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Pathogens
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Abstract

Antibiotic-resistant pathogens are a public health threat that has rapidly spread 
over decades due to continuous and uncontrolled administration of antimicrobial 
medicines, becoming an ever-increasing worldwide concern. Since the past decade, 
no significant innovations have been made, so the search for new compounds 
that face multidrug-resistant pathogens is critically important. Plant-symbiont 
microorganisms are capable of producing a variety of bioactive natural products, 
making it possible to treat several infectious diseases. Biotechnological processes 
using microorganisms have been increasing in recent years since the discovery of 
Paclitaxel, an important antimitotic produced by the endophyte Taxomyces andre-
anae. It was isolated for the first time from the native tree of Pacific Taxus brevifolia. 
Several studies have demonstrated the isolation and characterization of promising 
and potent substances capable of inhibiting these pathogens. In addition, both rhi-
zospheric and endophytic communities represent an unexplored reserve of unique 
chemical structures for drug development. This chapter focuses on the potential of 
plant-derived microorganisms as a source of bioactive substances and the perspec-
tives for further studies and their application.

Keywords: antimicrobial resistance, endophytes, natural products, rhizosphere, 
superbugs, Streptomyces spp.

1. Introduction

The discovery of medicines in the treatment of infectious diseases represents 
one of the most significant accomplishments of humankind. The introduction of 
antibiotics made it possible to treat previously incurable diseases.

Major classes of antibiotics were discovered between the 1940s and 1960s, where 
soil-derived actinobacteria produced most of them. However, several decades 
passed without significant innovations until the discovery and development of 
oxazolidinones in 2010 (Figure 1). Moreover, the continuous uncontrolled use of 
these medicines favored the rapid spread of resistant pathogens, where new com-
pounds were discovered, and their introduction into clinical practice was not fast 
enough [1–5].
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The CDC (Centers for Disease Control and Prevention) has recognized the 
emerging antibiotic resistance as a significant threat to public health [8]. Superbugs, 
such as Methicillin-resistant Staphylococcus aureus (MRSA), show antibiotic resis-
tance rates that surpass 50% in 5 out of 6 world regions; in contrast, the multidrug-
resistant Acinetobacter baumannii, described as a dangerous agent by the Society 
of Infectious Diseases of America (SIDA), is a notable threat in intensive care units 
(ICUs) due to the development of resistance to broad-spectrum antibiotics [5, 8–10].

Therefore, the search for compounds and the exploration of niches that har-
bor microorganisms that produce bioactive metabolites are critically important 
[11–13]. Several studies have shown that plant tissues represent a rich source of 
natural products for pharmaceutical and biotechnological interest. Most of these 
compounds are produced by microorganisms that live in intimate interaction with 
the host plant without causing damage; therefore, they are known as endophytes 
[11, 14, 15].

In the same context, the rhizosphere’s microbiome can exert profound direct 
and indirect effects on plant growth, nutrition, and health in natural ecosystems. 
Its micro-community (bacteria, oomycetes, viruses, archeas, fungi and arbuscular 
mycorrhizae) is attracted and fed by nutrients, exudates, border cells and mucilage 
that are released by the root of the plant [16].

Relevant studies have reported potent antimicrobial compounds, such as 
teixobactin, isolated from the non-cultivable bacterium Eleftheria terrae [17]. 
According to the authors in [17], teixobactin inhibits cell wall synthesis by binding 
to the highly conserved region of lipid precursors of peptidoglycan and teichoic 
acid. In addition, S. aureus and Mycobacterium tuberculosis did not develop resistance 
to teixobactin.

In the study by [18], endophytic fungi were isolated from the medicinal plant 
Orthosiphon stamineus, where 92% of them exhibited significant inhibitory activity 
against different species of bacterial pathogens and filamentous fungi.

Paenibacillus polymyxa can be found in several habitats. Its characteristic metab-
olism and production of substances enhance biotechnological applications based 
on the production of bioactive molecules. It is also widely applied in commercial 
agriculture as a bio-fertilizer grow plant promoter, biological control, and environ-
mental remediation. In [19], P. polymyxa was endophytically isolated from Prunus 
spp., and the author reported the isolation of molecules which potently inhibited 
S. aureus and E. coli.

Figure 1. 
Timeline of antibiotic discovery that shows no new classes of antibiotics between the years 1962 and 2000 
adapted from: [6, 7].
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Herein, we address a review topic concerning the potential of rhizospheric and 
endophytic microorganisms as producers of antimicrobial compounds.

2. Endophytes: an overview

In 1866, de Bary outlined the first distinction between endophytes and plant 
pathogens. These microorganisms (typically fungi or bacteria) colonize the plant’s 
internal tissues and live part of its life or its entire life cycle without causing appar-
ent damage, establishing a mutualistic interaction with the host plant. Moreover, 
endophytes are capable of producing beneficial substances, such as alkaloids, 
enzymes, antibiotics and other compounds that protect and help the plant under 
stress conditions in exchange for nutrients and protection provided by the host 
plant [14, 15, 20–22].

In this context, plants have served humanity for centuries and led to the dis-
covery of novel bioactive compounds. However, concerns regarding biodiversity 
and conservation, as well as large quantities of plant tissue, are required to produce 
sufficient yields of compounds [23]. According to [24], paclitaxel isolation requires 
about 10,000 kg of T. brevifolia bark to yield 1 kg. On the other hand, several 
studies have shown that endophytes may produce similar or even the same bioactive 
compounds as their plant hosts [20, 23, 25].

Fungi are skilled producers of natural products, including antitumor agents, 
cholesterol-lowering agents, immunosuppressants and antibiotics [25, 26]. The 
study by [27] detected potent antimicrobial properties of the natural product 
extract (NPE) of endophytic fungi associated with Myrciaria floribunda, Alchornea 
castaneifolia and Eugenia aff. Bimarginata against several pathogens. The methanolic 
extracts presented MIC values ranging from 7.8 to 1000 μg/mL against C. krusei, C. 
parapsilosis, C. neoformans, C. albicans, and C. glabrata. The inhibition of S. aureus 
and B. cereus ranged from 7.8 to >1000 μg/mL. Also, endophytic fungi were isolated 
from Cinnamomum mercadoi, a medicinal tree endemic to the Philippines. The 
ethyl acetate extract of Fusarium sp. presented moderate inhibition against E. coli, 
E. aerogenes, S. aureus, and B. cereus with minimum inhibitory concentrations of  
2.1, 4.2, 4.2, and 3.8 mg/mL, respectively [28].

Therefore, the emerging use of endophytes in the research and development of 
new drugs represents the most successful example of bioactive natural products in 
medicine, pharmaceutical and biotechnological applications. Table 1 provides an 
idea of some secondary metabolites of endophytic fungi and bacteria tested against 
resistant and multidrug-resistant microorganisms.

3. Rhizospheric microorganisms: an overview

The term rhizosphere was first used in 1904 by agronomist and plant physi-
ologist Lorenz Hiltner to describe the interface between plant roots and the soil 
inhabited by a unique microbial community, which is influenced by the chemical 
release from plant roots [49]. In recent years, based on the relative proximity and 
influence to the root, the rhizosphere definition has been refined to include three 
zones: (i) endorhizosphere, which includes portions of the cortex and endoderm, 
where microorganisms and mineral ions occupy free space between cells (apoplastic 
space); (ii) rhizoplane, a middle zone adjacent to the root’s epidermal cells and 
mucilage; and (iii) ectorhizosphere, which extends from the rhizoplane out into 
the bulk soil and is colonized by the microorganisms that are either free-living or 
non-symbionts [50, 51].
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Endophytic fungi

Endophyte Host plant Compound Target strain Reference

Trichoderma 

ovalisporum

Panax 

notoginseng

Shikimic acid S. aureus [29]

E. coli

Fusarium 

oxysporum

Cinnamomum 

kanehirae

Beauvericin MR S. aureus [30]

B. subtilis 

(ATCC66333)

Diaporthe 

phaseolorum

Laguncularia 

racemosa

3-Hidroxypropionic acid S. aureus [31]

S. typhi

Pestalotiopsis 

mangiferae

Mangifera indica 4-(2,4,7-trioxa-

bicyclo[4.1.0]heptan-

3-yl) phenol (1)

B. subtilis 

(MTCC 441)

[32]

E. coli (MTCC 

443)

P. aeruginosa 

(MTCC 424)

K. pneumonia 

(MTCC 109)

C. albicans 

(MTCC 227)

Xylaria sp. Anoectochilus 

setaceus

Helvolic acid B. subtilis (UBC 

344)

[33]

MR S. aureus 

ATCC 33591

Aspergillus terreus Carthamus 

lanatus

(22E,24R)-stigmasta-

5,7,22-trien-3-β-ol; 

Aspernolide F

S. aureus MRSA 

(ATCC 33591)

[34]

C. neoformans 

(ATCC 90113)

Hypocrea virens Premna 

serratifolia L.

Gliotoxin C. neoformans 

(ATCC 90113)

[35]

B. subtilis (UBC 

344)

S. aureus (ATCC 

43300)

S. aureus MRSA 

(ATCC 33591)

E. coli (UBC 

8161)

P. aeruginosa 

(ATCC 27853)

C. albicans 

(ATCC 90028)

Aspergillus sp. 

TJ23

Hypericum 

perforatum

Spiroaspertrione A S. aureus MRSA [36]

Aspergillus sp. 

TJ23

Hypericum 

perforatum

Aspermerodione S. aureus MRSA 

(ATCC 43300)

[37]
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Endophytic fungi

Endophyte Host plant Compound Target strain Reference

Phomopsis 

asparagi

Paris polyphylla Diphenyl ethers 

derivates

S. aureus MRSA 

(ZR11)

[38]

Athelia rolfsii Coleus 

amboinicus Lour.

Hemiterpenoid 

compounds

S. aureus (ATCC 

25923)

[39]

E. coli (ATCC 

11229)

P. aeruginosa 

(ATCC 27853)

B. subtilis (ATCC 

6633)

S. typhi (clinical)

S. mutans 

(ATCC 25175)

Endophytic bacteria

Streptomyces sp. Kandelia candel Indolosesquiterpenes S. aureus MRSA [40]

Enterococcus 

faecalis VRE

Streptomyces sp. Kandelia candel Eudesmene-type 

sesquiterpenes 

(kandenols)

B. subtilis (ATCC 

6633)

[41]

S. sundarbansensis Fucus sp. Polyketides (2-hydroxy-

5-((6-hydroxy-4-oxo-

4H-pyran-2-yl) methyl) 

-2- propylchroman-4 

one)

S. aureus MRSA 

(ATCC 43300)

[42]

Streptomyces sp. Dysophylla 

stellata

2-amino-3,4-dihydroxy-

5-methoxybenzamide

E. coli [43]

C. albicans

Streptomyces sp. Dracaena 

cochinchinensis

(Z)-tridec-7-ene-1,2,13-

tricarboxylic acid

S. epidermis 

MRSA (ATCC 

35984)

[44]

S. aureus MRSA 

(ATCC 25923)

Actinomycin-D E. coli (ATCC 

25922)

K. pneumoniae 

(ATCC 13883)

Streptomyces sp. Zingiber 

spectabile

Diketopiperazine cyclo 

(tryptophanyl-prolyl); 

chloramphenicol

S. aureus MRSA 

(ATCC 43300)

[45]

S. aureus MRSA 

(ATCC 49476)

S.aureus MRSA 

(ATCC 33591)

Microbispora sp. Vochysia 

divergens

1-Acetyl-β-carboline S. aureus MSSA [46]

S. aureus MRSA
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The rhizosphere is a complex and dynamic region, where bacteria (including Plant 
Growth-Promoting Rhizobacteria—PGPR), fungi (including Arbuscular Mycorrhizal 
Fungi – AMF), oomycetes, viruses and archaea are attracted by chemical compounds 
(sugars, proteins, fatty acids, organics acids, vitamins, and other cellular compo-
nents) released in the vicinity of the plant roots [16, 52, 53]. These rhizodeposits 
are used as carbon sources by microorganisms and represent an essential source of 
carbon allocated to the roots and available to plants through photosynthesis [54].

Rhizodeposits also contain secondary metabolites (flavonoids, antimicrobials 
and others) involved in establishing symbiosis or repelling plant pathogens and 
pests [55, 56].

The establishment of the symbiotic plant-PGPR interaction in the rhizosphere 
can favor the plant growth through direct and indirect mechanisms. The first one 
includes the fixation of atmospheric nitrogen [57], phosphate solubilization [58] 
or any other process capable of supplying the plant with some of its previously 
unavailable nutrients. Many PGPRs also produce phytohormones, such as auxins 
(Indole-3-acetic acid) and cytokinin, which exert strong effects on root and shoot 
growth, respectively [59–61]. The indirect mechanisms of plant growth prevent the 
deleterious effects of pathogens and include competition for nutrients and niches, 
induction of systemic resistance (Jasmonic acid (JA), and ethylene), and lytic 

Endophytic fungi

Endophyte Host plant Compound Target strain Reference

S. cavourensis Cinnamomum 

cassia

1-Monolinolein, 

bafilomycin D; nonactic 

acid; daidzein

S. aureus MRSA 

(ATCC 33591)

[47]

3′-Hydroxydaidzein S. epidermidis 

MRSE (ATCC 

35984)

Luteibacter sp. Astrocaryum 

sciophilum

(R)-2-hydroxy-13 

methyltetradecanoic 

acid, (R)-3-hydroxy-

14methylpentadecanoic 

acid, (S)-β-

hydroxypalmitic acid; 

(R)-3-hydroxy-15 

methylhexadecanoic 

acid, (R)-3-hydroxy-

13-methyltetradecanoic 

acid, 

13-methyltetradecanoic 

acid; 9Z-hexadecenoic 

acid, 15-methyl-9Z-

hexadecenoic acid

S. aureus MRSA [48]

Streptomyces sp. Epipremnum 

aureum

Phenylalanine-arginine 

β-naphthylamide

Mycobacterium 

tuberculosis

[49]

B. cereus 

(ATCC11778)

E. faecium 

(ATCC51559)

A. baumannii 

(ATCC19606)

Table 1. 
Secondary metabolites produced by endophytic fungi and bacteria with antimicrobial activity (2010–2020).
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enzymes (chitinase, pectinase, cellulase, glucanase, protease, xylanase), sidero-
phore, bacteriocins and antibiotics production [62] (Figure 2).

The phyla of PGPR commonly found in the rhizosphere are Actinobacteria, Fir-
micutes, Proteobacteria and Bacteroidetes; among the main genera, Burkholderia, 
Azotobacter, Pseudomonas, Bacillus, Methylobacterium, Serratia, Streptomyces, 
Azospirillum, Herbaspirillum and Rhizobium can be mentioned [63, 64]. The latter can 
establish an effective symbiotic relationship with plant species of the Leguminosae 

Figure 2. 
Basic scheme of the rhizospheric space showing saprophytic and symbiotic bacteria and fungi, including 
arbuscular mycorrhizal fungi. Adapted from [16].

Rhizospheric 

microorganism

Compound/extracts Target strains Reference

Fungi

Aspergillus awamori F12 Emodin S. aureus [75]

B. subtilis

Penicillium 

simplicissimum MA-332

Penicisimpins A–C E. coli [76]

Micrococcus luteus

P. aeruginosa

Aspergillus niger MTCC 

12676

Ethanol and ethyl acetate extracts Streptococcus mutans 

(MTCC497)

[77]

S. aureus 

(MTCC7443)

E. coli (MTCC40)

C. albicans 

(MTCC227)

Candida glabrata 

(MTCC3814)

Bacteria

Bacillus pumilus Bacteriocin-like inhibitory substance 

(BLIS)

Listeria monocytogenes 

(PTCC 1163)

[78]

B. cereus (PTCC 1015)

S. aureus MRSA 

(ATCC 1912)

Enterococcus VRE
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family and colonize the host plant’s root system and form nodules, increasing biologi-
cal nitrogen fixation, growth and yield of crops [65, 66]. AMF also plays a crucial 
role in plant health, increasing the efficiency of mineral uptake to promote growth 
and suppress pathogens [67, 68]. Aspergillus, Fusarium, Penicillium, Verticillium, and 
Trichoderma are among the most common fungi genera in the soil [69, 70].

Rhizospheric 

microorganism

Compound/extracts Target strains Reference

Streptomyces sp. 

SRDP-H03

Ethyl acetate extract S. aureus 

(NCIM-2079)

[79]

B. cereus 

(NCIM-2016)

B. subtilis 

(NCIM-2699)

E. coli (NCIM-2685)

K. pneumoniae 

(NCIM-2957)

Vibrio cholerae 

(MTCC-3905)

Exiguobacterium 

mexicanum MSSRFS9

3,6,18-trione, 9,10-dihydro-12 

-hydroxyl-2methyl-5-(phenyl 

methyl)(5-alpha, 10- alpha)-

dihydroergotamine (C3) and 

dipropyl—S-propyl ester (C4)

E. coli (ATCC 25922) [80]

Shigella flexneri 

(ATCC 12022)

K. pneumonia (ATCC 

700603)

Salmonella enterica 

(ATCC 14028)

Streptomyces sp. Crude extract B. subtilis 

(UFPEDA-86)

[81]

Ethanolic fraction S. aureus 

(UFPEDA-02)

Ethyl acetate fraction S. aureus (MRSA) 

(UFPEDA-700)

C. albicans 

(UFPEDA-1007)

Micromonospora sp. A2 - Ethyl acetate extract; − FT-IR 

included aldehydes, alkynes, 2 

aromatic rings, alkanes and alkynes

S. aureus MRSA [82]

Pantoea agglomerans 1-Octadecane and 1-nonadecanol Klebsiella sp.

S. aureus

S. pneumonia

[83]

Streptomyces strain M7 Actinomycins S. aureus MRSA 

(MTCC 96)

[84]

Enterococcus VRE

Streptomyces sp. 

VITBKA3

Ethyl acetate extract S. aureus MRSA 

(ATCC 43300)

[85]

(1,1-Dichloropentane (DCP) 

(76%) - major compound in partial 

purification)

S. aureus MRSA 

(ATCC700699)

Table 2. 
Secondary metabolites produced by rhizosphere-derived microorganisms and antimicrobial activity against 
pathogenic microbes.
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Due to its fundamental function in suppressing pathogens, as well as endo-
phytes, rhizospheric fungi and bacteria, these microorganisms have attracted the 
attention of researchers as a new source of valuable bioactive metabolites with 
antimicrobial activity [71–73]. Since antibiotic resistance is a serious global health 
concern [74], exploring the potential of these microorganisms to discover novel 
medicine is also of great urgency. In this way, in recent years, secondary metabolites 
partially or totally identified from microorganisms that inhabit the rhizosphere 
have been shown to possess antimicrobial activities against important pathogen 
agents. Table 2 provides an overview of selected studies that represent significant 
advances in the search for secondary metabolites produced from rhizospheric fungi 
and bacteria tested against resistant and multidrug-resistant microorganisms.

Therefore, these and other studies emphasize the vital importance of continuing 
scientific research to find new antimicrobials and other compounds produced from 
rhizosphere microorganisms for other biotechnological purposes.

4. Actinobacteria and natural antimicrobial products

Actinobacteria phyla have a high G + C DNA content and share both the char-
acteristics of bacteria and fungi. These Gram-positive filamentous bacteria belong 
to one of the largest taxonomic groups recognized in the Bacteria domain, widely 
distributed across ecosystems [86–88].

In terms of metabolite production, the Streptomyces genus (Figure 3) stands out 
from other microorganisms due to its variety of bioactive substances and secondary 
metabolites of economic interest, since more than 80% of the industrially produced 
antibiotics are processed by this group of microorganisms [89–91].

Streptomyces tubercidicus is known to produce tubercidin, a potent substance that 
can inhibit several metabolic processes, including pathogens, such as Trypanosoma 
cruzi, viruses, fungi, and present a cytotoxic activity. However, few studies have 
been done on the isolation of S. tubercidicus and only four have been published in 
the production of bioactive substances [92, 93]. Ratti [94] endophytically isolated 
the strain of Streptomyces tubercidicus (RND-C) from Solanum lycocarpum Saint Hill, 
a medicinal plant typically found in the Brazilian tropical savannah, known for its 
anti-inflammatory properties. The fractions of the Natural product extract showed 
high antibiotic activity against E. coli and S. aureus.

The development of biofilm inhibitors has become a priority in recent years. 
Bacterial biofilms can tolerate antibiotics and host defense systems, leading to the 
emergence of drug-resistant and totally drug-resistant infections. As previously 
mentioned, Acinetobacter baumannii leads the list of priority pathogens resistant 
to antibiotics; therefore, biofilm inhibitors can be applied to decrease antibiotic 
tolerance by bacteria [95–97]. In this context, [96] conducted a study involving a 
mutasynthetic approach. Wild-type of Streptomyces gandocaensis, isolated from the 
marine sediment of the island of Punta Mona, in Costa Rica, was ribosome-engi-
neered based on a streptomycin-resistant phenotypes of S. gandocaensis, resulting 
in the activation and improvement of the production of active metabolites. The 
results showed a production of new substances called cahuitamycins, a peptidic 
metabolite that showed a potent inhibition in the formation of the biofilm produced 
by Acinetobacter baumannii.

Other studies report different strategies to successfully induce secondary 
metabolism and, subsequently, produce compounds that are not produced under 
usual growing conditions. Cryptic genes consist of silent sequences of DNA that 
are not expressed during the life cycle of a microorganism and can occur through 
 mutations and recombination processes in a few members of a population [98–100].  
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In this context, cultured actinobacteria combined with mycolic acid-containing bacte-
ria (Rhodococcus erythropolis, Dietzia spp., Nocardia spp., Williamsia spp., Gordonia 
spp., Mycobacterium spp., and Corynebacterium spp.) has been a useful approach for 
the discovery of antimicrobial natural products [99, 101–103]. However, [102] sug-
gests that mycolic acid is insufficient to activate these cryptic genes in Streptomyces 
lividans under monoculture conditions. According to the report, the direct attach-
ment of S. lividans cells on the mycolic acid-containing bacteria is crucial for the 
successful activation of secondary metabolism.

Caraballo-Rodríguez [3] tested the endophytic actinobacteria Streptomyces 
cattleya RLe1, S. mobaraensis RLe3, S. albospinus RLe7, Streptomyces sp. RLe9 and 
Kytasatospora cystarginea RLe10 co-cultured with endophytic fungi Coniochaeta 
sp. FLe4 and Colletotrichum boninense isolated from the Brazilian medicinal plant 
Lychnophora ericoides. The authors identified the broad-spectrum angucycline 
derived from S. mobaraensis and two molecules produced by endophytic fungi.

As already mentioned, the process of antibiotic resistance is spreading rapidly 
in relation to the discovery of new compounds and their introduction into clinical 
practice. The CDC classifies pathogens such as B. anthracis as biohazard category 
A, whose infection is fatal, and the symptoms may be similar to a common cold 
[104]. The preliminary study by [105] involved the isolation of the endophytic and 
rhizospheric microbiome associated with the medicinal plant Polygala sp. Natural 
products extracts produced by rhizoplane-derived actinomycetes showed potent 
inhibition against A. baumannii, B. anthracis, E. coli CFT073, L. monocytogenes, MR 
S. aureus, S. enterica, and S. flexneri.

Caryocar brasiliense, known as Pequi, is a tree native to the Brazilian savannah 
and commonly used in folk medicine. Bioactive substances such as gallic acid, 
quinic acid, ellagic acid, glucogalin, and corilagin were found in its extracts. In addi-
tion, they show a growth inhibition rate of the phytopathogenic Alternaria solani 
[106]. A rhizospheric strain of Streptomyces sp. was isolated from C. brasiliense, 
whose crude extract obtained from the axenic cultivation was able to inhibit C. 
albicans; in contrast, the co-cultured Streptomyces sp. extract increased the growth 
of C. albicans in 50% and promoted the inhibition of S. aureus [107].

Figure 3. 
(A) Antifungal activity produced by the endophytic Streptomyces sp. during the isolation. (B–D) Diversity of 
rhizospheric streptomycete colonies.



11

Plant-Associated Microorganisms as a Potent Bio-Factory of Active Molecules…
DOI: http://dx.doi.org/10.5772/intechopen.93598

Biotechnologically, the Streptomyces genus is known to be a skilled producer of 
a wide range of bioactive substances and represents an unexplored reservoir of 
unique chemical structures.

5. Natural products and endophytic fungi

The scientific interest in fungal natural products gained notoriety after the 
paclitaxel discovery [108]. Endophytic fungi exhibit the ability to synthesize 
plant-derived compounds by mimicking the metabolic pathways of the host plant, 
which confers multifaceted applications in the fields of agriculture, medicine, and 
pharmaceuticals [109].

The medicinal plant barbatimão (Stryphnodendron adstringens) has healing prop-
erties, antimicrobial, antioxidant, and anti-inflammatory activities, and its bark has 
a rich tannin-content [107, 110]. The study by [111] investigated the antimicrobial 
and anticancer activities of several fungi isolated from S. adstringens. The extract 
of Nigrospora oryzae promoted antifungal activity and inhibited the growth of C. 
albicans and C. sphaerospermum, while the extracts of Diaporthe phaseolorum and 
Xylaria spp. presented anticancer activities.

Although toxic to humans and animals, mycotoxins are secondary metabolites 
known for their cytotoxic effect against malignant cells [112]. Several species of 
Fusarium and Beauveria bassiana are skilled producers of mycotoxins, such as 
Beauvericin, which promote apoptosis in mammalian cells and exhibit insecticidal 
properties [113, 114], while Ochratoxin A is produced by some species of fungi, 
such as Aspergillus spp. and Penicillium spp. [115, 116].

The superbug methicillin-resistant Staphylococcus aureus is responsible for higher 
mortality rates in the community and hospital-acquired infections [117] due to 
its ability to resist multiple classes of antibiotics [118, 119]. In this context, fungal 
alkaloids are known for their potent antibacterial, anticancer, antiparasitic, and 
insecticidal activities [120]. In [121], a novel alkaloid compound, GKK1032C, is 
reported, which is produced by Penicillium sp. endophytically associated with the 
mangrove plant, exhibiting potent activity against methicillin-resistant S. aureus.

Saponins exhibit a wide range of biological activities, such as antifungal, 
hemolytic, antiviral, and immunomodulatory. These compounds represent an 
alternative to overcome multidrug-resistant microorganisms since they can act 
synergistically with antibiotics. Moreover, medicines that were once considered 
ineffective due to resistance problems might be effective for resistant microbes 
[122, 123]. Nevertheless, as reported by [124], saponin from Quillaja saponaria bark 
did not present synergistic activity in combination with ampicillin, streptomycin, 
and ciprofloxacin against a clinical strain of E. coli. In a short communication from 
[125], the isolation of triterpenoid saponins produced by the endophytic fungi 
Fusarium oxysporum and Aspergillus niger isolated from Panax notoginseng was 
reported. According to the authors, saponin extracts exhibited moderate to high 
antimicrobial activity against the pathogens tested.

6. Concluding remarks

Antibiotic-resistant microbes represent a severe threat to the public health 
system worldwide. Furthermore, multidrug-resistant ‘ESKAPE’ organisms 
(Enterococcus spp., Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp) are strictly associated with high rates 
of morbidity and mortality, as well as an economic impact.
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In this chapter, we highlighted the strategies of antimicrobial drug discovery 
produced by endophytes and rhizospheric microorganisms, since enormous 
untapped resources remain. The use of such microbes in biotechnological processes 
has increased in recent years, as they are skilled producers of natural bioactive 
products that can be used as pharmaceuticals to face this ever-increasing threat.
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