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Role of Force Fields in Protein 
Function Prediction
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Abstract

The world today, although, has developed an elaborate health system to fortify 
against known and unknown diseases, it continues to be challenged by new as well 
as emerging, and re-emerging infectious disease threats with severity and probable 
fluctuations. These threats also have varying costs for morbidity and mortality, as well 
as for a complex set of socio-economic outcomes. Some of these diseases are often 
caused by pathogens which use humans as host. In such cases, it becomes paramount 
responsibility to dig out the source of pathogen survival to stop their population 
growth. Sequencing genomes has been finessed so much in the 21st century that com-
plete genomes of any pathogen can be sequenced in a matter of days following which; 
different potential drug targets are needed to be identified. Structure modeling of the 
selected sequences is an initial step in structure-based drug design (SBDD). Dynamical 
study of predicted models provides a stable target structure. Results of these in-silico 
techniques greatly depend on force field (FF) parameters used. Thus, in this chapter, 
we intend to discuss the role of FF parameters used in protein structure prediction and 
molecular dynamics simulation to provide a brief overview on this area.

Keywords: homology modeling, force field (FF), molecular dynamics (MD) 
simulations, molecular docking

1. Introduction

What is a “disease”? A disease is any condition that harms the normal function 
of a body organ and/or system, of the psyche, or of the organism as a whole, which 
is associated with specific signs and symptoms. Factors that often lead to the dam-
age of the function of organs and/or systems may be of two types, i.e., intrinsic and 
extrinsic. Those factors, that arise from within the host body interfering with the 
normal functioning processes of a body organ and/or system, as a result of genetic 
features of an organism or any disorder within the host are known as intrinsic fac-
tors [1]. Huntington’s disease is an example of genetic disease which causes uncon-
trolled movements, emotional problems and loss of thinking ability (cognition) 
owing to a progressive brain disorder, due to mutations in the HTT gene, involving 
a DNA segment known as CAG trinucleotide repeats [2]. When a host comes in con-
tact with a pathogen from outside, the host’s system is accessed by extrinsic factors 
[3]. Microorganisms are the main causative agents which are responsible for causing 
infectious diseases. Their importance is determined from the type and extent of 
damage their causative agents inflict on organs and/or systems when they enter 
into a host. Entry into the host is mostly by routes such as the mouth, eyes, genital 
openings, nose and the skin. Damage to tissues mainly results from the growth and 
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metabolic processes of infectious agents intracellular or within body fluids, with the 
production and release of toxins or enzymes that interfere with the normal func-
tioning of organs and/or systems [4]. An example of extrinsic factor is the infection 
caused by novel pathogen, such as SARS-CoV-2, which represents an extremely 
challenging and complex endeavor. Currently, several promising therapeutics are 
underway and also many vaccine candidates with promises to mitigate the cata-
strophic effects of COVID-19 pandemic are under clinical trials. Still, an effective 
and successful countermeasure to control this catastrophe is not available [5].

In December 2019, a kind of pneumonia having an unknown etiology was reported 
from the Wuhan city of China in the Hubei province [6]. Isolation and genomic char-
acterization of the complete sequence of the virus using next-generation sequencing 
(NGS), identified it as a novel coronavirus (CoV) and named it as 2019-nCoV, now as 
SARS-CoV-2 [7]. Although the characterization of the complete sequence was com-
pleted in January 2020, yet till date, there is no definitive cure or vaccine available for 
this virus. With the availability of the sequence, the three-dimensional (3D) structures 
of many proteins belonging to SARS-CoV-2 are now available. These 3D-structures can 
be obtained using various experimental and computational techniques. X-ray crystal-
lography and NMR spectroscopy are currently the two major experimental techniques 
for protein structure determination [8] which are deposited in both UniProt and 
Protein Data Bank (PDB) [9]. For computational modeling of the 3D structure of pro-
teins, homology modeling technique is used. Homology modeling is a computational 
technique which uses the amino acid sequence to predict the 3D structure. It is one of 
the widely used computational structure prediction method.

Proteins are one of the most extensively studied and complex macromolecules 
within living organisms with a unique 3D structure. Usually this leads to a diversity in 
their spatial shape, structure and thus, leading to different biological functionalities 
in a living system [8]. Yet, very little is known about the process of protein folding 
leading to its specific tertiary structure from its primary structure. Till date, approxi-
mately 175,000 experimentally determined 3D structures of biological macromol-
ecules are available in the PDB [9]. However, reference sequence (refseq) release 
of National Center for Biotechnology Information (NCBI) contains as many as 
178,304,046 protein sequences. This signifies a huge difference between the number 
of sequences in the NCBI and the number of protein 3D structures in the PDB. The 
difference in the number is even higher due to the fact that the reference sequences 
in the NCBI are non-redundant, whereas, structures available in PDB contain 
redundancy. This has resulted in an alarming situation owing to the increasing gap 
between the available 3D structures and the protein sequences. Therefore, computa-
tional structural prediction methods such as homology modeling are much needed 
in covering this widening gap. Thus, this chapter discusses homology modeling in a 
holistic manner covering the principles and different types of structure prediction 
methods along with giving a flavor of the different force field (FF) parameters that 
are used in protein structure prediction. The chapter also includes a brief overview of 
the molecular dynamics (MD) simulations that are used in computational modeling 
of proteins along with discussion of some application examples in this field.

2. Protein structure prediction

Protein sequences are much easier to obtain as compare to their structures. This 
is due to advancements in the field of protein sequencing technology. As a result, an 
exponential growth in the accumulation of protein sequences can be observed. An 
amino acid sequence is a very important source of insight into proteins, its function, 
structure and history. This is mostly because, first, comparison of an unknown 
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sequence with a known sequence helps in deciding whether significant similarities 
exist between them, which in turn helps in establishing the class of protein and can 
give valuable information regarding its structure and function. Secondly, genea-
logical relationships can be studied by comparing the sequences of the same protein 
from different species. Thirdly, the presence of internal repeats in protein sequences 
reveals the history of the proteins. Also, sequencing of amino acids is very impor-
tant for making DNA probes which can be used for encoding of its protein, as 
knowledge of the primary structure also allows the use of reverse genetics [10].

2.1 Amino acid sequence determination techniques

Determination of the amino acid sequence of all or part of a protein or peptide 
is known as prediction of protein sequence. It is used to categorize the protein 
and may help in characterizing its post-translational modifications. In a protein, 
determination of the amino acid sequence involves the following steps [10]:

i. Hydrolysis: This procedure is required in order to hydrolyze the protein into 
its amino acid and includes the protein being heated in 6 M hydrochloric acid 
(HCl) at 100–110° C for 24 hours or longer.

ii. Separation: Separation of amino acid from a peptide can be achieved by 
ion-exchange chromatography. The amino acids are eluted by mixing 
them with an acidic solution and passing a buffer steadily while increasing 
the pH through the chromatography column on sulfonated polystyrene. 
Accordingly, when an amino acid reaches its isoelectric point, it is separated. 
The buffer used is correlated to a specific amino acid type. Thus, the amino 
acid having the most acidic side chain will emerge first, while the amino acid 
having the most basic side chain will emerge last. The absorbance is used to 
determine the amount of similar type amino acid residues.

iii. Quantitation: Once the separation of the amino acids is achieved, their respec-
tive quantities are determined by adding a reagent called ninhydrin which 
gives an intense blue color to the amino acids, except proline which, due to 
the presence of secondary amino group in its structure, gives it a yellow color. 
For very small quantities (nanogram), reagents like fluorescamine or ortho-
phthaldehyde (OPA) are used to obtain fluorescent products. Therefore, the 
concentration of amino acids is directly proportional to either the absorbance 
of the resulting solution or the fluorescence emitted by the sample.

For determining the composition and the sequence of the protein, two direct 
methods can be used:

a. Edward Degradation Method: This method uses phenyl iso-thio-cyanate to 
cleave the amino acids one by one starting from the amino terminal. The amino 
acids when treated with phenyl iso-thio-cyanate forms a phenyl-thio-hydantoin 
(PTH)-amino acid (e.g. PTH-lysine, etc.) terminal residue, which gets released 
under mild acidic conditions. The released terminal compound is then identified 
using chromatographic procedures.

b. Mass Spectrometry: Another technique to determine protein sequence is the 
mass spectrometry which uses the time of flight of ionized proteins to calculate 
the mass of the ionized proteins. In this process, the protein is cleaved using 
specific enzymes. The ionized amino acids are triggered by a laser beam which 
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travels to the detector through a flight tube. The ions with lighter mass will 
reach the detector faster due to Newton’s second law (F = ma) and hence, will 
be detected first. After the spectrum is recorded, it is further analyzed and 
compared against a database of sequenced proteins. A detailed sequence of 
protein fragments can be determined by repeating the process with different 
enzymes for cleavage. As a result, the fragments become much smaller with the 
fragments overlapping each other establishing the order of the protein.

2.2 Experimental determination of protein structure

The basic prerequisite for understanding the function of a protein is the knowl-
edge of the protein 3D structure. The experimental methods used in the study of 
tertiary structure include:

i. Protein X-ray crystallography: X-ray crystallography is presently the most 
sought-after technique for determination of biological macromolecule struc-
tures. In this method, the determination of protein structure is achieved by 
crystallization of the purified protein at high concentration and exposing the 
crystals to an X-ray beam. The resultant diffraction patterns, obtained from 
the diffraction spots, are then processed to get knowledge about the symme-
try of the packaging of the crystal and the size of the repeating units forming 
the crystal. A map of the electron density is then calculated using the “struc-
ture features”, which are determined from the intensities of the diffraction 
spots. The quality of the electron density map can be improved using various 
methods. This is done to get a definitive idea to build the molecular structure 
using the amino acid sequence. Finally, the structure that is obtained is 
further refined to fit the map more accurately and to assume a conforma-
tion which is thermodynamically more favorable. Protein crystallography 
is known to provide highly accurate protein structures by giving atomic 
resolution. However, this method is not always straightforward and may take 
a lot of time to complete, which is around 3–5 years [11].

ii. Nuclear magnetic resonance (NMR spectroscopy): Another useful technique 
to determine the protein structure is the NMR spectroscopy. It is a primary 
quantitative method which allows concentration determination of proteins 
in an aqueous environment that may resemble its actual physiological state 
more closely. In principle, the NMR spectroscopy is dependent on the electro-
magnetic radiation and the sample protein interaction. It is used to observe 
the local magnetic fields prevailing around the protein atomic nuclei. The 
NMR signal is obtained when sensitive radio receivers detect the excitation 
of the material nuclei with radio waves into the nuclear magnetic resonance. 
Thus, it provides access to the electronic structure of the sample protein. The 
major advantage of NMR over X-ray crystallography is that the protein in 
NMR spectroscopy can be examined in their native-like physiological state. 
However, NMR is not suitable for proteins with more than 150 amino acid 
and needs the protein under study to be stable in room temperature for a long 
time of data acquisition, which is a drawback of this technique [12].

iii. Electron microscopy (especially Cryo-electron microscopy): Electron microscopy 
(EM) and cryo-electron microscopy (cryo-EM) are used to study objects that 
are comparatively larger in size such as cellular organelles or large macro-
molecular complexes with higher resolution. EM and cryo-EM use a method 
known as single-particle reconstruction. In principle, the data set in EM and 
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cryo-EM is split randomly into half and the two averages (or 3D reconstruc-
tions) over rings (or shells, respectively) are compared, with increasing 
radius in Fourier space using an appropriate amount of reproducibility [13]. 
The protein sample in EM and cryo-EM does not require crystallization, 
saving a lot of time and effort, which is a major advantage over protein x-ray 
crystallography. Nevertheless, for membrane proteins, electron crystal-
lography is used which require two dimensional (2D) crystals of the sample 
protein. Another advantage of cryo-EM is that it requires very less amount 
of sample materials. However, one of the limitations of cryo-EM is that it has 
to compromise with the resolution comparative to resolution obtained from 
x-ray crystallography and NMR spectroscopy [14].

2.3 Protein structure prediction

The field of structural biology is mostly dominated by experimental methods 
which are expensive and laborious in nature. However, since the last few decades, 
the application of computational techniques in structural biology has been widely 
used, with significant improvements in these techniques since last 10–20 years. 
This has helped to achieve substantial developments in protein structure prediction 
methods. In-silico protein structure prediction enables the prediction of 3D struc-
tures for proteins with known sequences and unknown structures. Prediction of the 
tertiary structure also helps in understanding the folding and unfolding of proteins. 
Also, protein engineering may help in incorporation of new functions in proteins 
thus facilitating drug design and discovery [15]. Protein structure prediction can be 
achieved by three different ways:

i. Computer simulation-based on empirical energy minimization

ii. Knowledge based-approaches using information derived from known 
sequences of experimentally determined protein 3-D structures

iii. Hierarchical methods.

2.3.1 Approaches based on energy minimization

The energy minimization method is also known as the ab-initio (de novo) method 
for protein structure prediction and is based on the theory that the native structure of 
protein is always at thermodynamic equilibrium with minimum energy, which is cal-
culated using basic laws of physics and chemistry (Figure 1). Energy minimization-
based methods always attempt to detect the global minima in free energy surface of 
the protein molecule as it is thought that global minima correspond to the native con-
formation. This method is not very helpful to design protein sequence length of more 
than 150 amino acid residues. However, it can be used to design small stable peptides 
that can bind to any specific therapeutic targets [16]. Two types of energy minimiza-
tion methods are broadly used in de novo structure prediction approach, namely 
static and dynamical minimization methods. Some of the major FF used for energy 
minimizations are GROMOS, AMBER, CHARMM and ECEPP [17, 18]. One of the 
ab-initio protein structure prediction software packages is ROSETTA. This software 
package is based on the postulation that local interactions lead the conformation of 
short segments while global interactions establish the 3D protein structure [19]. The 
advantage of ab-initio approach is that it is based on physicochemical principles, 
however, these principles are hampered by the vast number of degrees of freedom 
which are needed to be looked after and also the performance of energy functions are 
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limited. The disadvantage of this method is that it requires high computations and for 
such studies there are no “good enough” interaction potentials which can model the 
native structure of a protein with atomic detail [20].

2.3.2 Approaches based on knowledge

The available protein structures are used to derive the knowledge based poten-
tials [21, 22]. Further, these potentials are used to obtain the secondary structural 
information from amino acid sequence. The methods, based on the knowledge 
procured from known protein structures are of two types.

2.3.2.1 Homology modeling

One of the most powerful methods used to predict the 3D structure of proteins 
is the homology modeling. This method, also known as comparative modeling, 
uses a query protein having sequence similar with the target protein, having known 
tertiary structure [23–25]. The basis of this method lies on the observation that 
structures are more conserved than their sequences. Thus, if a target sequence has 
some degree of similarity with a protein sequence having known 3D structure, 
then that structure can be used to precisely model the target protein. A plethora 
of review articles are available on the strategies and challenges of computational 
protein structure prediction [8, 26].

For an accurate model building of a protein using homology modeling approach, 
the first step is template selection. The most crucial step involves the generation of 
a structure-based alignment between the query and the template protein sequence 
[27]. Models cannot be constructed for alignments having less than 20% identity. 
Additionally, the environment of the template such as the type of solvent, pH, 
presence of ligands, etc. and the quality of the experimentally-derived template 
structure must be taken into account. Once a desired template structure has been 
selected, a target-template alignment must be performed using standard sequence 
alignment techniques. After the creation of the template-target alignment, the 3D 
model of the target protein is created using several algorithms. Distance geometry 
is one of the commonly used methods to satisfy the spatial restraints obtained 
from the target-template alignment. MODELLER is one of the reliable homology 

Figure 1. 
An example of ab-initio structure prediction.
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modeling program and it imposes spatial restraints that are derived from the bond 
distances and angles in the target structure that are based on its alignment with the 
template structure, and stereo-chemical restraints on bond distance and dihedral 
angle preferences that are obtained from a representative set of all known protein 
structures. Then the constructed model is getting minimized using molecular 
dynamics to follow the spatial restraints [28].

After the creation of 3D model, the next step is to perform the quality assessment 
of the predicted model. From last few decades, many methods have been developed 
to assess the quality and correctness of modeled protein structures which analyze 
their stereochemistry. Some of the programs for such analysis are PROCHECK [29] 
and WhatCheck [30]. Another method to analyze the modeled protein is to calcu-
late a residue-by-residue energy profile, where a peak in the profile corresponds to 
an error in the model. But this method has a drawback considering that a section 
of residues may appear to be inaccurate, while in reality they will be interacting 
with an incorrectly modeled region. Thus, for the assessment of modeled proteins, 
energy profile should not be the only means of identifying a good model.

Homology modeling for the prediction of protein 3D structures consists of mul-
tiple steps (Figure 2). Although a number of tools and web-servers are available, 
but no single server or tool can be considered as best in every aspect as compared to 
others. The function of a protein is dependent on the 3D structure; therefore, it is 
very important to enhance the quality of the predicted model. Homology modeling 
has a wide variety of applications in structural biology and plays a vital role in drug 
discovery process, as because for the study of drug-receptor (protein) interaction, 
the structure of the receptor (protein) is of utmost importance. However, this 
approach does not work if homologous structures are not available.

2.3.2.2 Threading

Threading, also known as fold recognition is a method that searches the protein 
structure template in a library of folds with the lowest possible energy for a given 
query sequence [15]. Fold recognition of a sequence requires a precise alignment 
of the query sequence corresponding to the positions of the amino acid residues 
of a folding motif. A set of possible positions of the amino acids in 3D space is 

Figure 2. 
A scheme of homology modeling.
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established by the known structure. This step is followed by making a similar struc-
ture by placing the amino acids of the query sequence into their aligned positions. 
The main goal of this method is either to choose the most probable fold for any 
given sequence or to find out the appropriate sequences that have the possibility to 
fold into a given structure. This method is heavily dependent on the knowledge of 
experimental atomic details of the recognized protein folds and is generally appli-
cable for only those proteins whose amino acid sequences adopt one of the protein 
folds that have already been experimentally established.

2.3.3 Approaches based on hierarchy

The Hierarchical approach is another strategy for protein structure prediction 
from their sequences. In principle, this method uses the hierarchy of protein struc-
ture, i.e., from the primary to secondary structure and secondary to tertiary structure. 
Thus, in order to understand the relationship of the primary amino acid sequence 
and the tertiary 3D structure, the intermediate secondary structure is predicted. This 
intermediate structure is used to build the tertiary 3D structure. A number of algo-
rithms are developed for the modeling of secondary structure, but, unfortunately, the 
precision for prediction of secondary structures from their sequences is only about 
80%. Currently the methods that are available for the secondary structure modeling 
can be divided into methods based on statistics, physicochemical properties, evolu-
tionary information, combinatorial analysis and artificial intelligence [31–33].

2.4 Structure prediction methods and benchmarking

The performance assessment of existing methods is one of the major setbacks 
in the field of protein structure prediction as methods have been and are still in the 
process of development using different proteins with various evaluation criterions. 
Thus, in 1994, an open experiment was conducted all over the world with the 
intention of helping the developers and users of these methods. The experiment 
was called the Critical Assessment of Protein Structure Prediction (CASP) (https://
predictioncenter.org/) [34]. The CASP is a community-wide, worldwide experi-
ment which is conducted every two years since 1994. CASP allows research groups 
to test their structure prediction algorithms and establish the current state of the art 
in protein structure prediction. They help to identify the current progress as well as 
highlight the efforts that are needed to be addressed in the future.

3. Proteins: structure and function

Proteins are simple polymers of amino acids. The short stretches of polymers 
join together and get folded to form secondary structures which in turn give rise to 
the 3D structure of proteins. The secondary structures can be recognized either by 
hydrogen-bonding (H-bond) patterns among the carbonyl and amide groups in a 
peptide backbone or from the dihedral angles viz. phi and psi. Mainly two known 
secondary structures in a protein are α-helices and β-sheets which tend to build up 
into small repeating arrangements in protein structures; termed as ‘supersecondary 
structures’ or ‘motifs’. These secondary structures assemble into larger subunits of 
structures termed as ‘domains’. Domains can be further understood as the smallest 
structural unit of proteins which can be folded autonomously such as serine prote-
ase which is made up of two β barrel domains. Proteins comprises either of a single 
domain or multiple domains. Protein structures were for the first time categorized 
into folds in 1976 [35]. Murzein et al. later incorporated the idea and developed the 
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publicly accessible database named SCOP (Structural Classification of Proteins) 
[36]. Folds in the SCOP were categorized by the class of secondary structure: all 
α, all β, α/β (wherein helices and sheets are mixed) and α + β (separate helices and 
sheets). Proteins are the most ubiquitous biomolecules and they accomplish the 
vast majority of functions in all the biological domains. The sequence-structure-
function paradigm attracted the interests of scientists all over the world. As the 
proper functioning of all the biological processes depends on proteins and their 
non-functioning leads to grave diseases and disorder, biologists started working on 
them ever since. Way back in 1970s, Anfinsen have proposed that the 3D structure 
of native proteins comes from its sequence in a specified environment [37].

As proteins are dynamic in nature, experimental techniques fail to capture their 
different dynamical conformations and specially the transition between these con-
formations. One of the most widely utilized computational techniques, Molecular 
Dynamics (MD) Simulation tackles this challenge efficiently.

3.1 Molecular dynamics: the computational microscope

MD simulations assist us to comprehend and witness the time dependent behavior 
of proteins. As MD simulations have the ability to show the dynamic behavior of 
proteins at the level of atoms, it is also considered as computational microscope [38]. 
In this technique one requires an initial protein model which is obtained by either 
experimental methods or predictive modeling. As life sustains itself in water therefore 
one mimics simulation in explicit solvent. When the forces acting on all the atoms 
were acquired, Newton’s laws of motion were utilized to compute the velocities and 
accelerations; besides updating the atom’s positions. A time step of 2 fs (femtosecond) 
is usually applied for atomistic simulations while integrating the movement numeri-
cally. Finally, a trajectory of the system is generated by MD engine which can be 
further analyzed based on set objectives. The technique was first utilized in early 70’s 
to study the most relevant biological challenge of the time; protein folding [39, 40]. 
The subsequent decades saw the application of MD simulations for investigating fold-
ing and unfolding mechanism of proteins [41]. Duan and Kollman were successful 
in 1998 to perform 1 μs MD simulation for the first time on parallel supercomputer. 
They investigated the protein folding mechanism of villin with explicit solvation [42]. 
Apart from proteins, the technique has been extended to study other relevant biomol-
ecules [43, 44] and protein-nanoparticle interactions [45–49].

Simulation of any system revolves around lot of factors. Earlier the system size 
comprises of few thousand of atoms. With the advancement of both experimental and 
computational techniques, availability of 3D data in regard to proteins, proteins com-
plexes, membrane proteins etc. has been possible which made the system size ampli-
fied to several lakhs of atoms with explicit solvent in consideration [50]. Meanwhile the 
advent of high-performance computing (HPC) and algorithm parallelization made it 
possible to run long timescale simulations for the above-mentioned systems. Further 
advancements in the algorithms of MD engines and/or the implementation of GPUs 
(graphical processing units) along with CPUs have significantly improved the perfor-
mance of MD simulations. Some of the most popular simulation engines are: AMBER, 
CHARMM, DESMOND, GROMACS and NAMD. They have been integrated with mes-
saging passing interface (MPI), which made it possible to utilize all the available cores 
of the computer simultaneously during a MD run to reduce the computation time.

3.2 Workhorse of simulation: the force fields

Force fields (FF) lie at heart of the MD simulation. In order to perform 
 simulation, one needs the parameters to deduce the potential energy function [51]. 
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The FF is a group of equations and associated parameters designed to imitate 
molecular geometry and selected properties of some tested molecules. FF comprises 
primarily of two components; bonded and non-bonded terms. Any molecular 
feature can be basically represented with them. The bonded terms can be rep-
resented by springs for bond length and angles along with torsional angles; the 
non-bonded terms comprise of Lennard-Jones potentials for van der Waals (vdW) 
interactions and Coulomb’s law for electrostatic interactions. They were primarily 
developed to reproduce structural properties and applied to predict other proper-
ties such as thermodynamic parameters. Further the energy functions utilized 
in molecular mechanics commonly comprise topological parameters which are 
obtained from experiments or quantum mechanical calculations. An important 
feature of FF is transferability of the parameters and the functional form. It means 
to model a series of related molecules; the same set of parameters can be utilized 
rather than defining a new set of parameters for each individual molecule. Even 
though most of the FF are additive, a number of them having higher order terms 
are called class II FF. Some of widely utilized FF for bio-molecular simulations are 
AMBER, CHARMM, GROMOS and OPLS [52]. Additionally it is noteworthy to 
mention the application of FF in predicting structures of proteins/RNA. FFs were 
developed and benchmarked against experimentally solved structures and these FF 
were later incorporated to predict the structure for the ones lacking experimental 
information. Another important aspect of the FF is to discriminate the near-native 
protein conformation among the generated 3D models [53]. FFs are subject to 
rigorous scrutinizing and they were refined to improve their accuracy over time. 
One such example is the improvement of the residue side-chain torsion potentials 
of the Amber ff99SB FF which is also validated with available NMR experimental 
datasets [54]. A number of benchmark studies were conducted time to time, to 
compare different FFs. One difference arises among the available variety of FF is 
the bias/overestimate towards particular secondary structure of proteins. Man et al. 
recently concluded from their comparative simulation study that FFs (AMBER94, 
AMBER99 & AMBER12SB) were not able to predict β-sheet formation whereas 
FFs (AMBER96, GROMOS45a3, GROMOS53a5, GROMOS53a6, GROMOS43a1, 
GROMOS43a2, and GROMOS54a7) were able to form β-sheets swiftly. Further they 
have showed that the best FFs for investigating amyloid peptide assembly based on 
their structure and kinetics were AMBER99-ILDN, AMBER14SB, CHARMM22*, 
CHARMM36, and CHARMM36m [55].

3.3 Application examples of MD simulations

MD simulations have immensely contributed to solve and hypothesize many 
biological research problems. The significance of the computational microscope can 
be well understood by observing the increase in the vast repertoire of literature in 
the recent decade. The technique of simulation along with other computational tools 
plays a significant role in the field of protein structure prediction. Using a set of seven 
small proteins Kato et al. have validated the application of MD simulations to predict 
the 3D structure of proteins. The set of small proteins were in the range of 10 to 46 
residues. They have considered two properties; root mean squared deviation (RMSD) 
and occurrence of secondary structure to validate the predicted structures from 
simulation with that of the available experimental ones. AMBER12 simulation pack-
age with AMBER ff12SB have been utilized to carry out their simulations. With the 
help of MD simulations, they have shown the possibility of reproducing the second-
ary structures of small proteins [56]. Our group has also utilized the indispensable 
technique of simulation recently to investigate the dynamics and stability of ab-initio 
predicted structure of bacterial effector protein, HopS2. The importance of the 
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effector proteins lies with them conferring pathogenicity to bacteria. As the sequence 
similarity of the effector proteins lies in the twilight zone along with the few partially 
solved structures of effector proteins at disposal, it is a perplexing task to study the 
sequence-structure-function relationship of these proteins. With the assistance of 
MD simulations, our group was able to show the stability of local secondary struc-
tural elements of HopS2 which are vital to its overall structure and interaction. These 
investigation have been performed using Gromacs along with OPLS FF [57].

Another interesting aspect of human proteome is the intrinsically disordered pro-
teins (IDP). There are many examples of proteins with folded domains but they fea-
ture disordered regions while some are entirely unstructured. Some IDPs fold upon 
interacting with their binding partners while other persists in unfolded state even 
in a bound complex. The IDPs plays a critical role in cell signaling and regulation. 
Pietrek et al. have carried out a recent work in this direction. They have considered 
a hierarchical algorithm to generate large ensembles of full length IDP structures 
and these structures can be further used as starting points for atomistic simulations. 
The IDP structures generated by their hierarchical approach implemented with all 
atom MD simulations were able to capture both local conformations compared with 
NMR experiments and also the gross dimension described by small angle X-ray 
experiments. Gromacs simulation package along with Amber03ws and Amber99SB*-
ILDN-q FF were utilized by them to carry out the investigation [58]. The powerful 
computational microscope was also applied to investigate structure and dynamics of 
plasma membrane proteins. Mattedi et al. recently utilized MD simulations to study 
glucagon receptor, a class B GPCR. The glucagon-induced release of glucose from 
the liver into the bloodstream is facilitated by the glucagon receptor. There is scarce 
information about the mechanism of this receptor. They utilized extensive MD simu-
lations and free energy landscape computation to elucidate the activation mechanism 
of the receptor. Through their simulation work, they identified an intermediate state 
of the glucagon receptor and decipher the mechanism of allosteric antagonists of the 
glucagon which locks transmemebrane helix 6. They have employed AMBER14SB FF 
and LipidBook parameters for lipids with Gromacs package in their work [59].

4. Molecular docking

The plethora of diseases discovered ever since and being investigated tirelessly 
by scientists all over the world ultimately culminates to the sole objective of find-
ing effective solutions. The therapeutic targets in most of the cases are proteins. 
After knowing their mechanism of actions, how the proteins works and what goes 
wrong during the diseased state, the next notion is to challenge their functionality 
with designing some inhibitors. It comes under the domain of drug discovery. And 
one of the most challenging fields of study is the drug design and development. 
The complete clinical trials take about 10–15 years of time with billions of dollars 
expenses for a single drug to reach market. With the completion of human genome 
project which leads to identification of ever-increasing number of new drug targets 
(mainly proteins); the efforts were strengthened to find solution to the diseases. 
Additionally, the availability of 3D structures of protein and protein-ligand com-
plexes made it feasible to carry out research in this area. However, to experimentally 
screen millions of compounds and their conformers for a single therapeutic target 
requires enormous amount of time and resources which makes it quite challenging. 
With the application of computational techniques, the pre-clinical period can be 
reduced to save valuable assets. The in-silico approaches will significantly curtail the 
time needed for hit identification and also improve the chances of finding the antic-
ipated drug molecules. To facilitate drug design and discovery, several modeling 
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techniques were available and mostly they are categorized into two main approaches 
viz. structure-based and ligand-based drug design approaches. The structure-based 
approach mainly relies on the 3D data of target and the ligand. The ligand-based 
approach is chiefly adopted in the absence of known experimental structure of the 
target. In ligand-based approach, the known ligands which were bound to the tar-
gets were investigated to decipher the physiochemical and structural properties of 
the ligands and these were correlated with the anticipated pharmacological activity 
of the ligands in hand [60].

One of the most extensively utilized computational techniques in the structure-
based drug design is molecular docking. Molecular docking is usually achieved by 
first predicting the molecular orientation or pose of a ligand within the active site of 
a target and followed by assessing their binding affinity with the usage of a scoring 
function. The technique is exploited to decipher the interactions between a target 
and ligand at the atomic level allowing us to describe the behavior of ligands within 
the active sites of targets as well as to reveal fundamental biochemical processes. 
Since the first developments of docking algorithms in the 1980s, molecular docking 
became an indispensable tool in the field of drug discovery [61].

4.1 Types of molecular docking

Molecular docking can be basically categorized into three types: rigid docking, 
semi-flexible docking and flexible docking. In the rigid docking approach, both 
the structure of target and ligand does not change. The computation method is 
relatively modest and chiefly spans the degree of conformational matching, thus it 
is more apt for investigating macromolecular systems such as protein-nucleic acid 
and protein-protein systems. The semi/quasi flexible docking approach take flex-
ibility into consideration while docking of the ligand and thus it is more appropri-
ate to deal with the intermolecular interactions of small molecules and proteins. 
Usually the structure of the ligands can move freely while the target remains 
rigid or retain few rotatable residues ensuring computational efficiency during 
the docking process. In the flexible docking method, it is based on the idea that a 
protein is not always a rigid entity during the course of ligand binding and thus it 
considers both the protein and ligand as flexible entities. Over the years various 
methods have been introduced, based on induced fit model and/or conformational 
sampling.

4.1.1 Scoring function

One crucial element of any docking algorithm is the scoring function. The scor-
ing function aids in the pose selection and it is involved in distinguishing putative 
precise binding modes and to filter out the non-binders from the N number of 
generated poses during a docking run. The speed and accuracy of docking programs 
is also dependent on scoring functions. Further computational efficiency and 
reliability are points kept in mind while developing any scoring function. There are 
three categories of scoring functions:

i. Force-field based scoring function

This scoring function is based on the concept of molecular mechanics which 
estimates the potential energy of a system with a mixture of intramolecular and 
intermolecular elements. In molecular docking, the intermolecular elements are 
usually considered, with the probable ligand-bonded terms, especially the torsional 
constituents. The non-bonded constituents include the van der Waals term which 
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is defined by Lennard-Jones potential, and the electrostatic term, specified by the 
Coulomb function. GoldScore [62], AutoDock [63] and GBVI/WSA [60] are few 
examples of the mentioned scoring function.

ii. Empirical scoring function

Empirical function is the sum of different empirical terms such as van der 
Waals, H-bond, electrostatic, entropy, desolvation, hydrophobicity, etc. Utilizing 
least square fitting method, they are optimized on a training set of target-ligand 
complexes to reproduce the binding affinity data. Empirical scoring functions com-
pared to force-field ones are computationally much more efficient owing to their 
simple energy terms. The first example of empirical scoring function is the LUDI 
scoring function [64]. GlideScore [65] and ChemScore [66] are other examples of 
empirical scoring functions.

iii. Knowledge-based scoring function

Knowledge-based functions are directly obtained from the structural infor-
mation of experimentally solved protein-ligand complexes. The frequencies 
of interatomic contact and/or distances between the target and the ligand are 
obtained. The premise for this criterion relies on the assumption that frequency of 
occurrences will be greater for the ones with more favorable interactions. Pairwise 
atom-type potentials were generated with the obtained frequency distributions. 
Further the score is computed by preferred interactions and imposing penalty for 
repulsive contacts between each pair of atoms in the target and ligand within a 
set cutoff. Examples of this scoring function are DrugScore [67] and GOLD/ASP 
 functions [68].

With the advancement in the field of high-performance computing, scientists 
have also applied artificial intelligence based and machine learning based scoring 
functions in virtual screening which holds promising outcomes [69].

4.1.2 Sampling algorithms

Sampling plays the next crucial role in any molecular docking program. With 
a set therapeutic target, the sampling algorithm will generate a number of con-
formations (poses) of the small molecule within the docked site of the target. 
The knowledge of the docked site is considered either from experimental data or 
predicted with the aid of active site prediction software. As the speed and accuracy 
of molecular docking plays a role in large virtual screening research works, the area 
of developing and/or improving existing sampling algorithms have provided ample 
opportunities for computational scientists. The sampling algorithms can be catego-
rized as: shape matching, systematic search algorithm and stochastic algorithm.

i. Shape matching

One of the earliest methods designed was the shape matching algorithm for 
sampling. The criterion implemented in this algorithm is that the molecular surface 
of the small molecule needs to complement the molecular surface of the binding 
region of the target. The three translational and three rotational (six degree of 
freedom) of the small molecule led to spans many probable orientations. Thus, the 
goal of this algorithm is to place as smoothly and quickly the small molecule into 
the binding site based on shape complementarity. In this method, the conforma-
tion of the small molecule is usually fixed and therefore, this method along with 
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flexible-docking is usually preferred rather than only shape matching. DOCK [61], 
LigandFit [70] and Surflex [70] are few examples of docking programs where shape 
matching algorithm is used.

ii. Systematic Search

With the help of systematic search algorithm, the ligand can explore all the 
degrees of freedom and it can generate all probable conformations. Unlike in shape 
matching algorithm, the conformations of ligands are not fixed here. Systematic 
search technique can be categorized into three types: exhaustive search, fragmenta-
tion and conformational ensemble.

In exhaustive search method, all the rotatable bonds of the small molecules are 
scanned in a systematic manner. However, to avoid a huge combinatorial explosion 
& to make the docking procedure practical, the search space is limited by geometric 
constraints criterion. Glide docking program implements this method.

The fragmentation method as the name suggests implements the idea of frag-
menting the ligands into smaller rigid fragments. The incremental construction is 
one such mode wherein one fragment is placed first in the binding site and other 
fragments were attached incrementally. FlexX [70] utilizes this algorithm.

In the conformational ensemble algorithm, small molecule flexibility is signified 
by rigidly docking an ensemble of pre-generated conformers of the small molecule. 
Next the binding modes were collected from different docking runs then binding 
energy values are used to rank them. FLOG [71] and MS-DOCK [70] implements 
this algorithm.

iii. Stochastic Search

In the stochastic search, the sampling of the small molecule conformations 
is carried out by making random changes at every step in both the rotational/
translation space and conformational space of the small molecule respectively. A 
probabilistic criterion is placed to either accept or reject the random change. Within 
stochastic search, there are four subtypes viz., Monte Carlo method, evolutionary 
algorithms (EA), Tabu search methods and swarm optimization (SO) methods. 
Genetic algorithm, one type of EA is implemented in AutoDock [63] and GOLD 
docking programs.

It is imperative to mention here that different docking programs/servers apply 
variety of algorithms in multi-phase wise in their docking pipeline.

4.2 Application examples of molecular docking

The molecular docking can be seen applied regularly in academic labs and 
pharmaceutical companies to find effective solutions and thwart deadly diseases 
[72]. The identification of hit molecules in the preliminary stage of drug discovery 
is today heavily relied upon high throughput screening. Moreover, the availability 
of small molecule databases such as PubChem, ZINC, MayBridge etc. along with 
the growth of experimental structures of targets (proteins, membrane proteins, 
protein-ligand complexes) have made the use of molecular docking to screen mil-
lions of compounds and made it possible to test only lead molecules.

G protein-coupled receptors (GPCR) are the attractive targets of drug design 
regimes because of their importance in cell signaling and functions. Kolb et al. 
have considered β2-adrenergic receptor, a GPCR found in the smooth muscle tissue 
to investigate the structure-based approach for ligand discovery. In their study, 
they have utilized DOCK molecular docking program to screen approx. 1 million 
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compounds from ZINC database. They were able to test experimentally the resul-
tant 25 high ranked molecules from docking; of which 6 molecules showed binding 
affinity <4 μM. And the best compound showed 9 nM of inhibition constant against 
the receptor [73].

Rajkhowa et al. have utilized the structure-based drug design (SBDD) method 
along with MD simulations to design inhibitors against malaria, one of the most 
devastating infectious diseases. They have considered 178 compounds similar to 
known anti-malarial imidazopyrazine from the PubChem database to carry out the 
work. The target of the inhibitor is the phosphatidylinositol-4-OH kinase which is a 
lipid kinase involved in the membrane ingestion process of the erythrocytic stage of 
the life cycle of the plasmodium and recognized as a drug target. AutoDock 4.2 has 
been utilized in their work. They have reported three potential inhibitors based on 
molecular docking, MD simulations and ADMET studies [74].

Our group had worked in the direction of SBDD to tackle insulin resistance 
and type-2 diabetes (T2D). We have considered 142 anti-diabetic compounds 
spanning various categories of phytochemicals such as flavonoids, alkanoids, 
sulfonylurea and terpenes. The target of the study is A2A adenosine receptor which 
had been shown in reports that it can be utilized to counteract insulin resistance 
and adipocyte inflammation. Numerous computational tools were utilized to carry 
out the work such as druglikeness filtering, QSAR modeling, ADMET profiling to 
molecular docking. The different level of screenings led to 6 molecules which were 
docked with the help of two different molecular docking approaches viz. AutoDock 
and AutoDockFR to get optimal receptor-ligand conformations. From the 142 
compounds finally we got one molecule “indirubin-3′-monoxime” which is then 
followed by experimental validations [75].

5. Conclusion

In this era of high-performance computing technology, there is hardly any field 
of science which is not touched upon by some amount of significant computa-
tional works. The potential of computing power is much reliant on advancement 
in hardware and algorithms. Substantial number of computational tools and 
techniques were developed and applied in the fascinating area of proteomics also. 
Mathematical models were devised in the form of FF parameters and implemented 
in various algorithms. Here, we have discussed the inevitable role of FF in protein 
structure prediction/modeling, conformational dynamics and their functional 
aspects along with the applications in virtual screening programs. As discussed 
in the chapter, a lot of programs with variety of FFs are available for structure 
prediction, MD simulations etc., but there is still a scope of further developments. 
For example, till now it is a challenge for accurately predicting protein structures 
of larger sizes or the protein sequences having low amount of similarity with 
sequences of known structures. Also, the existing software are in use for trans-
membrane protein structure prediction but it is an hour need to develop different 
program to model the trans-membrane segments. Although MD simulations were 
utilized for validating predicted structures of membrane proteins and/or for getting 
insights of their mechanism, challenge remains in the forms of FF as at times it is 
difficult to get the parameters for membrane proteins, lipids in which they were 
embedded, any bound coordinated metal ions in a single FF. The accuracy of models 
depends upon pH and dynamic charge environment instead of static electrostatic 
charges, and polarizable water models, requires further development and testing 
of polarizable force fields. The existing FF were designed with aid of experimen-
tal data for globular proteins and applied for studying IDPs whereas disordered 



Homology Molecular Modeling - Perspectives and Applications

16

Author details

Zaved Hazarika1, Sanchaita Rajkhowa2 and Anupam Nath Jha1*

1 Department of Molecular Biology and Biotechnology, Tezpur University, 
Tezpur, Assam, India

2 Centre for Biotechnology and Bioinformatics, Dibrugarh University, 
Dibrugarh, Assam, India

*Address all correspondence to: anjha@tezu.ernet.in

proteins are having non-structural segments. Thus, it necessitates designing and 
developing different set of FF parameters for simulating exclusively IDPs. In sum-
mary, there is always space for improvement in existing ones and developing new 
models with higher accuracy in any field of science.
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