called using digit on the end and, if need be,

some letter for its variant. In this case they are: met4c, met4d, met5, met6, met8, described in ch.3.1–4.
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Figure 2.
Half-chaos and chaos in the presentation of A(t) for a full set of initiations on the example of met7b J and X for
network ss. This is a presentation observed dynamically during a simulation on the screen pixels. The details
should be watched in enough magnification. In met7b N = 800, tmx = 2000 was used. A rectangle has the
dimension of 400*1000 pixels, so on each axis, one pixel shows 2 values. In Figure 3, for which this figure is a
description of form, N = 400 and tmx = 1000 is used, so the there unit on the axes corresponds to a pixel. The
vertical axis is originally scaled in the A - number of the nodes states different than in the pattern. The
horizontal axis is the number of steps t of simulation of network functioning. After each initiation by small
permanent change, the state A(t) was drawn with a continuous line on the screen after every step of the
calculation. In case of initiation of a node in the in-ice-module black color is used and for initiation in the walls
between in-ice-modules - purple. In met5 shown in Figure 3, this distinction was not known and always black
was used. To optimize the simulation a counting after 70 steps from the explosion to chaos (crossing over the
threshold, here = 300, marked in red on the left) was stopped - there the process has no chance to return. As can
be seen, the transition to chaos in the vicinity Derrida balance is not slow, but rapid in several to over a dozen
steps, where A increases drastically, so - “explosion.” after deflection from a small value to say A = 80 no longer
the returns happened (as checked without optimization, see [1]). After the end of initiation set, the red curve

6

A Collection of Papers on Chaos Theory and Its Applications



The conflict [7, 8] of a size of K in the Kauffman model and K estimated from
nature [19] is a problem solved here. Kauffman postulates that the natural property
of the random ordered systems (order for free [10]) is the source of stability, but then
K should be extremely small (K ≤ 2) [18]. The attempts to prove that the real genetic
network (using model GRN – Gene Regulatory Network) is ordered [14, 15, 17, 23]
assume such a source of stability. Different circumstances allowing system with
greater K to be in the ordered phase were indicated (p.48 in [7]), such as a significant
difference in probabilities of logical states [18], or deviation from the randomness of
the function (canalizing [11]), but these and other suggestions are not satisfactory for
many reasons [21]. The model GRN has disappointed many expectations, mainly due
to restrictions arising from the range of ‘liquid region’, it was replaced by the more
attractive Banzchaf model [24], but GRN is still being studied [25].

For investigation shown here, as typically, the same K for all N nodes of the
network are taken.

2.2 More than two signal variants s ≥ 2

According to my previous [21] suggestions, here I also study a larger number of s
(>2, usually 4) of equally probable signal states, which in random networks for
every sensible K (≥ 2) always gives chaos (Figure 1). In the range of sensible
parameters s and K, the order appears only for s = 2 and K = 2, it is absolutely
exceptional (Figure 1b,d). Attempts to introduce more signal states already exist
[12, 16], but they assume the possibility of an ordered phase for the random
network therefore these states cannot be equally probable.

I repeat here briefly my basic arguments given in ([21]; ch.2) for using s ≥ 2 in
Kauffman networks for statistical investigations:

1.Using Boolean network we can describe each complex relationship
(mechanism), but bringing to two-value description frequent cases where
significant signals take more than two variants, we generate unrealistic
situations, presumably - to skip. In the statistical analysis, however, they are not
skipped and give a false picture. Or we simplify something which we do not
want to simplify. In both cases the statistical investigation is false. It was shown
on the example of the thermostat ([21]; Fig. 3, p. 292). The only way is to use a
real number of signal variants and not limit ourselves to only two Boolean
alternatives. Because such case is frequent, then in one system it should appear
for a lot of signals and the investigations based on s = 2 must be false (extreme).

2.Two variants are often subjective ([21] ch.2.1.2). There are typically lots of real
alternatives, but we are watching one of them and all the remaining we collect
into the second one. Typically our interesting variant has much lower

q(t) was added to the figure. In met7 it is originally scaled by the A as the number of initiation, which does not
exceed the threshold = 300, but there are 3 N = 2400 of initiations. In met5 in a Figure 3 q(t) is divided by the
number = 3 of initiation in node, so that q = 1 for A = N. The red description in the left has been added for
readability and here q(t) is the share of processes that in the time t did not pass the threshold. a – Half-chaos,
experiment J for network ss, model b. There were 600 of such simulations for each type of networks sf, ss, er
and models a and b of met7. The red curve q(t) quickly stabilizes at a high level q = 0.22. In the lower part of
the graph, many trajectories are visible (there are L = 532 of 2400) that a little over t = 200 no longer explode.
So R = 1868 processes from the very beginning went to chaos - a Derrida balance. b - Chaos on the example of
experiment X performed immediately after the measurement of the J illustrated above in the a. There were 300
of such simulations for each type of networks sf, ss, er and models a and b of met7 and for each experiment of X,
S, T, F. Here, q(t) is steadily decreased until all the processes are not ‘exploded’. At the end there is exact LX = 0
of them, means q = 0. Blue points describe the number of processes that currently have A = 0, i.e., damage fade
out, but for the X the secondary initiations lead to their explosion.
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probability, resulting from the similar probability of each one, but description
basing on p – the probability of signal variant leads to much different results
(Figure 1a) than for the case, when we consider all variants. Adding the
parameter p to the two-value description does not solve the problem here.
Adoption of s ≥ 2 equally probable signal variants is an alternative method of
model realignment. However, it seems to be often more adequate. Both
methods give different results which significantly increases the importance of
the correct choice of description.

3.Parameter s is more important in the description of damage spreading than K
treated as the most important – see Figure 1b. Value dmx – mean maximal
damage, i.e. Derrida equilibrium for chaotic behavior (Figure 1c,d), much
stronger depends on s than on K.

2.3 Criteria of chaos, coefficient of damage propagation w

The main characteristic of the chaotic behavior of dynamic systems is high
sensitivity to initial conditions, leading to maximally different effects for very
similar initial conditions. It is original, theories using Lyapunov exponents or per-
colation are derivative. I use the term ‘chaos’ in such the meaning, similarly as
Kauffman [6] does. For chaotic Kauffman networks a small initiation of damage

Figure 3.
Simulations met5 (changes accumulation) in the presentation of A(t). Except for red description q on the left,
each drawing was created dynamically on the screen during the simulation of one full set of initiation without
blocking of reverse initial changes. It is accurate to the pixel. Description of the presentation elements in
Figure 2. a - Full typical image for the M13 met5c (met5 in other figures, model c from met4), network sf.
Almost an immediate end of the explosions to the chaos can be seen. At the top - the state of chaos in the Derrida
balance (short due to optimization by interrupting the counting after 70 steps, as in Figure 2). At the bottom -
a repeating pattern in accordance with the global attractor marked on the top frame (pattern network state as
in tmx before the first initiation of the set). Here L and R under the lower frame is the sum from the beginning of
the evolution simulation of this network. In this set 383 of initial changes were accumulated of 1200 tested, but
accepted changes defining q (not exceeding the threshold = 150) were a little bit more (with global attractor <
7). b - Typical image of network er simulation in met5c. The upper part of the almost identical to a is cut. The
level of q(t) is lower, the belt at the bottom - clearly thinner, the time of the latest explosion to chaos - shorter. c,
d – The lower part of the image for met5b (with minimal regulation). Here the level of q(t) was much higher
than in a. In the model b, the width of the lower belt is greater due to the possibility of regulation. Simulations
slightly different model than in Figure 4d - here without blocking of reverse changes, but with the condition
non-decreasing of global attractor and accumulation of changes not less than A = 3, the shift of beginning = 2,
but not 50. In these simulations, a distribution of damage size for ordered cases (A < 150) was studied on the
section from t = 600 to tmx for a given set of initiations (purple curve on the right frame) and the sum of the sets
in the final set M20 (blue curve in c). It is one of several ways to look for proof of the in-ice-modules existence.
As can be seen, in both (c,d) shown cases in these distributions the significant peaks are visible. They indicate an
existence of one (in the c M20) or two (in d M1) hypothetical in-ice-modules. Under the scope of these peaks,
there is a clear gap in the minimum of distribution. An interpretation of these peaks can vary, they are not proof
of the in-ice-modules existence, which was shown later watching nodes states repeating, but they are a strong
premise. The q level here is high: in c q = 0.46 and in d q = 0.55. In c the attractor was not found at the
beginning of the set (attr ≥900), and because it could not decrease, no one accumulation happened (not.PAS
saved = 0). It does not mean, however, that there is no here acceptable (A < 150) cases (there are 220), which
indicates q and wide black belt below the A = 150.
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Figure 4.
Increasing regulation or another factor - the point attractor. The primary result of the met4. In the met4
removing a presumed cause of the poor performance of the met2, we start with the non-random system with
extremely short attractor – a point attractor: initially, all states are set to 0 and f(0) = 0 (f – node function).
The models were tested in the sequence a, b, c (s,K = 4,3) and d (s,K = 2,4) starting from strong regulation and
ending with the lack of regulation in the models c and d. Care was taken that each signal has the same
probability in the function of each node.Model a contains a negative feedback with a positive (1) and negative
(3) deflection from equilibrium (0) in each of the three input signals. It contains also the leaving of homeostasis
into the area of randomness (when deflection is too great or one of the input signals = 2, then the node function is
defined randomly). A more exact description of this formula can be found in the text of ch.4.3 and is available
in [1].Model b has a minimal regulation: the condition of the point attractor f(0,0,0) = 0 is supplemented only
by condition f(0,0,1) = f(0,1,0) = f(1,0,0) = 0 that there is no in model c. Model d of Boolean network (s,
K = 2,4) has only condition f (0,0,0,0) = 0 similar to model c. Each model is simulated for three combinations
of N,tmx = 400,200; 400,2000; 4000,200 for networks sf and er, so as to always number of initiations was
48,000 in the series. The threshold of small change for N = 400 was set to 100, and for N = 4000 to 800. Each
initiation by definition of met4 is made for node state = 0 and for input state = (0,0,0). So only in the model c 3
other function values may be used for initiation. For model a the only one value 2 remains, for b only two values:
2 and 3, which are new states of a node without the mandatory fade out of damage at the destination. a,c - The
counts #(A) of processes ending in tmx with value A (changed states of nodes in tmx) are shown. Also, the scale
of the P(A) or P(d) are added. The results showed here in the linear plot a (N = 400) for models c and d are
also in Figure 6 in log scale. The series showed in c contains 10 times fewer networks, which gave peaks much
narrower (in damage d scale instead of A) than in a. The right peak for models b, a is becoming smaller due to
increased regulation, which is reflected in the diagram d as less participation of chaos. Place of the right peak in
a and c are well designated by Derrida balance (Figure 1d) (different for s = 2 and s = 4), which is the
property of a mature chaos. b - The table of results #(A) for tmx = 200 for the same networks as in a for which
tmx = 2000. The counts differ only for af by 140 and for df by 2 (less for left peak). d - A complementary for
Figure 8 juxtaposition of a fraction of ordered cases (q) and chaotic cases (1-q) for minor experiments
discussed in the article. While Figure 8 lists only the study of impact of small attractor, it is here - the impact of
increasing the share of regulation in met2 (only sf 2,4 can be considered in met2 as entry into half-chaos, see
Figure 5a,b); of modularity in met3; assembling of met3 and met2 (Figure 9); assembling of point attractor
and regulations in met4ab and met5b. Among them only met5b examined the evolutionary stability included in
the definition of half-chaos. As can be seen, the assembling is more effective than approach alone and should be
expected of such a strategy in biological evolution. The case af shows that the way evolution can lead to a state
where the half-chaotic system may seem as ordered. Evolution met5b decreased q comparing met4b when met5
(Figure 8) worked in the opposite direction relative to met4c (these are uncertain trends), but the expected
strategies of biological evolution its creative aspect is important, not modeled in the presented simulations, too
simplified to such a task.
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typically causes a large avalanche of damage which spreads onto a big part (perco-
lates) of the discrete and finite system and ends at a Derrida equilibrium level dmx
[18, 21, 26] (Figure 1c,d), which is a maximal loss of information about the previ-
ous system. Such distance cannot be infinite in the finite network witch finite
discrete s. The existence of this limitation is the main difference between this ‘chaos’
and the more commonly taken definition [27] used for continuous variables on
infinite space, where Lyapunov description works. The term ‘chaos’ is not
reserved for one of those separate areas. The distribution of damage size is the
experimental base to classify a particular system of Kauffman network as
chaotic or ordered using levels of damage equilibrium calculated from
Derrida’s annealed approximation (Figure 1d). In Derrida’s model only case s,
K = 2,2 (I use s,K as a vector) is ordered – it has no other cross of diagonal than in
dt + 1 = dt = 0. In any other cases, such cross called here dmx exists; it is Derrida
equilibrium level of chaotic reaction for the disturbance.

Figure 5.
Ordered fraction (q) as a function of time (t) after raising the share of negative feedbacks (met2) and the
classic modularity (met3). The upper row of all part - s,K = 2,4 (Boolean network), lower - s,K = 4,3. A – For
some moments t the shares of mechanisms: Wild - without interference met2; function narrowing as a side effect
of the method; the increased participation of negative feedback by met2. For network er, the level of q resulting
from participation k = 0 (nodes without outputs) is indicated by the green line. In the right column as a wild the
modular system resulting from met3 is used, further described in (c) as a curve a. the type of networks sf, ss, er
is described by a second letter. As can be seen, the results for the simulation parameters s,K = 2,4 and 4,3, and
network types, differ significantly. For s,K = 2,4 the function narrowing is of utmost importance to increase q,
but for s,K = 4,3 the importance of feedback turns out to be essential. For small t the effect of increase q is
significant. From these data it can be suspected to achieve half-chaos for: sf 2,4 - the result of functions
narrowing and increase of the share of regulatory feedback, and for the assembly of modularity met3 with met2
using nets er - for 2,4 mainly due to the functions narrowing, but for 4,3 due to the met2. In the remain 5
presented cases the effect practically disappears already for tmx = 1000, the use of it by living entities require
very rapid multiplication in comparison to the transformation of the construction and metabolism, which seems
unattainable. Here evolutionary stability (included in the definition of half-chaos in the result of further studies
restricting fundamental factors to a short attractor Figures 6–8) was not examined. The degree of entry into the
plateau can be better assessed in b and c. the network ss gives a similar effect to the network er, but without the
confounding effect of k = 0. b – Net sf 4,3 (350 nets) not reached a plateau even at t = 20,000, where q is
negligible, but sf 2,4 (700 nets) is almost on plateau q at t = 5000, and this level is high (compare Figure 4d).
c – The result of modularity (met3) and assembling it with met2. Result of met2 for network er is added, such as
in b, omitting, however, the share of function narrowing enough presented in a. it can be seen that the wild
system (without forced modularity, 700 nets for s = 2, 350 nets for s = 4) of network er very quickly descends to
the level of q resulting only from k = 0. Also curve b - the result of the met2 quickly closer to that level, which can
also be seen in a. forced modularity (curve a, 100 nets) gives a clear stable increase of q, and met2 help it (curve
ab) to radically increase q, but for s,K = 4,3 appears to fall within the plateau above t = 20,000. For s,K = 2,4,
almost all large and stable met2 effect results from the function narrowing only (curve afb). The network has
N = 400 nodes assembled of N2 = 50 modules each of N1 = 8 nodes.
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In a typical case, the chaos is indicated by Lyapunov exponent, which describe
the growth of distance for two, near, initial states. For finite discrete networks, it
corresponds to “coefficient of damage propagation”w described in ([21] ch.2.2.1)
and earlier, or eq. 4.8 in [23]. w = <k > (s-1)/s. It can be treated as damage
multiplication coefficient on one node if only one input signal is changed. It indi-
cates how many output signals of a node will be changed on average. For an
autonomous network with fixed K, <k > = K and we can use w = K(s-1)/s. It is easy
to see that for w > 1 damage grows, for w < 1 it disappears and w = 1 is critical – for
s = 2 it gives known critical Kc = 2. In [7] similar eq. (6.2): Kc(s-1)/s = 1 is given which
is a case for the condition w = 1. Coefficient w is a simplification for the beginning of
damage growth, later a case of more than one changed input signal happens more
and more often, but this first period is crucial (Figure 1c).

Note, we are going to know: is a particular network chaotic, ordered, or something
else, therefore we test it by statistical experiment. We make small disturbance (per-
turbation) and look how great is a change of a function (damage d) of this determin-
istic network comparing to undisturbed network. Damage is an effect of this small
disturbance. We make a lot of such small disturbances (see Figure 2), each in the
same network being tested, and we get distribution P(d) for one, tested network. For
a chaotic network, the P(d) contains one peak near dmx, for ordered – one narrow
peak near d = 0. If there are both the peaks in the distribution for one particular
network, then it is neither chaotic nor ordered network, it may be half-chaotic.

2.4 Types of networks

Several types of networks are considered. They differ in the rules of their
creation (for sf and ss see Figure 2 in [21]) and distributions of k (output links),
(K – input links is fixed for all nodes of particular network): sf (scale-free [28]), er
(classic Erdős-Rényi [29] “random”), and ss (single-scale). In the figures, the sec-
ond letter of these shortcuts indicates the network type. In studiesmet8 (denoted in
figures by ‘8’) the network grew - an addition or removal of the node was the
disturbution. There networks sh and si are respectively sf and ss with 30% removal.

Parameters: network type together with s,K (treated as a vector) are the main
variables in the simulations. In a wider description [1, 2] of here presented investi-
gation, I used more network types.

2.5 The main results

At the beginning, in ch.2.1 there is the statement: ‘the distribution of damage
size at the time tmx as P(d) or P(A) is an especially important result’. It is shown in
Figure 6 for the main range of investigation and in Figure 4 for mechanisms
supporting half-chaos. However, it is the base for more important conclusions.

In obtained here distribution of damage size for the particular system there are
two peaks: the left of small changes (ordered behavior) and the right of big changes
(chaotic, near Derrida balance). Sharp boundaries of these peaks, supported by a
clear gap between them define a “small change”.

The main result, however, is a “degree of order”q – a fraction of effects
(damage) of small perturbations which fit into the range of the “small change” of
the functioning at the time tmx. It is summarized in Figures 8 and 4d. This q
corresponds to the contents of the left peak or probability of acceptance of changes
in the modeled evolution (lack of elimination).

The degree of order q is the base (see ch.2.3) to state, that we found half-chaos
using definition given in the Introduction: Half-chaos is a state of a system that is
not fully random, with parameters that the random system make strongly
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chaotic, but small disturbances give the ordered reaction with a similar proba-
bility to the chaotic reaction. Such state is contrary to the current view, but the
current view is based on the assumption of full randomness of the network which
typically is not fitted.

The “small change” is a criterion of the acceptance of perturbing permanent
changes creating the evolution, which is enough (Figure 7) to stay in half-chaos. It
is the evolutionary stability of half-chaos. It was included in the half-chaos
definition. Acceptance of one perturbing permanent change that gives a big
change of the functioning at the time tmx (chaotic reaction) leads to practically
irreversible entry into normal chaos (elimination). Note that in such great change
of behavior only states of network nodes differ before and after, but in both cases
they have the same, random–look distribution. Nothing has changed for currently
used methods to define: is this network chaotic or ordered, but the behavior is
absolutely different.

3. Half-chaotic systems, construction and mechanisms

3.1 Short attractor and secondary initiation as the main mechanism

The preliminary search (met1-4ab described in ch.4) of mechanisms enlarging
stability for chaotic systems allowed for a deeper look at the process and its deter-
minants. However, it turned out that they concern mechanisms of secondary
importance which only support the main mechanism based on a short attractor
effected from the phenomenon of secondary initiation. The first initiation does not
have to lead to quick explosion to chaos, it even could fade out. Secondary initiation
- the cases of re-appear at the inputs of disturbed node its initial inputs state for
which the function has been permanently changed are responsible for the decline of
q(t) with increasing t (Figure 2b and 5). Such a secondary initiation takes place in
different conditions than the previous one and can also lead to entering chaos or

Figure 6.
The main result – distribution of damage size. Symbol of the method begins a signature. The methods: ‘d’, ‘5’, ‘8’
start from point attractor; ‘d’ (met4d, see ch.4.3) is the only with s,K = 2,4 and without evolution, remain s,
K = 4,3 with evolution; ‘6’ (met6) starts from small attractors; ‘7’ (met7ea) starts from constructed in-ice-
modular system. After the method the second letter of network type ends signature. Results presented here
(except ‘d’) are a sum from 4 already stabilized sets of initiation (see Figure 7). The gap between the peaks -
left (ordered) and right (chaotic, near Derrida balance, different for s = 2 and 4) is not empty only for
not really small disturbations by adding or removing a node (‘8’ – met8). The share of the left peak as q –

degree of order is summarized in Figure 8. It is the basic result of this study; it allows to introduce
half-chaos. Collecting only permanent changes which give damage from the left peak (i.e. small changes)
is sufficient to keep half-chaos in the evolution (Figure 7). The shape of the left peak is important for the
modeling an evolution of adapted systems. It is shown (without ‘8’) in more details on the left for variable
A = d*N where N is = 400. In the experiment ‘6’ there is practically only A = 0 due to lack of in-ice-modularity.
Network sf of ‘7’ differs from the others in the left slope of the right peak, (see also Figure 7c) mechanism of this
is unknown.
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fade out. After a round of attractor new such cases are no longer present (see
Figure 9a,b). If up to this point explosion to the chaos does not take place, then it
will not appear later. For short attractor, it can happen with not a negligible proba-
bility. To check it, tmx must be greater than the sum of length (in time steps) of
attractor and path to the attractor. In below-described researches, it turned out that
global attractor can be large if it is assembled of few independent short local
attractors, which is a typical case for in-ice-modularity (ch.3.3).

3.2 System with point attractor is half-chaotic

The study of the systems with a point attractor (further – ‘point attractor
system’, system state is not changed over time t, attractor is extremely short,
length = 1), with parameters s,K = 4,3 (met4c) and 2,4 (met4d), (see more in
ch.3.3, ch.4.3 and description of Figure 4) which make random systems highly
chaotic, gave clear results - such systems are neither ordered, nor chaotic. Both
reaction variants on a small initial perturbation (ordered - a small change in the
functioning and chaotic - a big change nearby of Derrida equilibrium – Figure 6)
appear in similar proportions (Figure 8). This state was named “half-chaos”.
In this state, the resultant change in the functioning (damage) can be either
very small or very large (explosions to the chaos Figure 2), but almost no
intermediate changes (Figures 2–4 and 6). This defines a small change in a natural
way. There remains the problem of the length and condition of the evolution of the
half-chaotic system.

Obtaining a point attractor is simple, just after the random generation of
networks (nodes connections and functions) and the states, it is enough to take that
for the current state of the node inputs a node function gives the current node state.
For the remain states of the input - functions stay random. The point attractor
system in Kauffman terms is a completely frozen system – there is only “ice”
(nothing changes). The predominance of the ice is a spontaneous property of
ordered systems. Obtaining small change after disturbation of half-chaotic, point
attractor system, we can expect “a small lake of activity in the ice,” (originally [5]:
“unfrozen islands”), which is the essence of the ‘liquid’ area of random systems,
where Kauffman sees place for life. But such a system ceases to be a point attractor
system. It turns out that the vast majority (typically over 99%) of “small changes of
functioning” gives also point attractor systems. Therefore, evolution may be long,
however, such the model is quite extreme and unattractive.

Simulation studies and their analysis include many important details that are
unfeasible to include in this article. They are described in more than 170 pages of
the report [1], Only basic ones will be listed here. The particular system is calculated
at tmx discrete time steps t after disturbation, and then at t = tmx, more adequate
value for the final results (Figures 6 and 8) is recorded as averaged A over the last
50 counting steps t. Due to the strong influence of various factors often sporadic,
formal errors in the obtained results are not calculated, judging such a
calculation as clearly inadequate and misleading. This problem is limited to the
similarity of results from the similar simulations and the visual evaluation of fluc-
tuations. Given here a number of networks in described series of simulations con-
cern showed results, but often experiments were repeated in a similar way, giving a
much greater certainty.

3.3 The evolution from the point attractor

Next, for models b (see ch.4.3) and c of the met4 started from point attractors
we checked how long can be evolution if it accumulates small disturbances caused
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small changes of functioning (small damage), but it does not allow new point
attractors (met5). We received (also in met6-8) that it allows to any length of
maintenances of the half-chaotic state and stabilizes its parameters (Figure 7). It is
the evolutionary stability of half-chaos which was included in the half-chaos
definition. The system still has a significant prevalence of ice (Figure 7c), and
there are usually some “small lakes of activity” forming “in-ice-modules3”.
Among the methods used to check the presence and properties of the in-ice-mod-
ules (see also Figures 3c,d and 10), the most effective was to track periods of node
states. The set of nodes with the same period in the process ended of accumulation
was treated as a local cluster corresponding with in-ice-module. On average, at
the same time occurred about 2 local clusters (Figure 7e). In the evolution, some-
times after many in the meantime accumulated changes, there appeared local clus-
ters very similar in terms of nodes composition - a collection of such local clusters
is treated as a global cluster. Methods to identify global clusters are very complex
due to the wealth of different circumstances, including merger and disintegration of
global clusters during evolution. However, we can say that they are generally quite

Figure 7.
The variability of basic parameters during evolution. The similarity of results for these 4 methods shows the
similarity of obtained half-chaos, mainly its evolutionary stability, despite the differences in the way of
obtaining. In a-c only met5c and met7ea are shown. a - Stability of parameter q (degree of order of the system,
the contents of the left peak in Figure 6) shows lack of moving towards the chaos during the evolution -
accepting permanent changes which give small changes in the functioning (in the range of left peak, additionally
excluded global attractors less than 7, and in the M20 of met5-7 also smaller than the already obtained). b -
The average time of five latest explosions to the chaos (see also Figure 5a,b) does not grow in spite of the above
indicated conditions on attractor’s length. In the chaotic networks such explosions (see Figure 4) happen almost
until the not yet exploded processes exist. c - The average size of local clusters (in met8 they are not checked) and
the ice. It makes sense for in-ice-modularity, so not for the met6 where a single local cluster covers the whole
network (N = 400). In met7e network sf has a specific derogation. A mechanism of it has not been elucidated
(see also Fig. 1, wider recognition in [1]). d - The average number of global clusters. In the met7 it also
stabilizes from theM7. In the initial set of initiation (J), still without accumulation, it is sometimes even greater
than the number generated in-ice-modules, which shows that few so defined clusters may arise within one
constructed in-ice-module. e - The average number of local clusters.
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stable formations, though they often disappear (freeze) and reappear, often in the
other company of remaining global clusters, often changing period. Their average
number for a set of initiations presents Figure 7d.

It should be emphasized that the structure of the nodes connections in the
investigated networks was constant and random, although the randomness had
various formulas that define the type of the network. In-ice-modules are also the
classic modules, however this is only one, supporting, but less important factor.
The main property of the in-ice-modules is the activity - changes of the states of
nodes forming the in-ice-module. The ice (the area where the nodes do not change
their states) surrounds them and isolates from the other in-ice-modules. In-ice-
modules are the result of the functioning defined by the functions and states of the
nodes in a given structure. Despite the selection of functions for obtaining initial
point attractor state, functions and states of nodes had truly random
characteristics.

Simulations met4, met5 and met8 start from the system with point attractor. In
the met4 (see also ch.4.3) networks sf and erwere tested. Number of nodesN = 400
and 4000, section tmx = 200 and 2000 (no variant N = 4000, tmx = 2000). One set
of initialization was tested - for s = 2 (met4d) each node is able to one initiation, for
s = 4 there was 3 of the remaining function values. There were gained 48,000 events
for each of the three variants of (N,tmx). The differences in the results of these
variants were not significant (Figures 4 and 6), for further research in met5 we
used N = 400, tmx = 1000.

We limitedmet5 (and next met6, 7, 8) to s,K = 4,3, but these studies were much
more complex. For a long process of evolution (accumulation of initiating perma-
nent changes, which give small damage) we were studied many full sets of initia-
tions, therefore the same change in function as an initiation has been repeated, but
it was separated by many accumulations. Full evolution of the particular network is
a collection of 20 sets (M) of initiations after one initial (J in Figures 2, 7, and 9) set.
In most of these sets, retrogressive changes were blocked. This results in the
exclusion of a large number of initiations from the measurements and leads to a
significant slowdown of evolution. After several such sets, the reversal is allowed
(M1, M7, M13, M19, M20), assuming that the change has already another circum-
stance. It also allows to correctly measure of various phenomena that illustrate
evolution (Figure 7). Since the attractor is decreasing spontaneously, making it

Figure 8.
Half-chaos – fractions of ordered events (q) and chaotic (c = 1-q). Experiments described as in Figure 6. In the
range of q, an order resulting from the absence of output in some nodes (k = 0) in the network er, sh and si is
isolated as yellow. All results presented here concern only the effects of length limitation of global attractors (‘6’ -
met6) or length limitation of local attractors through in-ice-modularity. For ‘8’ local attractors are not detected,
but the level of ice (Figure 7c) shows, that local clusters cannot be large. For ‘d’ and ‘X’ (met7a) there is no
evolution, the results concern the network immediately after generation of half-chaos, but for ‘X’ also after
acceptance of one chaotic change, which gives a typical chaos (see also Figure 7f). In the remaining methods
(‘5’, ‘6’, ‘7’ and ‘8’) result is a sum of the results of 4 stable complete M, as in Figure 6, (see Figure 7). Except
‘d’ where s,K = 2,4, in remain cases s,K = 4,3. See also Figure 4d.
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Figure 9.
The difference between half-chaos and chaos in met7a and b. Experiments met7a and b (without evolution)
were supposed to deeper and more accurately demonstrate the distinctiveness of the achieved half-chaotic state
and chaos. In comparison to studying the evolution, an elevated N = 800 and tmx = 2000 were used. Variant b,
over the conditions used in variant a, is forcing small attractors in in-ice-modules, and limitations: local
attractor ≤100 and global attractor >200 also a shift to the latest start of local attractor <500. Experiment
J - immediately after generation in-ice-modularity (600 networks), and after J further experiments X, S, T, F
(300 networks). X - after acceptance of one chaotic change, S - after changing the node states to be random,
T - the shift of functions to other nodes, F - after a generation of random functions for nodes. Despite the lacking
possibility of the meaningful designation of measurement errors, the reproducibility of the results and the radical
behavior otherness of J experiment clearly shows that the obtained state strongly differs from chaos.
a,b - Probability of time of explosion to chaos for met7b. This aspect is shown in the graphs of A(t) shown in
Figures 2 and 3 where late explosions resemble the image to the chaotic and increase the uncertainty of the
appropriate selection of tmx. a - J and X for network sf, ss, and er. For J the probability smoothly decreases
with time increasing, for X appears the collapse near t = 22 and the transition to a much slower decline
associated with the presence of chaotic explosion after the secondary initiations. None of the collapses for the J
results from the completion of the first round of short local attractor. After this moment there is no explosion as a
result of secondary initiation inside the in-ice-module, which would be happened in the new circumstances. This
mechanism is an approximation since initiations are also held in the icy walls between in-ice-modules, but there
damage spreads more difficult, and after penetration into in-ice-module already subjects to the indicated
mechanism. There was a clear difference in the behavior of the tested types of networks - sf has later explosions,
in this aspect it is the most similar to the chaos; er has the least of late explosions. b - J, X, S, T, F for network sf.
Apart from the half-chaotic J, the remaining chaotic X, S, T, F practically overlap. X protrudes somewhat from
below, and the S and T – from above. Very late explosions also occur in half-chaos, but they are rare. These are
usually cases of especially large global attractors, sometimes not at all found in the range of tmx, furthermore,
most initiations appear in the ice between in-ice-modules, where damage normally builds up slowly. c - Average
q(t) for fb (network sf in met7b) in experiments J, X, S, T, F. Half-chaos in the J is clearly different and
quickly stabilizes q, but X, S, T, F drop up to tmx and probably further and are a little bit different. In this
measurement the difference may be within a measurement error, which is practically impossible to determine
due to the multiplicity of factors, but in d at least the S and T seem to consistently differ from the X and F.
Reviewing diagrams A(t) as in Figure 2b similarity is noted in the range of X, S, and F, but in the case of T
there are frequent derogation of different nature, particularly for fa, where the result is strongly disturbed for a
few special cases. d - Average q for all the tested types of networks (sf, ss, er) and models (a, b) in all the five
experiments J, X, S, T, F. network er in chaotic cases hides differences due to presence k = 0. See also the
discussion of differences in the description c above. e - Average position for the right peak of chaotic Derrida
balance. Particularly large deviation for the Jfa and Jfb is shown in more detail in Figure 6 and Figure 7c. X,
S, and T behave here the nature of the derogation and the statistical derogation from the randomness of
functions, which suggests such a source of visible here differences and determines the magnitude of the impact of
non-randomness of functions on the results. X and S retain a correlation of non-randomness of functions with
node place in the structure of the network, which T breaks.
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difficult to move away from the point attractor, it is also forbidden to reduce the
global attractor to less than 7, and in theM20 (in met5, 6, 7) to reduce the attractor.

Parameters q and average time of five the latest “explosions to chaos” are the
most important, they demonstrate in Figure 7a,b lack of converging into chaos.
They stabilize starting from set M7, despite a slightly elevated length of global
attractor was forced. There were happen that the conditions for the attractor size
block further evolution. Such processes were interrupted, however, in the main
series (of met5 and met6) 100 networks were obtained, which reached the end
of M20.

It turned out that the amount of a shift (in the range of 2-50) of the point of
process start (place of the initiation) after each accumulation is an important factor.
We assumed a shift of 50 steps. The study was much broader and deeper, their wide
description can be found in [1]. Additional attempts of evolution referral more
towards the boundaries of chaos gave no noticeable nearing - a condition of accep-
tance of a small change is enough for any long evolution - gives evolutionary
stability of half-chaos.

3.4 Controlled design of the system with short-attractor

Point attractor, as extremely short, gave sought half-chaos. However, extreme is
specific and in the evolution (met5) half-chaos was maintained even when attractor
was not found in the range of tmx (Figure 3c). It should be checked whether the
alone condition of a short attractor, but significantly greater than 1, is sufficient. For
that, simulations met6 causing in the random system a global attractor (of the
whole network) = 21 was performed. From t = 21 for the unused input states of the

Figure 10.
Dynamical size distribution of local clusters and their stability through evolution met7eb. Distributions at end of
M20 of the size of local clusters in the range of up to 150 (of N = 400) nodes collected only in indicated sets. It
should be analyzed on the greatly enlarged picture in pixels – one pixel up means one event, to right – one node
more in the cluster. Dynamically observed increases are significantly more uneven than this is due to
randomness, it can be assessed painstakingly analyzing the size of the growth of a specific color assigned to the
particular set M, but it does not reflect the image of a dynamic inside the set. This non-uniformity is associated
with the presence of different in-ice-modules also changing during the accumulation. Such results are practically
identical in met7ea for er and ss, only sf clusters are there typically larger. In the er, larger local clusters are
very rare. Presented image, especially in the dynamical form in part reproduced through colors, is a strong, eye-
argument for the existence and functioning of in-ice-modules. As can be seen, in-ice-modules may even be quite
large.
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node, the function value was changed to state 20 steps backward. We obtained the
evolutionarily stable half-chaos even with a high q (Figure 8) for the same
parameters and rules of the evolution simulation as in the met5. The primary
difference is the shape of the resulting left peak (of small changes) in the
distribution of damage size - there are practically only changes of a magnitude
A = 0, but A = 1 and A = 2 are present in negligible amounts (Figure 6). This means
that practically there are no changes in the functioning and in spite of the accep-
tance of permanent changes in the functions of nodes, nothing is changed. Such a
process is not suitable for modeling of adaptive biological evolution, only for
neutral evolution. A total lack of in-ice-modules was found, but the classic mod-
ules are present like in met5. In half-chaos based on in-ice-modularity as in the
met5, the peak of a small damage contains a significant amount of change in the
range A = 1 to 4, and also larger changes occur markedly frequent (Figure 6). In-
ice-modularity in met5 explains achieved stability for the larger global attractors -
they are assembled of small local attractors (in in-ice-modules), but this solution
was checked in met7.

3.5 Controlled design of the in-ice-modular system

To determine the sufficiency of the in-ice-modular state to obtain stable half-
chaos, we have attempted to controlled create it without booting from the point
attractor (met7). Networks sf, ss, and er, s,K = 4,3 was studied. First, a network of N
nodes and their states are randomly generated (dependently on network type).
Next, analyzing of the node connections, a collection of ‘in-ice-modules’ was cre-
ated and everyone node was assigned to an in-ice-module or separating them ice.
Node created new in-ice-module when none of its link (input and output) was
connected to a node belonging to an already existing in-ice-module. When it was
connected to nodes belonging to only one in-ice-module, it was assigned to this in-
ice-module. When it was connected to the nodes belonging to several in-ice-mod-
ules or if the limit of in-ice-modules (= 10) or the size of the in-ice-module (= 100
nodes for N = 800, 25 nodes for the study of evolution) was exhausted, the node
was assigned to the ice.

Next, a trajectory was calculated by appropriately functions selecting. For the
current input state, if it was not previously defined, nodes of ice get the value of the
function equal to 0, but nodes belonging to in-ice-modules – random value.

A number of additional conditions and adjustments was applied, documentation
[1] contain a full description, their details are not important here. Initially, short
attractor was forced in each in-ice-module and using this assumption basic
investigations were made: (b) – of the in-ice-modularity state (series with N = 800
and tmx = 2000 without evolution roughly corresponding to the met4) and (eb) -
the evolution as in the met5 and met6 (series with N = 400, tmx = 1000). In the
end, the necessity of this assumption was verified and surprisingly it occurs
unnecessary. So the two most important research without the forcing of the short
attractor in in-ice-modules were repeated (called a and ea - as logically simpler).

Examination (J) of the in-ice-modularity with N = 800 mainly relied on
checking the q and the distributions of damage size. In the versions b, we demanded
the global attractor to be greater than 200 when the local attractor could not exceed
100 - the result was in line with the tested vision which explains the admissibility of
larger global attractors. In both versions (a and b) it was verified that the
statistical properties of non-randomly selected functions are not responsible
for the increase of stability, namely - how such a system behaves after: the
acceptance of one large change (X), randomly changing of node states (S), moving
the functions to other nodes (T), and the random generation of new functions (F).
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In the experiments X, S,T functions retained their statistics. In all these experiments
chaos yielded (like X in Figures 2b and 8), but it systematically slightly differed
from the full version of chaos F (Figure 9).

Comparing with the met5, particular for network sf, both peaks of the distribu-
tion of damage size have been a little bit changed (Figure 6). Also in distributions of
the ice size and the local clusters size the blur arise what caused a marked decreasing
of average ice and increasing average size of local clusters (Figure 7c). This shows
getting a slightly different state of in-ice-modularity. Like in the met5 and met6,
system parameters stabilize from the M7 and the small change as a condition of
acceptance is sufficient to any long maintain of half-chaos in the version of
such the in-ice-modularity.

3.6 Growing half-chaotic networks

Much more complicated and stronger is the disturbation of a system through
adding or removing a node (met8) [2]. There are problems with the comparison
to the undisturbed system and the interpretation of secondary initiation. These
simulations start from a small system (N = 50) with a point attractor. The
network grows in 5 successive stages M by 100 nodes and reached N = 550 at the
end. The overall picture was very close to met5 and met7. Also, half-chaos
(Figure 6 right, Figures 7a,b and 8) with evolutionary stability and stable pres-
ence of large ice share are obtained (Figure 7c). It suggests similarity of mecha-
nisms of increased stability to in-ice-modularity. In this case, the network grows by
evolving under the control of a small change. The gap between the right and left
peaks is not so empty here (Figure 6), probably because adding or removing a node
is not a very small disturbation.

4. Supports for stability

4.1 More of negative feedbacks in a random system, function narrowing

It is generally believed that the stability of the various systems results from
homeostasis based on regulation by negative feedbacks. Kauffman pointed instead
to the property of the ordered phase (order for free) [10] as the most important
reason, but for it extremely small K should be expected. The regulatory feedbacks
are generally considered the basis for the stability of living entities and their con-
centration is considered to be significantly increased in relation to the random
one. However, the complex structure of the feedbacks for this statistical sur-
plus has been replaced in the Kauffman model by their proper effect (ice) and
it remains only in random share. So much simplified model is not able to give a
proper statistical picture of a system failure and conclusions for a stability
mechanism can (and seem) significantly differ from reality.

This doubt was the main reason for undertaking the research, which initially
aimed to strong raise the share of regulatory mechanisms.

In the presented study we transform part of the feedbacks in random struc-
ture into negative feedback. It is done by changing the random function when the
state on the inputs was not used yet. It was the first method (met1) of correction of
a random chaotic system. The similar, stronger met2 has iterative change the
pattern. Network s,K = 2,4 and 4,3 were investigated. Figure 1c suggests that
Derrida chaotic balance is achieved even before the 15-th time step. Initial research
for tmx = 60 steps yielded very promising results (Figure 5a) - q was signifi-
cantly increased (especially for s,K = 4,3), the distribution of damage size already
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contained two peaks separated by a gap. A large part of this effect (especially for s,
K = 2,4) was the result of deviation from the randomness of node functions (func-
tion narrowing), which also may be included [11] to evolution tools. But it turned
out (Figure 5) that obtained in met2 stability of q usually significantly decreases
with the elongation of tmx, practically disappears already for tmx = 1000, only in
the case of Boolean networks sf 2,4 this method could be considered to be effective
to achieve half-chaos (not tested for evolutionary stability). As it can be seen in
Figure 5b,c, tmx = 20,000 was used. Simulation series contains 700 nets for s = 2
and 350 nets for s = 4.

These studies demonstrated a high range of results dependence on the net-
work type - the network sf is more ordered [9]; network ss and er are more chaotic,
similar to the reaction, but er has part k = 0 (Figures 4, 5 and 8) obstructing
observation. The parameters s,K = 2,4 and 4,3 also give a very different picture.
The simulation allowed for a deeper look at the process and its determinants, which
pointed to the short attractor (ch.3.1).

4.2 Modularity

It seemed that the most natural way to get short attractors is modularity. In
met1 and 2 no modular effects were observed, although modules exist in practi-
cally every network. It was assumed that in a random network the modules are too
‘weak’, then it was pre-checked, what stronger modularity gives for stability
(met3). Here it turned out that sufficiently small spontaneous attractors can be
expected only in so small modules that the consideration a state of chaos in them
losing meaning. Consideration of chaos in the modules network has been postponed.

In the study, the network has N = 400 nodes. It was assembled of N2 = 50
modules, each of N1 = 8 nodes. Connectivity K1 between nodes inside modules
K1 = K2 connectivity between modules. The rule of connection is taken like in type
er. Simulation series consists of 100 nets.

The modularity also gave raise q (Figure 5c), especially when met2, which
increased the share of negative feedback, is used at the same time, however,
evolutionary stability was not checked. In the distribution of damage size, the
typical for the half-chaos radical gap between peaks was not observed, only the
clear minimum. An increase of q in the experiment met3 + met2 with s,K = 2,4,
almost entirely resulted from non-randomness of functions (function narrowing).
Both of these methods and their associated factors (such as function narrowing)
belong to the most important methods of producing desired stability by biological
evolution, but in both the short attractor is an important factor.

As was described in ch.3.3, classic modules cooperate with in-ice-modules. The
theme of classic modularity and its role in system stability was here recognized only
provisionally and requires much deeper research. However, it is one more source of
modularity, than was found in [30], where the role of modularity is studied in depth
in evolution.

4.3 Regulation in system with point attractor

Lack of expected radical effect of regulatory mechanisms in the met2 was found
in the system starting from a random network, then we introduced strong regula-
tion in a system with a radically short attractor – point attractor (met4a). This time
the result was surprisingly strong (Figure 4), so we decreased the regulation to the
minimum (met4b, see also met5b, Figure 4d) and next, regulation was rejected at
all (met4c,d and later), which showed that the point attractor is sufficient to
achieve half-chaos.
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In met4 point attractor starts with all node states equal 0. It was not permitted in
met8, where states are random. Model met4c for s,K = 4,3 used later in met5 is
defined as f(0,0,0) = 0.Model d for s,K = 2,4 – as f(0,0,0,0) = 0. They are based only
point attractor, without regulation. Model b with minimal regulation (s,K = 4,3) also
used later in met5, has in addition to c also: f(0,0,1) = f(0,1,0) = f(1,0,0) = 0. For
signal value 1 interpretation was taken: deviation from proper state ‘0’, but still in the
range of homeostasis. Formodel a (s,K = 4,3) also f(0,0,0) = 0, but description is
much more complicated. Here direction of deviation in homeostasis range: 1 – posi-
tive; 3 – negative. The deviation of one of 3 input signals gives 0. The function also
gives 0 if 2 signals are deviated, but in the opposite direction and third is 0. If 2 signals
deviate in the same direction but third is 0 or 3 signals deviate, but they are not equal,
then function result is deviated, i.e., is 1 or 3. If 3 signals deviate and are equal or at
least one is 2, then the result of the base function is 2, but such value for a particular
node is converted into random value in the way that share of each function value be
equal. Other parameters of simulation in met4 are described in ch.3.3.

The result of met4a shows how strong may be the effect of the regulation in
the half-chaotic system – right peak almost disappears, that is the probability of
entry into chaos as a result of a small system failure (internal cause) is small. This
gives a deceptive picture of the ordered phase [14, 23]. There remain external
causes, which model of the autonomous network does not take into account from
assumption. However, adaptation is to the environment, which can vary and the
evolution should be tested using open systems as in [31].

5. False assumptions of Kauffman’s model – summary

The Kauffman’s widely known hypothesis “life on the edge of chaos and order”
[5, 6], pointed out an important factor in modeling of biological evolution, pro-
cesses in social organizations, and technical constructions, however, it was based on
too simple model, even – on few false assumptions:

1.Any network of conditions can be described as Boolean, then it is sufficient to
study the Random Boolean Networks (RBNs). Such complex networks are
finite, discrete, deterministic, and fully random.

The assumption that the statistical properties of Boolean networks are general
is false [21]. The number s of equally probable signal variants should be also
considered higher than only two.

2.RBNs can be either ordered or chaotic, which is observed and confirmed by the
current mathematical theory of chaos

The current mathematical theory defines chaos by Lyapunov coefficients in
infinite, continuous space. High sensitivity to initial conditions, leading to
maximally different effects for very similar initial conditions is the main
characteristic of the chaotic behavior of dynamical systems. Kauffman [6]
uses such the term ‘chaos’ to describe finite, discrete networks. The term
‘chaos’ is not reserved for just one of those separate areas. This theory is
used for finite discrete networks (e.g. [19]), but such a method is an
approximation, which loses a few important phenomena, e.g., repeating
the same argument for a function, the path length to the attractor and
attractor length (in steps of a process). Analog of Lyapunov exponent for
networks (coefficient of damage propagation [21], eq. 4.8 in [23] or eq. 6.2 in
[7] in the case of half-chaos turns out to be misleading.
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Model-forced strong limitations on parameters are not compatible with
estimations from nature [7, 12, 16, 19]. For the evolution of life, the model
allows only extreme K = 2 (connectivity, K—number of node inputs) and s = 2.
Higher values of K or s lead to useless chaos.

3.Random networks contain all possible networks, then it is not important that
living organisms are not random in the aspect of stability due to natural
selection. Many works have assumed that this stability is explained by natural
properties of the ordered system known as “order for free” [10]. These are
false assumptions. Such a picture was not very consistent with the observed
delicacy of living entities, not emphasized of regulatory structures and did not
contain a model of death necessary for the Darwinian elimination. Kauffman
[6] considered negative feedbacks, but practically [21] he left them on a
random level.

In this work, it is experimentally shown that among discrete and finite
systems that are not fully random, with parameters s and K which for fully
random system result in chaos, there is a third state of systems I call half-chaos.
The not fully random networks where half-chaos is found are obtained considering
the specific correlation of parameters which Kauffman simplifying took as random.
The analogy to the phase transition is more complex here - it is rather the
“superheating”.

The particular half-chaotic system exhibits small and large damage. Current
theory does not foresee such the possibility, but it is easy to show examples using
computer simulation – system with point attractor is half-chaotic. The modeled
objects (like living or administrative units, technological processes, and technical
constructions) are certainly neither infinite nor continuous. Half-chaotic systems
better describe the modeled objects, freeing modeling from difficult theoretical
limitations (see point 2 above), which until now are the typical basis of many
considerations [7, 10, 12, 13, 16, 17, 23]. This opens the door to adequate models
with complex networks.

The large gap between small and large damage defines in a natural way a small
change, which is very important for interpretation. The peak of great changes (of
functioning—damage) well model a death and elimination. After the great change,
the system becomes forever simply chaotic, but a small change retains half-chaos
and identity of the system, then evolution can go on. This feature as ‘evolutionary
stability of half-chaos’ was included in the half-chaos definition. Half-chaos
together with given initializing changeability completed by the multiplication of
evolving system resulting from the demand of long evolution offers the full basic
Darwinian mechanism.

The Kauffman model is trying to describe living systems and similar ones using
several easy to show, and it would appear that the main parameters, the rest of them
simplifies assuming their randomness, but natural selection works on all possible
parameters, which may be easier and more important for selection and its effect.
Indeed, it is difficult to imagine the possibility of the existence of half-chaotic
systems from Kauffman point of view. In fact, after the system is drawn, it is either
chaotic or ordered (ad. ‘observed’ in point 2 above) and the set of random systems
contains all the possible ones (point 3 above). In the interpretation of the results of
this approach, it has not been seen that the statistical absence of intermediate
systems does not imply a small number of such systems. There are a lot of half-
chaotic systems, but their share is negligible because there are radically more cha-
otic systems with given parameters (e.g., K) - for larger N not imaginable many.
Model GRN based on RBN is not false, but its assumptions are too simple. Each

22

A Collection of Papers on Chaos Theory and Its Applications



model is a simplification, for some applications it can be useful, but if it gives a false
expectation of important parameter, then some simplifications must be rejected
which is the next step of approximation. It cannot be found without a previous step.

Regulatory feedbacks (misinterpreted and practically included only on the ran-
dom level in the Kauffman model [21]) also the classic modularity and narrowing of
the function significantly increase the stability, which was noticed, but the main
and the new condition is the short attractor. They take over the role of explaining
the experience [14, 15, 17] from “order for free”, which in the half-chaos lost
importance. The reached a deeper interpretation of Kauffman hypothesis gives a
picture much more consistent with the observation and indicates systems more
adequate to the modeling of biological evolution. This significantly alters the
existing basis of many considerations and probably their conclusions. Likewise, the
description of the systems from ‘liquid’ region [5], where Kauffman saw living
objects - “small lakes of activity in the ice” (originally [5]: “unfrozen islands”)
remains valid for the primary and the most appropriate form of the half-chaos for
the evolution - in-ice-modularity discovered in these studies. The base of the in-ice-
modularity is an activity of nodes (they change their states) in the ice (where nodes
do not change their states), however, in-ice-modularity is supported by classic
modularity, which is always present.

6. Conclusion

This work examines the systems described by networks that are: autonomous,
complex, finite, discreet, directed, functioning, deterministic, and designed as the
Kauffman network (Boolean), but with the admission of more than two (s ≥ 2)
equally probable signal variants. The number K of the node inputs in a given
network is fixed. Parameters s and K have values (s = 2, K = 4 or s = 4, K = 3), which
in the case of fully random networks give unambiguous chaos.

Half-chaos is the state of such a system in which small disturbances cause both
small and large ‘damage’ (changes in the system’s functioning) occurring statisti-
cally similarly often. As a reminder, in the chaotic system there are only large
damages and in the ordered - only very small. The studied half-chaotic systems are
not fully random, but they have typical characteristics indicating a full randomness.

The evidence presented in the work indicates that half-chaos is an experimental
fact. Its basic mechanism is based on a short attractor, but it is too weak a condition
for modeling adaptive evolution. Much more adequate (to describe the purposeful
systems) the half-chaos variant depends on in-ice-modularity. The simplest way to
obtain such a state is starting from an easily attainable system with a point attractor,
but it has been shown that it is possible to build such a state based on its description
recognized in the evolution started from the point attractor. These are ‘small lakes
of (nodes) activity’ in ‘ice’ (the area of the network where nodes do not change
their states) - a picture similar to the one described by Kauffman (in the network
parameters space) of the ‘liquid’ area at the boundary of the ordered (‘frozen /
solid’) area and chaotic (‘gas’). The Kauffman model is the basis of the famous
hypothesis “life on the edge of chaos”, however, this model strongly limits the
parameters allowed for modeling life to K = 2 and s = 2 and their immediate vicinity
called phase transition. Half-chaos allows a much larger range of these parameters,
many estimates indicate such a need.

The experiments used a constant random structure (mainly scale-free and Erdős-
Rényi random networks, but also others), random initial states of nodes and random
functions, but despite the maintenance of characteristics indicating the randomness
of the function, they were non-randomly correlated with states. Evolutionary
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variability concerned node functions. However, half-chaos was also observed in
experiments, where the network grew by random addition and removing of nodes.
This testifies to the more general nature of the discovered phenomenon of half-chaos.

Acceptance (as an evolutionary change) of a disturbance that gives great damage
leads to ordinary chaos, which practically does not return to half-chaos. This is the
elimination model - death. On the other hand, acceptance of a disturbance that gives
small damage is enough to remain in half-chaos. This feature is: ‘evolutionary stability
of half-chaos’, it is one of the most important, added to the definition of half-chaos. It
creates a natural criterion of identity of the evolving object. The distinction between
small and large damage is natural because they create separate peaks in the distribu-
tion of damage size separated by a large gap, in which there are practically no counts.

The discovery of half-chaos radically changes the vision of the dynamics of the
studied systems. The famous Kauffman’s hypothesis ‘life on the edge of chaos’ is
strongly reinterpreted to ‘life evolve in half-chaos of not fully random systems’ and
the analogy to phase transition is substituted by the comparison of half-chaos to
‘superheated liquid’. Strong limitations contrary to the observation, on the parame-
ters of modeling of purposeful systems are removed.

List of abbreviations and new terms

Abbreviations used in figure descriptions are defined in those descriptions.

N network consists of N nodes.
K connectivity. A node in a network receives signals at the

K inputs.
k number of output links of the node.
types of networks sf - scale-free (Barabási-Albert), er - classic “random”

Erdős-Rényi, ss - single-scale, sh and si are respectively
sf and ss with 30% removal.

Parameters network type together with s,K (treated as a vector) are
the main variables in the simulations.

RBN Random (classic Erdős-Rényi) Boolean Network.
GRN Gene Regulatory Network proposed by Kauffman,

based on RBN.
t is the number of time steps from a disturbance

initiation.
tmx the maximum number of counting steps.
A Avalanche. The size of a change in a network function

at time t after a small disturbance is measured by the
number A of the nodes, which have a different state
from the pattern network – identical, but without
disturbance.

d damage d = A/N.
dmx maximal damage, i.e., Derrida equilibrium for chaotic

behavior.
P(d) or P(A) the distribution of damage size at the time tmx, an

especially important result.
w coefficient of damage propagation. w = <k > (s-1)/s. For

an autonomous network with fixed K, <k > = K and we
can use w = K(s-1)/s.

small change in obtained here the distribution of damage size P(d)
for the particular system there are two peaks and the
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clear gap between them: the left of small changes
(ordered behavior) and the right of big changes
(chaotic, near Derrida balance).

q - degree of order a fraction of damage in the range of the “small
change”, the capacity of the left peak of P(d).

chaotic parameters they make random system strongly chaotic.
Half-chaos state of a not fully random system, with chaotic

parameters, but small disturbances give the ordered
reaction with a similar probability to the chaotic
reaction.

evolutionary stability
of half-chaos

the “small change” as a criterion of the acceptance of
perturbing permanent changes creating the evolution is
enough to stay in half-chaos. It was included in the
half-chaos definition. (Acceptance of one change that
gives a chaotic reaction leads to practically irreversible
entry into normal chaos).

in-ice-module the set of connected active nodes surrounded by ice –
inactive nodes (with the constant state).

local cluster the set of nodes with the same period of their states in
the process ended of accumulation. It corresponds with
in-ice-module.

global cluster a collection of local clusters very similar in terms of
nodes composition in the evolution of one network.

met# method #, where # is a digit 1 to 8. Separate experi-
ments with different rules described in this article.
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