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Chapter

Adapting Cereal Grain Crops to 
Drought Stress: 2020 and Beyond
Tinashe Zenda, Songtao Liu and Huijun Duan

Abstract

Among other environmental instabilities, drought stress is the primary 
 limitation to cereal crops growth, development and productivity. In the context 
of continuing global climate change, breeding of drought resistant crop cultivars 
is the most economical, effective and sustainable strategy for adapting the crop 
production system and ensuring food security for the growing human population. 
Additionally, there is need for improving management practices. Whereas conven-
tional breeding has sustained crop productivity gains in the past century, modern 
technological advancements have revolutionized our identification of important 
drought tolerance genes and underlying mechanisms, and accelerated new cultivar 
development. Large-scale high throughput sequencing, phenotyping, ‘omics’ and 
systems biology, as well as marker assisted and quantitative trait loci mapping based 
breeding approaches have offered significant insights into crop drought stress toler-
ance and provided some new tools for crop improvement. Despite this significant 
progress in elucidating the mechanisms underlying drought tolerance, considerable 
challenges remain and our understanding of the crop drought tolerance mecha-
nisms is still abstract. In this chapter, therefore, we highlight current progress in 
the identification of drought tolerance genes and underlying mechanisms, as well 
as their practical applications. We then offer a holistic approach for cereal crops 
adaptation to future climate change exacerbated drought stress.

Keywords: drought stress, drought tolerance, cereal crops, omics approaches, 
phenotyping, genetic engineering, climate change, conservation agriculture

1. Introduction

Drought stress is the primary environmental factor influencing the growth, 
development and productivity of crops and its significance is expected to increase 
in the wake of global climate change [1–4]. This presents a serious challenge to the 
food and nutrition security of an ever-rising world human population. Moreover, 
the current transition from carbon/fossil intensive fuel driven economies to modern 
climate-smart low-carbon economies further strains our crop production systems 
[5]. Adapting field crops to drought stress therefore becomes critical for sustainable 
agricultural production under such climate change scenario [6]. To achieve that 
goal, breeding drought resilient crop cultivars that maintain yield stability under 
such conditions befits the most economical, effective and sustainable strategy. This 
is particularly relevant for cereal grain crops.

Cereal grain crops, chiefly rice (Oryza sativa L.), wheat (Triticum aestivum L.), 
maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench], barley (Hordeum 
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vulgare L.), and pearl millet (Pennisetum glaucum L.) provides above 50% of the total 
food calorie requirements of billions of people in developing countries across the 
Sub-Saharan Africa, South Asia and Latin America [7–9]. For instance, the top three 
cereals; maize, rice, and wheat jointly provide 48% of the total calories and 42% of 
total protein consumed in developing countries. Additionally, as staple foods, maize 
and wheat contribute approximately two thirds of the global food energy intake [8]. 
Further, these cereal crops are important raw materials in the animal feed and bio-fuel 
manufacturing industries [10]. However, most of these crops are grown across arid 
and semi-arid regions of the world, where they often endure exposure to recurrent 
drought episodes throughout their growth cycles. Therefore, understanding how cereal 
crop plants respond to drought stress is critical for guiding drought tolerance breeding.

In the last century, conventional breeding approach has proven itself capable of 
sustaining productivity growth in various crops [11]. Meanwhile, modern technologi-
cal advancements have accelerated the pace and impact of new cultivar development. 
Such technologies include high throughput omics approaches, identification of quanti-
tative trait loci (QTL) underlying abiotic and biotic stress resistances, marker assisted 
selection (MAS) and gene cloning [12–15]. Despite this significant progress in eluci-
dating the mechanisms underlying drought tolerance, considerable challenges remain 
and our understanding of the crop drought tolerance mechanisms is still abstract.

In this chapter, therefore, we look at various aspects of drought stress in major 
cereal grain crops such as maize, sorghum, wheat, rice and finger millet. We also 
discuss the current approaches in identifying drought tolerance genes and meta-
bolic pathways. Further, we highlight the progress made to date on elucidation of 
key drought stress responses, phenotyping and QTL mapping for drought toler-
ance, genetic engineering of drought tolerant crops and management of crops. 
We conclude by offering an integrated strategy for adapting cereal grain crops to 
drought stress in the context of climate change.

2. Drought stress effects in cereal grain crops

A decrease in water inputs into an agro/ecosystem over time that is sufficient to 
cause soil water deficit (SWD) is often termed drought, and this encompasses vari-
ous forms such as rainfall anomalies, irrigation failure, seasonal or annual dry spells 
[16]. In agricultural context, drought signifies a period of below-average precipita-
tion when the available soil water in the plant rhizosphere drops beyond the thresh-
olds for efficient growth and biomass production [17]. The resultant oxidative stress 
emanating from such SWD is dubbed drought stress.

Numerous research reports have reflected on the effects of drought stress on 
cereal crops. Drought stress effects span from morphological to molecular levels, and 
are exhibited at all phenological growth stages at whatever stage the water deficit 
takes place. Generally, drought stress impairs seed germination resulting in poor crop 
stand establishment [1, 18]. Drought stress reduces the plant cellular water potential 
and turgor pressure, thereby increasing the cytosolic and extracellular matrices 
solute concentrations. Resultantly, cell growth is diminished due to the reduction in 
turgor pressure [19]. Additionally, abscisic acid (ABA) and compatible osmolytes 
such as proline are excessively accumulated, causing plant wilting. Simultaneously, 
reactive oxygen species (ROS) such as H2O2 are overly produced. Although they 
function as signal transduction molecules, over-accumulation of ROS could result in 
extensive cellular oxidative damage and inhibition of photosynthesis [20].

Moreover, when moisture deficit becomes severe, cell elongation becomes 
inhibited by the interruption of water flow from the xylem vessels to the surround-
ing elongating cells [21]. Consequently, vegetative growth, dry matter partitioning, 
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reproductive organ development and reproductive processes, grain filling and 
grain quality are disrupted [22]. In cereal grain crops, reproductive processes and 
grain filling are more susceptible to water deficit stress, with optimum and ceiling 
temperatures that are relatively lower than those for seedling and vegetative growth 
stages [21, 23–25]. Moisture deficit stress reduces yield by delaying silking, thus 
increasing the anthesis-to-silking interval [11]. Drought stress at flowering period is 
critical as it can increase pollen sterility resulting in hampered grain set [26].

Drought stress induced yield reduction in cereal crops depends upon the severity 
and duration of the stress period. The reduction in photosynthesis, emanating from 
the decrease in leaf expansion, impaired photosynthesis machinery, premature 
leaf senescence and related food production decreases, is the major contributing 
factor on yield reduction [21, 23]. Drought stress induced yield reductions have 
been reported and reviewed in maize [1, 21, 26–29], wheat [26, 27, 30, 31], rice [1], 
sorghum [32–33] and pearl millet [25].

3. Plants drought stress responses and resistance mechanisms

Plants have evolved numerous dynamic acclimation and adaptive ways of 
responding to and surviving short-term and long-term drought stresses [34]. The 
physiology of plants’ drought response at the whole plant level is complicated as 
it encompasses lethal and adaptive alterations. Moreover, how plants respond to 
drought stress differ significantly at various organizational levels, and this is gener-
ally dependent on plant species; the nature, duration and intensity of the drought 
stress; plant growth and phenological state at the time of stress exposure [19].

Drought stress triggers a wide range of plant structural changes which are 
essential for plants to respond to such drought stress conditions. These adjustments 
include morphological adaptations such as reduced growth rate, deepened rooting 
system, and root-to-shoot ratio modifications. The increased root-to-shoot ratio 
under drought stress conditions enables water and nutrient uptake and mainte-
nance of osmotic pressure [19, 26, 35]. Additionally, in their response to moisture 
fluctuations in the soil rhizosphere, plants alter their physiology, modify their root 
growth and architecture, and regulate the closure of stomata on their aboveground 
structures. Such tissue-specific responses adjust the cell signals flux, consequently 
inducing stunted growth or premature flowering, and generally reduced yield [36]. 
Thus, drought stress is associated with alterations in leaf anatomy and ultrastruc-
ture. Reduced leaf size, decreased number of stomata; thickened leaf cell walls and 
induced premature senescence are some of those morphological changes [19].

Plants resist drought stress through a combination of strategies, which have been 
widely classified as drought escape, drought avoidance and drought tolerance [18, 21, 
37, 38]. Drought escape is achieved by matching the duration of the crop cycle to 
water supply through genetic variation in phenology [39]. Plants prioritize early flow-
ering and completing their life cycles before the effects of drought cause harm [21].

Drought avoidance denotes plant’s ability to maintain high tissue water potential 
under drought conditions. Usually, plants achieve drought avoidance through mor-
phological and physiological alterations, including reduced stomatal conductance, 
decreased leaf area, promotion of extensive rooting systems and increased root to 
shoot ratios [38]. Drought avoidance mechanisms help in maintaining favorable cel-
lular water balance, by enhancing water absorption, decreasing water loss, or allow-
ing desiccation tolerance at low leaf water potential [34]. Stomatal closure, reduction 
of leaf growth and increased root length and density all contribute to increased 
water use efficiency under drought stress conditions. Further, water flux into the 
plant is reduced or water uptake enhanced to achieve drought avoidance [19].
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On the other hand, plants attain a state of drought tolerance by cell and 
tissue specific physiological, biochemical, and molecular mechanisms. Drought 
tolerance is a complex trait which refers to the capacity of the plant to be more 
productive under drought stress [40]. In other words, it denotes the potential 
of crop plants to maintain their growth and development under drought stress 
[21]. The main aspects of plant drought tolerance mechanism include homeo-
stasis maintenance, via ionic balance and osmotic adjustment; ROS scavenging 
and antioxidant enzyme activation; growth regulation and recovery by way of 
phytohormones; specific gene expression; and accumulation of specific stress 
responsive proteins [1, 2, 19, 21, 26].

To protect themselves against ROS induced oxidative stress and photo inhibi-
tion, plants activate an efficient antioxidant (enzymatic and non-enzymatic) 
defense system [17, 18, 21, 41]. Enzymatic antioxidant enzymes include superoxide 
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione per-
oxidase (GPX) and glutathione S-transferase (GST) among others. SOD acts as the 
first line of defense by converting singlet oxygen into H2O2. APX and GSTs then 
detoxify H2O2 [42]. Non-enzymatic antioxidants including glutathione (GSH), 
ascorbic acid (AsA), carotenoids, tocopherols and flavonoids are also crucial for 
ROS homeostasis in plants [43].

At the molecular level, our current knowledge thus far regarding drought 
stress response pathway suggest that, sequentially, the stress is relayed through the 
following chain: signal perception, signal transduction, transcriptional control by 
way of transcription factors (TFs), stress responsive genes activation, and in-turn 
activation of physiological and metabolic responses [1, 19, 37, 44].

Stress signal perception in plants has revealed the role of plasma membrane in per-
ceiving and transmitting signals to the cell interior, where molecules such as receptor-
like kinases and G-proteins function as primary receptor molecules [45]. The roles 
of Ca+ and ROS as secondary messengers in stress perception and signaling have also 
been well acknowledged [4]. These secondary messengers adjust the calcium levels and 
activate protein phosphorylation. Then, phosphorylation of inactive proteins may be 
directly involved in cellular protection by protein folding or activation of stress specific 
genes. The dominant plant signal transduction pathways involve the mitogen activated 
protein kinase (MAPK) and calcium dependent protein kinases (CDPK) cascades, and 
their role in abiotic stress response have been well reviewed [38, 42, 46].

Upon drought exposure, the resulting signal transduction triggers the produc-
tion of several biochemicals, including phytohormones, to respond and adapt to the 
ensuing drought stress [47]. Phytohormones are molecules produced in low concen-
trations but are critical in regulating plant growth, development, response to biotic 
and abiotic stresses, and other physiological processes [48]. These phytohormones 
include ABA, salicylic acid (SA), ethylene (ET), cytokinins (CKs), gibberellin acid 
(GA), jasmonic acid (JA) and brassinosteroids (BRs) among others. Among these, 
ABA is the key and most extensively studied hormone that regulates drought resis-
tance in plants [38, 49]. ABA acts as the second messenger coordinating hormonal 
cross-talk between several stresses signaling cascades, thereby leading to adapta-
tions to changing physiological and environmental conditions [50]. Additionally, 
SA, ET, JA, CKs, GA, and BRs play vital roles in regulating various phenomena in 
plants acclimatization to drought stress [51].

At the molecular level, plants institute stress responsive proteins, TFs and signaling 
pathways among other strategies. Several studies [52, 53] have identified conserved 
and species-specific drought responsive genes, including membrane stabilizing 
proteins and late embryogenic abundant (LEA) proteins, which increase cells’ water 
binding capacity [1, 14]. Several heat shock proteins (HSPs), which play a major role 
in stabilizing protein structure, were also identified [54, 55]. The HSPs are chiefly 
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involved in unwinding some folded proteins and averting protein denaturation under 
abiotic stress conditions. The membrane stabilizing proteins, LEA proteins, detoxi-
fication enzymes, water channel proteins and ion transporter genes all constitute a 
group of functional proteins, that is, a group of important enzymes and metabolic 
proteins which directly function to protect cells from stress [37, 56]. Besides functional 
genes, regulatory genes are also critical for drought tolerance. These encodes various 
regulatory proteins such as transcriptional factors (TFs), protein kinases and protein 
phosphatases – involved in regulating signal transduction and gene expression in 
response to stress [57, 58]. Several TFs that regulate a large spectrum of downstream 
stress-responsive genes and provide adaptive response under drought stress have been 
identified and reviewed, including myeloblastosis (MYB), abscisic acid responsive 
elements binding factor (ABF), ABRE binding (AREB), dehydration responsive 
element binding (DREB), C-repeat binding factor (CBF), [NAM, ATAF1/2, and CUC2 
containing proteins] (NAC) and WRKYs [59–63].

Additionally, protein kinases and protein phosphatases mediate phosphoryla-
tion and dephosphorylation of proteins, respectively. In several signal transduction 
pathways; they are vital and an effective mechanism for stress signal relaying [19, 
56, 63]. At the phosphorylation cascade terminals, protein kinases or phosphatases 
activate or suppress TFs, respectively. The TFs further specifically bind to cis-
elements in the promoters of stress responsive genes, thereby modulating their 
transcription [64]. The TFs are further subjected to post translational modifications 
(PTMs), including ubiquitination and sumoylation, thereby forming an intricate 
regulatory network to modulate stress responsive genes, which consequently trigger 
the activation of appropriate physiological and metabolic responses [62, 65].

4.  Approaches for deciphering drought stress responsive genes, proteins 
and metabolic pathways: where are we?

The recent convergence of crop physiology, next generation sequencing and 
molecular biology approaches has offered us convenience in deciphering mecha-
nisms underlying plants’ response to various abiotic stresses [13, 15, 66]. Whereas 
plant physiology enhances our understanding of the complex network of traits 
related to drought tolerance and improving selection efficiency, genomics and 
molecular biology methods identify the candidate genes and quantitative trait loci 
(QTLs) underlying these traits [11, 13]. The classical cDNA and oligonucleotide 
microarrays have been widely employed to identify candidate genes for drought tol-
erance in several cereal grain crops including maize [67, 68], rice [69, 70] and barley 
[71]. Additionally, the use of tilling microarrays has allowed for the identification of 
differentially expressed DNA sequences at the whole genome level [72]. Other tech-
niques such as differential display; cDNA amplified fragment length polymorphism 
(cDNA-AFLP); and serial analysis of gene expression (SAGE) have been essential in 
analyzing global gene expression profiles in functional genomics studies [56, 73–74].

Analysis of large scale, high throughput sequencing data is now facilitating 
the identification and cloning of important genes at target QTLs. Additionally, 
the ‘omics’ analysis approaches are showing monumental capacity to quicken and 
broaden our understanding of the molecular, genetic and functional basis of crop 
drought stress tolerance [12, 75]. Encouragingly, some novel insights meant to 
help us develop new drought tolerant cultivars are being generated [76]. Due to its 
low cost, high-throughput, and high sensitivity, RNA sequencing (RNA-seq) has 
offered us breakthrough in performing transcriptome analysis of plants’ drought 
stress responses [77]. Resultantly, we have obtained transcripts from RNA in a 
tissue- or cell-specific manner, and transcribed at a different developmental stage 
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or functional state; this has been fundamental to fishing out functional genes [78]. 
Therefore, our knowledge pertaining to gene expression networks modulating 
drought stress tolerance has been significantly improved. RNA-seq technology has 
been used in several drought stress response studies in cereal crops and numerous 
genes have been identified [79–81].

Recently, large scale, high-throughput proteomics has become a very powerful 
tool for performing comprehensive analysis of crop proteins and identification of 
stress responsive proteins in comparative abiotic stress studies [82, 83]. Proteomic 
approaches, particularly gel free methods, that is, those involving digestion of 
intact proteins into peptides prior to separation, have now become very popular in 
proteome profiling, comparative expression analysis of two or more protein samples, 
localization and identification of post translational modifications (PTMs) [14]. For 
instance, isobaric tags for relative and absolute quantitation (iTRAQ ) and isotope-
coded affinity tags (ICAT) based methods have become widely used in descriptive 
and comparative drought stress proteomic studies in cereals [84–87]. The iTRAQ- 
based method allows for the time-dependent analysis of plant stress responses or 
biological replicates in a single experiment [88]. Besides, proteomics offers comple-
mentarity to genomics; providing clues on the molecular mechanisms underlying 
plant growth and stress responses, as well as being a crucial link between transcrip-
tomics and metabolomics [82]. Moreover, genomics based methods offer access to 
agronomically desirable alleles localized at QTLs that affect particular physiological 
responses. This helps us to effectively improve the drought resilience and yield of 
crops. Additionally, MAS has aided us in improving drought-related traits [12, 89].

Further, a systems biology approach, premised on the advancement and inte-
gration of omics (genomics, transcriptomics, metabolomics, phonomics and pro-
teomics) methods to establish a meaningful relationship between the genotype, 
phenotype and subsequent abiotic stress tolerance, has also become prominent 
[76]. Integrated knowledge of the morphological, physiological, biochemical, 
genetic and molecular events in plants allows for in depth understanding of the 
complex physiological and cellular processes involved in drought stress adapta-
tion. Thus, meaningful interpretations from complex networks and component 
integrations can be developed from voluminous omics data, which helps us better 
decipher the mechanisms underlying cereal crops drought tolerance [63].

Meanwhile, the physiological analysis on contrasting genotypes provides 
information on the mechanisms underlying drought tolerance and aids as a useful 
screening strategy for drought tolerance [41]. Therefore, it is important to realize 
that physiological analysis remains essential in corroborating the molecular analyses 
in abiotic stress response studies. Thus, it would be essential that, going forward, 
we build on the progress made to date by harnessing the full potential of genomics-
assisted breeding, and integrating our knowledge on the physiological and molecular 
basis of drought tolerance. This calls for crop physiologists, molecular geneticists, 
breeders and cytogeneticists to collaborate in a multidisciplinary manner [12].

5.  Some identified key drought tolerance mechanisms, genes and 
metabolic pathways

By applying genetic, biochemical and molecular approaches, we have identified 
essential genes central in plant responses to drought stress. For instance, several 
physiological responses contributing to drought tolerance in cereal crops have been 
identified including thermal dissipation of light energy, stomatal closure, decreased 
hydraulic conductance, altered source-sink relations and carbon partitioning, ABA 
biosynthesis, among others (Table 1).
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Besides the mechanisms highlighted in Table 1, several drought responsive genes 
have been identified and validated in different crop species. For instance, recent 
excellent reviews [4, 26, 102–106] provide highly informative details about some 
crop drought tolerance conferring genes that have been functionally validated to 
date. Some of these genes are listed in Table 2.

Further, several metabolic pathways implicated in drought stress tolerance in 
cereal grain crops have been identified through comparative physiological and omic 
analysis approaches. Chief among these pathways are those related to photosynthesis, 
secondary metabolites biosynthesis, plant hormone signaling, starch and sucrose 
metabolism, and nitrogen metabolism. Chloroplasts, particularly the thylakoid mem-
branes—PSII reaction centers, are one of the organelles most influenced by drought 
stress [123, 124]. Photosynthesis (antenna protein) pathway related genes lhcb5-1 and 
lhcb5-2 are part of the light harvesting complexes (LHCs) and the electron transport 
components of the PSII of the plant photosynthesis machinery, where they participate 

No. Physiological response Purpose Reference

1 Thermal dissipation of light 

energy

Uncoupling of photophosphorylation 

and electron transport

[41, 90]

2 Activation of photosynthesis 

(PSII) proteins

Preventing photoinhibition of the PSII 

and improving leaf photosynthetic 

capacity

[81, 91]

3 Altered source–sink relations and 

carbon partitioning

Induction of root growth [92]

4 Prioritized supply of CHOs to 

rapidly growing or metabolically 

hyperactive cells or tissues

Promotion of early seedling/hypoctyle 

growth

[80]

5 Cell wall biosynthesis Enhancing cellular contents 

preservation

[81, 93, 94]

6 Cell wall remodeling Increasing cell wall elasticity to 

maintain tissue turgidity

[80]

7 Amino acid biosynthesis Enhanced protein biogenesis [80]

8 Osmotic adjustment through 

increased synthesis of soluble 

solutes (proline, soluble sugars, 

etc.)

Increased cellular homeostasis 

maintenance

[11, 40, 95, 96]

9 Changes in ROS scavenging and 

enzyme activities

Prevention of cellular oxidative damage [18, 81]

10 ABA biosynthesis Stomatal closure regulation and 

improved stress signaling

[11, 40]

11 Stomatal closure and reduced 

hydraulic conductance

Prevention of water loss through 

transpiration

[97]

12 Alteration in root morphology 

and physiology

Increased water and nutrient 

absorption under drought conditions

[98, 99]

13 Reduced stomatal density and 

enhanced control of stomatal 

opening and closure

Improved cellular water conservation [100]

14 Alternative oxidase pathway, 

uncoupling proteins, NADPH 

dehydrogenases down-regulated

Uncoupling of oxidative 

phosphorylation and electron transport

[101]

Table 1. 
Some key drought stress tolerance mechanisms identified in cereals.
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as peripheral antenna systems enabling more efficient absorption of light energy [125, 
126]. Further, Lhch5-1 is involved in the intracellular non-photochemical quenching 
and the cysteine biosynthesis processes [91]. Previously, the photosynthesis pathway 

No. Gene name Donor Host Physiological 

change

References

1 ZmVPP1 Arabidopsis 

thaliana L. 

(Arabidopsis)

Maize Enhanced 

photosynthetic 

efficiency and root 

development

[81, 107]

2 ZmPP2C-A10 Arabidopsis Maize ABA signaling [108]

3 Zeaxanthin epoxidase 

(ZEP)

Arabidopsis Maize Improved ABA 

biosynthesis

[104, 109]

4 Mannitol-1-

phosphate 

dehydrogenase 

(mtlD)

Escherichia coli Wheat Improved fresh and 

dry weights, plant 

height, and flag leaf 

length

[110]

5 AtNF-YB1 Arabidopsis Maize Higher 

photosynthesis 

capacity

[102, 111]

6 AtABF3 Arabidopsis Rice Higher Fv/fm [112]

7 OsDREB1A Arabidopsis Rice, 

wheat

Shoot growth 

retardation at the 

expense of root 

growth

[102]

8 AtHARDY Arabidopsis Rice Enhanced WUE 

and photosynthesis 

efficiency

[113]

9 OsWRKY11 Rice Rice Sluggish water loss 

and lessened leaf 

wilting

[114]

10 AtLOS5 (LOS5/

ABA3)

Arabidopsis Maize Increased ABA 

biosynthesis

[115]

11 HVA1 Barley Rice Higher WUE [116]

12 HVA1 Barley Wheat Enhanced biomass 

accumulation and 

WUE

[26, 117]

13 Beta Escherichia 

coli

Wheat Accumulation of 

glycine betaine

[118]

14 Nicotiana protein 

kinase (NPK1)

Tobacco Maize Preventing 

dehydration 

damage to the 

photosynthesis 

machinery

[119]

15 AtSNAC1 Arabidopsis Rice ABA-hypersensitive, 

stomatal shutdown

[120, 121]

16 SbER2–1 Sorghum Maize Increased Pn rate 

and higher WUE

[122]

17 Light harvest 

complex related genes 

(LHCA1, LHCB, 

LHCA3, LHCA2)

Maize Maize Balancing light 

capture in the PSII

[91, 93]

Table 2. 
Examples of drought tolerance conferring genes that have been functionally validated in cereal crops.
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has been significantly enriched in drought stress response in maize, with chlorophyll 
a-b binding proteins being up-regulated in an ABA-dependent manner [87, 91], and 
pearl millet [127]. This photosynthesis related pathway plays a critical role in balanc-
ing light capture and utilization to avoid photoinhibition of the PSII [87].

Phenylpropanoid metabolism is the first step of the secondary metabolites (flavo-
noids, phenylpropanoids, phenolic compounds and lignin) biosynthesis and phenyl-
propanoids act as antioxidants to protect plants against oxidative damage [128, 129]. 
Flavonoids play different molecular functions in plants, including stress protection. 
All these compounds are widely synthetized in response to several abiotic stresses, 
including drought [130]. In wheat leaves, an increase in flavonoid and phenolic acids 
content was shown together with stimulation of genes involved in flavonoid biosyn-
thesis pathway in response to drought stress [131]. Moreover, secondary metabolites 
biosynthesis related pathways were found to be significantly enriched in response to 
drought stress in maize [80] and sorghum [37], suggesting their involvement in plant 
protection. A coordinated reaction of the genes and pathways involved in secondary 
metabolite biosynthesis is therefore vital for improved drought stress tolerance in 
plants [80]. Plant hormone signaling pathway participates in drought stress response 
via either ubiquitin-mediated proteolysis or ABA-mediated response [132], and was 
observed to be significantly enriched in pearl millet response to drought stress [127].

Sucrose is widely acknowledged to play a crucial role as a key molecule in energy 
transduction and as a regulator of cellular metabolism [130]. Additionally, sucrose 
and other sugars are energy and carbon sources required for defense response and 
are necessary for plant survival under drought stress conditions [133]. Further, 
sucrose can act as primary messenger controlling the expression of several sugar 
metabolism related genes [134]. Nitrogen metabolism pathway, being the most 
basic and central physiological metabolic process during plants’ growth period, 
directly influences the formation of cellular components and regulation of cellular 
activities, as well as the transformation of photosynthetic products, mineral nutri-
ent absorption and protein synthesis. It therefore follows that the nitrogen pathway 
is directly affected by drought, hence its significant enrichment under such condi-
tions [80, 127]. These key identified drought responsive pathways should be used as 
targets for future genetic engineering of drought stress tolerant genotypes.

6. QTL mapping for drought tolerance in cereals

Most yield-related traits in cereal crops are quantitative. Therefore, cloning of 
the causal genes and deciphering the underlying mechanisms influencing these 
traits remains critical for continuous genetic improvement [135]. Precisely, drought 
tolerance is a complex quantitative trait that is multi-genic in its expression and 
one of the most challenging traits to study and characterize [11]. In comparison to 
conventional approaches, genomics offers unparalleled opportunities for dissecting 
quantitative traits into their single genetic determinants, known as QTL, thereby 
facilitating MAS, gene cloning and their direct manipulation via genetic engi-
neering [12]. Through advances in next generation sequencing, identification of 
major QTLs regulating specific drought responses has been made possible, via the 
development of large numbers of genetic markers such as single nucleotide poly-
morphisms (SNPs) and insertion-deletions (InDels), thereby opening the doors for 
an efficient way to improving drought tolerance in cereal crops [89]. Additionally, 
large-scale genome-wide association studies (GWAS) have been conducted to 
detect genomic regions and candidate genes for various agronomic traits, including 
drought tolerance in cereals [13, 136, 137]. Resultantly, hundreds of studies report-
ing thousands of major drought-responsive genes and QTLs in cereal grain crops 
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can be found in the literature, including those for maize [13, 138–140], rice [12, 13, 
105, 138, 141, 142], wheat [13, 31, 137, 138, 143], sorghum [138, 144, 145], barley 
[138, 146], and pearl millet [136, 147, 148]. The high number of studies on QTL 
mapping suggests that for the past decade, QTL has been the focal target of research 
to identify the genetic loci regulating the adaptive response of crops to drought 
stress. Although several QTLs for drought tolerance have already been mapped in 
these cereal crops, there has been little success in introgression of those QTLs and 
the number of causal genes that have been confirmed within these QTL regions 
remains relatively small as compared to Arabidopsis and rice [11, 106].

Going forward, MAS remains a useful tool for major QTL, whereas QTL clon-
ing is increasingly becoming a more routine activity. This has been necessitated by 
increased use of high-throughput sequencing, precise phenotyping and identifica-
tion of appropriate candidate genes through omics approaches [89, 136, 137]. Cloned 
QTL facilitate a more targeted search for novel alleles and will offer novel insights 
for genetic engineering of drought resilient cereal crops [13]. Moreover, compared to 
other crops, research in millets is still lagging behind. However, with millets consid-
ered predominantly climate resilient crops, millets could serve as valuable source of 
novel genes, alleles and QTLs for drought tolerance. Therefore, the identification and 
functional characterization of these genes, alleles and QTLs in millets is critical for 
their introgression and drought tolerance improvement in cereal grain crops [89].

7. Phenotyping for drought tolerance in cereal grain crops

Phenotyping has become an integral component of the crop improvement 
programme by contributing towards understanding of the genetics behind crop 
drought tolerance [105, 149]. Since many component traits of drought tolerance 
are controlled quantitatively, improving the accuracy of phenotyping has become 
more important to improve the heritability of the traits, and the target traits would 
require rapid and precise measurement [106]. High throughput phenotyping now 
provides an essential link in translating laboratory research to the field. This is 
vital in developing novel genotypes that incorporate gene(s) expressing promising 
trait (s) into breeding lines adapted to target field environments [150].

Auspiciously, the recent advances in phenotyping technology and robotics for 
measuring large number of plants means that large numbers of genotypes could be 
readily phenotyped [34, 151–153]. More promising approaches that target complex 
traits tailored to specific requirements at the different main crop growth stages are 
now available [150]. Precise phenotyping of drought-related physiological traits 
often requires the utilization of sophisticated and expensive techniques. These 
include magnetic resonance imaging (MRI) and positron emission tomography 
(PET), near-infrared (NIR) spectroscopy on agricultural harvesters, canopy 
spectral reflectance (SR) and infrared thermography (IRT), nuclear magnetic 
resonance, hyperspectral imaging, laser imaging, 3D imaging and geographical 
information systems (GIS), among others [34, 138, 154, 155]. For example, 3D 
visual modeling can be used to determine the plasticity of the canopy architecture, 
and to evaluate the architectural and physiological characteristics that contribute to 
the higher productivity of the super rice varieties under drought stress conditions 
[156]. Though currently expensive, up scaling the use of these phenotyping plat-
forms will eventually enhance our understanding of crop growth kinetics and aid us 
improve crop models for systems biology and drought tolerance breeding programs.

Selection of primary (grain yield and yield contributing traits) and secondary 
agronomically important traits (ASI, root architecture, stay green, etc.) is the way 
to achieve drought tolerance in cereal grain crops [31, 35, 106, 152]. Yield and yield 
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attributing factors are targeted for direct selection whilst secondary traits are vital 
in conferring drought tolerance and contributing to final yield indirectly [157]. 
Crucially, considering that under drought stress conditions, the genetic correlation 
between grain yield and some secondary traits increases meaningfully, and the 
heritability of some secondary traits remains high, identification and selection of 
those highly heritable secondary traits that are positively correlated with yield related 
traits in the target environment, and responsive to high throughput phenotyping, will 
be critical in achieving the desired drought tolerance goals [11, 152, 158]. Managed 
stress screening approaches through the utilization of phenomics offers an opportu-
nity to keep heritability high and phenotyping under controlled environments can 
be helpful in large-scale characterization studies such as trait mapping experiments 
[13]. However, great caution needs to be taken when phenotyping for drought stress 
tolerance since controlled environments may fail to mimic the real field conditions, 
thereby becoming less useful to study the genotype × environment interactions which 
are very essential to dissect the drought tolerance mechanisms [106].

8. Genetic engineering of drought tolerant cereal crops

The development of tolerant crops by genetic engineering requires the iden-
tification of key genetic determinants underlying stress tolerance in plants, and 
introducing these genes into crops [159, 160]. The momentous progress garnered 
in abiotic stress response research in the model plant Arabidopsis has created 
an avenue for the identification of drought tolerance conferring genes and the 
development of transgenics carrying these genes in other crop species. Therefore, 
genetic engineering approach has opened the door to the development of new crop 
genotypes with improved drought tolerance [103]. Over the past decade, numerous 
articles and reviews on drought stress tolerant transgenic crop species have been 
gathered [4, 26, 102–106, 160]. A selected list of transgenic cereal grain crops, 
which includes information on transgenes used for the transformations and the 
resultant drought stress tolerance mechanisms, has already been provided above in 
Table 2. Despite the availability of numerous reports in the scientific literature of 
transgenic approaches to improving drought tolerance, restrictions on the establish-
ment of transgenic plants in the field presents a bottleneck in true testing of the 
effectiveness of transgenic approaches to improve crop drought tolerance [161].

In recent years, transgenesis has taken center stage in our crop improvement 
efforts. Advances in genome engineering has made it possible to precisely alter DNA 
sequences in living cells, providing unprecedented control over a plant’s genetic 
material [162]. The genome engineering approaches, also known as gene editing 
or genome editing techniques, involve the use of programmable site-directed 
nucleases (SDNs) engineered to modify target genes at desirable locations on the 
genome [163]. These SDNs cleave the double-stranded DNA at a particular loca-
tion by means of clustered regularly interspaced short palindromic repeats and 
CRISPR-associated protein 9 (CRISPR/Cas9), zinc finger nucleases (ZFNs), or 
transcriptional activator-like effector nucleases (TALENs). The double-stranded 
DNA break then undergoes natural reparation either via homologous recombina-
tion or non-homologous end joining [105, 164]. The restoration of the DNA break 
can be directed to create a variety of targeted DNA sequence modifications such as 
DNA deletions or insertions of large arrays of transgenes [162].

Among the several genome editing methods developed to date, CRISPR-Cas9 is 
the most advanced and has received much attention because of its great accuracy, 
quickness, adaptability and simplicity [165, 166]. This technique has been successfully 
used in major food crops [167–169]. Whereas convectional genomics and breeding 
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approaches alone cannot resolve the global food security challenge [170], genetic 
engineering approaches have great potential to improve crops that feed the burgeoning 
populations of developing countries [162, 166, 171]. However, the extent of regulation 
imposed upon crop cultivars generated through genetic engineering will have a huge 
impact on the cost of their development itself and how rapidly they will be deployed 
into the food supply chain. Linked to that, the readiness with which the public will 
accept food products made from genetically engineered crops will also play a role in 
the extent to which this new technology will be fully utilized for crop improvement, 
particularly in the developing countries where cereal grain crops are staple diets [162].

9. Field management of crops in the context of climate change

Genetic and management strategies that are aimed at improving grain yields 
under water constrained environments target three variables, which are the amount 
of water captured by the plant (W), the efficiency with which that water is con-
verted to biomass (water use efficiency, WUE), and the harvest index (HI) or the 
proportion of biomass forming grain. Interestingly, each of these variables can be 
altered [172]. For instance, WUE can be maximized by early planting of crops, 
and by maintaining healthy leaves with high levels of nutrients [173]. Additionally, 
extending leaves` longevity through selection for delayed leaf senescence is com-
monly regarded important for maintaining WUE and root health, as well as increas-
ing the kernel filling duration [172]. Supplementation of irrigation, where available, 
would be the major means for combating drought stress condition, besides being 
a prime approach to the intensification of agriculture and the generation of stable 
income for farmers [174]. However, its uptake will depend on various environmen-
tal, economic and social factors on both micro and macro levels [175].

Additionally, agronomic interventions, that is, improved crop management 
methods can complement the use of drought tolerant cultivars, contributing mean-
ingfully to enhanced and stabilized yields under water constrained environments. 
Conservation agriculture (CA), a collection of practices embodying the use of 
reduced tillage and mulch to reduce evaporation of soil water, is an obvious means 
of increasing water available to the plants [172, 176]. Scaling up CA, which has 
recently gained wider acceptance in developing countries, offers a great potential 
of increasing drought resilience and sustainability of cropping systems and ensur-
ing food security. The use of plastic mulch in semi-arid cooler areas on the Loess 
Plateau of China has significantly increased WUE in maize [177]. Moreover, CA has 
become the cornerstone of dryland systems in some regions of USA, Canada and 
Australia [174]. Recently, the application of melatonin with date (Phoenix dactylifera 
L.) residue and wheat straw biochars has enhanced biochar efficiency for drought 
tolerance in maize cultivars [178]. This can be a game changer in CA farming 
systems where biochar is a key component for ground cover. Therefore, the man-
agement of a sustainable dryland farming system would require that farmers apply 
good agronomic practices (GAPs) such as improved soil and water conservation 
and the associated reduced tillage practices, holistic weed and pathogen control, 
soil fertility management with respect to water regimes, optimized plant popula-
tion densities and effective control of soil biotic stress factors that may inhibit root 
development, as well as practicing crop diversification in order to reduce the risks 
associated with farming in unpredictable environments. Further, governments 
should increase investments in weather forecasting and cloud seeding.

All these approaches and decision support systems, when integrated, would 
birth a more holistic strategy for adapting cereal grain crops to future climate 
change induced drought stress as summarized in Figure 1.
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10. Future outlook

Currently, crop improvement efforts are shifting focus from solely yield, 
quality, or abiotic stress resistance to a holistic approach integrating breeding for 
a combination of these factors. For example, targeting breeding for combined 
drought and heat stress tolerance [179, 180], drought tolerance and nutritional 
quality [161] or drought tolerance and disease resistance [3, 181] are being under-
lined. Drought-tolerant micro-nutrient dense cereal crop cultivars have been 
developed [8]. In that regard, future-proofing of global food security would call 
for double-pronged transformation aimed at developing high yielding cultivars 
possessing both adaptability to abiotic or biotic stresses and higher nutritional 
quality. Thus, going forward, it is necessary that more breeding programs use 
high-priority abiotic stresses in their portfolios [11]. In the wake of address-
ing malnutrition challenges in developing countries, breeding for bio-fortified 
drought tolerant cultivars should be strengthened [8, 182]. In addition, promis-
ing genotypes in trials for fall armyworm (Spodoptera frugiperda L.) resistance, 
once approved, should be screened for drought tolerance and improved cultivars 
harboring both traits be developed. Though seemingly a daunting task, combined 
efforts from crop physiologists, molecular geneticists, breeders and pathologists 
would make this a reality.

In our ‘omics research’, future proteomics studies should intensify the identifica-
tion, quantification and analysis of stress-responsive proteins PTMs, since PTMs 
can affect protein functions, interactions, subcellular targeting and stability [183]. 
Moreover, breeding for resource use efficiency, for instance, nitrogen use efficiency 
(NUE) should be integrated in future drought tolerance breeding programs. 
Previously, researchers have revealed that improving NUE in crops such as paddy 
rice and cotton will be critical in greenhouse gas emission management [184–188]. 
Additionally, application of biochar, either singly [189] or in combination with P 
[190] has been shown to alleviate heat-induced oxidative stress damage on the cel-
lular physiological processes in rice plants. Thus, as we navigate the future, breed-
ing for NUE and its proper management in the field remains essential in helping 
adapting crop plants to abiotic stresses such as drought.

Figure 1. 
Proposed holistic approach to cereal crop drought stress adaptation.
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Another area of focus will be crop physiology. Since photosynthesis is the basis 
of plant growth, improving photosynthesis can significantly contribute towards 
greater food security in the future. Multiple targets for manipulation of crop photo-
synthesis have been extensively reviewed. These include improving Rubisco kinetic 
properties and improving canopy architecture to enhance light penetration [191]. 
Therefore, harnessing the benefits of improved photosynthesis for greater yield 
potential will require that we intensify manipulation of these targets.

Furthermore, the microbes resident in the rhizosphere can potentially improve 
plant growth and enhance crop resilience to abiotic stresses [192]. For instance, 
phosphate-solubilizing bacteria can nullify the antagonistic effect of soil calcifica-
tion on bioavailable phosphorus in alkaline soils, and thus, can be one of the best 
options for improving soil P nutrition [193]. It would be crucial to investigate, 
understand and quantify the complex feedback mechanisms occurring between 
root and microbial responses to drought stress, particularly in cereal crops. 
Integrating crop ecology, physiology and molecular methodologies in a multi-
disciplinary approach would be central [194].

In the short to medium term, exogenous application of plant growth regulators 
at different crop growth phases would be an important strategy in inducing drought 
resistance. In a very short term, seed priming will be of value [3]. The crucial roles 
of plant phytohormones and growth-promoting rhizobacteria in abiotic stress 
responses have been extensively reviewed [195–197]. Particularly, the exogenously 
applied plant growth regulators can enhance morpho-physiological, growth and 
abiotic stress responses of crops such as rice [198–203]. Recently, Saleem et al. [204] 
have shown that exogenously applied gibberrellic acid (GA3) can reduce metal 
toxicity induced oxidative stress in jute (C. capsularis L.) seedlings. Moreover, 
exogenous application of salicicic acid (SA) has been shown to ameliorate the 
adverse effects of salinity on maize plants [205]. Further, silicon (Si) application 
improved plant water relations, photosynthesis and drought tolerance in Kentucky 
bluegrass [206, 207], and Si enhanced germination, growth, P and arsenic uptake in 
rice [208]. Therefore, targeting the modification of hormone biosynthetic pathways 
may be a gateway to the development of drought tolerant transgenic plants.

Meanwhile, the potential of transgenic technologies across developing countries, 
particularly in Sub-Saharan Africa, is being hampered by uncoordinated over-regula-
tion by authorities. Unfortunately, the biosafety framework leading to ordered testing 
and deregulation in such countries is being developed on individual countries basis, 
instead of a more efficient resource-use regional approach. Moreso, present systems 
are modeled on overestimated, not science-evidence-based risks [172]. There is need 
for policy makers to revisit their stance on genetically modified organisms (GMOs) 
with science guaranteed evidence, not political grand-standing, guiding formulation, 
adoption and utilization of GMO related polices for food and nutritional security.

11. Conclusion

Though a daunting task, breeding for drought tolerance in cereal crops remains 
the most economical, effective and sustainable strategy for ensuring food security 
for the ever increasing human population. While a significant progress has been 
made to date towards achieving that goal, our understanding of the mechanisms 
underpinning plant drought stress tolerance remains fragmentary. In the face 
of global climate change, a multi-disciplinary research strategy becomes obliga-
tory to integrate physiological, genotypic, omics and epigenetics data essential 
to dissect the complex networks regulating plant drought tolerance, which can 
then be manipulated through genetic engineering to develop drought resilient 
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crops. Additionally, cereal crop breeding programs should integrate high-priority 
abiotic stresses, particularly drought and heat, with other goals such as resource 
use efficiency, biotic resistance, and nutritional improvement. Further, formula-
tion and effective deployment of efficient screening and precise phenotyping 
approaches at both laboratory and field levels to identify drought tolerant genotypes 
or mutants remains critical. Promisingly, our new cultivar development thrusts are 
now endowed with some innovative methodologies that include high-throughput 
phenotyping, doubled haploidy, mutation and speed breeding, as well as CRISP-Cas 
9 technologies. Going forward, we should harness the potential of these technolo-
gies. Eventually, our understanding of the crop drought tolerance mechanisms 
will be quickened and broadened, greatly assisting our development of new 
drought-resilient cereal crop cultivars. This should be supported by robust, science-
evidence-based and progressive policy frameworks that recognize the centrality of 
GMOs and modern biotechnology in increasing food production. Consequently, 
this would lead to improved sustainable crop productivity and global food security.
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