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Chapter

Ceramics Coated Metallic 
Materials: Methods, Properties 
and Applications
Dongmian Zang and Xiaowei Xun

Abstract

Surface coating can allow the bulk materials to remain unchanged, while the 
surface functionality is engineered to afford a more wanted characteristic. Ceramic 
coatings are considered as ideal coatings on metal which can significantly improve the 
surface properties of metal materials including anti-fouling, self-cleaning, corrosion 
resistance, wear resistance, oil/water separation and biocompatibility. Furthermore, 
various techniques have been utilized to fabricate a range of different ceramic coat-
ings with more desirable properties on metal materials, which make the materials 
widely used in service environment. This chapter focus will be on the types, fabrica-
tion methods, surface properties and applications of ceramics coated metal materials.

Keywords: ceramic coating, metallic materials, surface physicochemistry

1. Introduction

Metallic materials such as Fe, Cu, Ti, Al, Mg and their alloys have excellent 
mechanical and physical properties showing tremendous application in architec-
ture, marine, aerospace and biomedicine fields, etc. [1–6]. To a certain extents, the 
surface properties of the metallic materials are playing irreplaceable roles in operat-
ing environments. Surface functionalization can improve corrosion resistance, 
anti-fouling, self-cleaning, wear resistance, oil/water separation and biocompat-
ibility of metallic materials [7–9]. In this context, surface coating is an efficient and 
resource saving method to realize the surface functionalization of metallic materi-
als. In addition, ceramic coating is environmentally friendly, and has the advantages 
of low cost, simple preparation, corrosion and wear resistance, thermal stability, 
and mechanical durability [10]. As such, constructing a ceramic coating on metallic 
material surface is a rational strategy to realize the surface multi-function [11, 12].

In this chapter, we briefly introduce the types and the properties of ceramic 
coatings. Then, we summarize the strategies for preparing ceramic coatings on 
metallic materials and applications of ceramics coated metallic materials.

2. Ceramics coated metallic materials

Ceramics materials can be divided into oxide ceramics and non-oxide ceramics 
according to their compositions. Many oxide ceramics are metal oxides forming 
oxide films on their surfaces, which are used as coating materials for the protection 
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and functional layer of metallic materials (for example, aluminum, stainless steel or 
titanium alloys). Also, diverse non-oxide ceramic materials are used to functional-
ize the surfaces of metal materials.

2.1 Ceramic coatings types

Ti and its alloy have excellent corrosion resistant to alkali, chloride and some 
strong acids because of the compact oxide film (Titania, TiO2) formed spontaneously 
on surfaces. Therefore, TiO2 coating is considered to be an ideal corrosion resistant 
layer to protect the metal substrate from corrosion. Shen et al. fabricated a uniform 
TiO2 nanoparticle coating on 316 L stainless steel by using sol-gel technology, the 
electrochemical results showed that the TiO2 coating on 316 L stainless steel effectively 
prevent the substrate from corrosion in chloride containing solution at the room tem-
perature [13]. Furthermore, studies exhibited that the TiO2 coating with nanostructure 
had excellent photoactive antibacterial property and hemocompatibility [14, 15].

Alumina (Al2O3) exhibits exceptional mechanical property and thermostability 
possessing a broad range of applications in optics, electronic, and biomedical fields. 
In addition, the corrosion resistance of Al and its alloys is attributed to inherent 
Al2O3 coating, which can effectively improve the corrosion resistance of metallic 
substrate. Gao et al. prepared the Al2O3 ceramic coating on AZ31PH Mg alloy by 
laser remelting plasma-sprayed coating, it was found that the Al2O3 ceramic coating 
exhibited high hardness as well as wear and corrosion resistance properties [16].

Similarly, silica (SiO2) is also highly desirable coating materials on metallic materials 
as wear and corrosion resistant coating. The corrosion-resistant SiO2 ceramic coating 
on alloys was prepared by metal organic chemical vapor deposition (MOCVD) [17]. 
In addition, Sadreddini et al. revealed that the corrosion rate and porosity of coating 
decreased with increasing the quantity of the SiO2 nanoparticles in the bath [18, 19].

As the most stable oxide of manganese, manganese dioxide (MnO2) has abun-
dant reserves in the earth, and has the advantages of low cost, environmental 
friendliness and simple preparation, which is widely used in energy, catalysis 
and sewage treatment. MnO2 coating with different crystal structure and surface 
morphology can be prepared by different methods meeting wanted requirements 
[20, 21]. Inspired by lotus flower, we used an in situ immersion method to fabricate 
MnO2 coating on AZ31B Mg alloy, and post-modification with stearic acid to obtain 
the superhydrophobic MnO2 coating. The prepared superhydrophobic Mg alloy 
surface showed excellent self-cleaning property both in air and under oil (shown in 
Figure 1), as well as mechanical durability and chemical stability [22].

As to non-oxide ceramics, Hydroxyapatite (HA) is the main inorganic component 
of human and animal bones. It is a kind of bioactive ceramic material, which is widely 
used in bone tissue engineering. The HA ceramic coating was widely used in surface 
functionalization of metallic biomaterials. Hiromoto et al. prepared the HA coatings 
on AZ31 magnesium alloy, results showed that the HA coatings can remarkably reduce 
the Mg ion-release and corrosion current density [23]. In addition, it was reported 
that HA coating on 316 L stainless steel improved the corrosion behavior and biocom-
patibility of metallic implant and bone Osseointegration simultaneously [24]. Also, 
Surmeneva et al. prepared the HA coatings with different Ti contents on a Ti-6Al-4 V 
alloy, which was considered to be a possible candidate for biomedical applications [25].

Additionally, non-oxide ceramics materials such as silicon carbide (SiC), 
monolithic silicon nitride (Si3N4), and aluminum nitride (AlN) exhibit superior 
high-temperature strength and durability indicating their potential in industrial 
application [26, 27]. Furthermore, Liu et al. used non-oxide ceramics coating 
(bioactive silica-based glasses) on Ti alloys to promote the formation of HA layers in 
vivo [28].
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In this context, oxide ceramic coatings and non-oxide ceramic coatings are play-
ing important roles in the field of surface functionalization of metallic materials.

2.2 Properties of ceramic coating

Different metallic materials, in a sense, have different mechanical proper-
ties. Hardness and wear resistance are required to expand application prospect 
when metallic materials are used for industrial engineering. Numerous studies 
have shown that rare earth silicate barrier coatings can be potentially used for the 
application in high temperature aero-engines [29]. Bio-inspired by lotus leaf, Wu 
et al. synthesized the wear-resistant MoS2 coated BN–TiN composite coating [30]. 
In addition, Xu et al. indicated that electrochemical co-deposition of nano-SiO2 
and nano-CeO2 particles with Ni–W–P composite coatings on 15# steel significantly 
improved the microhardness and abrasion resistance properties of the substrate 
[31]. Not only that, nano-structured Ni-Al2O3 composite coatings on Al plate exhib-
ited the ultrahigh hardness (657 ± 28 Hv) and wear resistance [32]. Impressively, 
the TiO2/Al2O3 composite coatings were prepared on Ti-6Al-4 V Alloy by micro 
arc oxidation, and the microhardness up to 11,000 MPa. The wear resistance was 
increased by 9.5 times than the as-received sample [33].

Metal corrosion is commonly found, hard to prevent, does harm to our environ-
ment, and costs several percent of the gross domestic production (GDP) of an 

Figure 1. 
Self-cleaning tests on AZ31B Mg alloy. (a, b) time-sequence images showing pristine AZ31B Mg alloy and 
MnO2 coated AZ31B Mg alloy surface without self-cleaning properties, time-sequence images showing 
self-cleaning properties on superhydrophobic surface (c) in air and (d) in oil (isooctane). Scale bar, 1 cm. 
Reproduced with permission [22]. Copyright 2011, Elsevier.
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industrialized country. As such, establishing corrosion control systems for metallic 
materials is very important for the sake of environment and economy harmony. 
The ceramic coating is widely used to protect metallic materials because of its good 
corrosion resistance. Like other corrosion-resistant coatings, the ceramic coating 
provides a barrier on the surface of metallic materials effectively isolating the cor-
rosion solution from the substrate [34]. Moreover, the ceramic coating with micro-
nano hierarchical structure can be prepared to obtain a superhydrophobic surface 
after hydrophobic treatment. In this regard, superhydrophobic ceramic coating has 
favorable corrosion resistance due to its excellent water-repellent property showing 
great potential application in corrosion protection of metallic materials [35].

To improve the corrosion resistance of mild steel, Tiwari et al. fabricated the 
conversion coating and sol–gel Al2O3 coating on mild steel [36]. The electrochemi-
cal results indicated that this coating reduced the corrosion current density of the 
mild steel by 5 orders of magnitude and increased the corrosion potential up to 
more than 1.0 VSCE. Furthermore, Wang et al. used silane coupling agent bond-
ing to the hydrotalcite/hydromagnesite conversion coating on Mg alloy, then the 
superhydrophobic ceramic coating was obtained, as such, the superhydrophobic 
ceramic coating had excellent corrosion resistance owing to its anti-water property 
[37]. In this context, superhydrophobic ceramic coating with hierarchical structure 
can trapped more air when immersed in the corrosive liquid greatly reducing the 
corrosive media attacked to the substrate, which provide a new idea for the applica-
tion of ceramic coating in metallic materials protection.

Owing to their good thermal barrier properties, ceramic coatings are widely 
used to provide thermal barrier for heat transfer on the surface of metallic material 
and to improve the thermal stability of the substrate. Ghosh et al. evaluated the 
thermal properties of a thermal barrier coating (TBC) system on nimonic alloy 
(BaO–MgO–SiO2 based glass-ceramic bond coating, 8% (mass fraction) yttria 
stabilized zirconia (8YSZ) top coating), the results showed that thermal barrier 
ceramic coating has extremely low thermal diffusivity and thermal conductivity 
than the bare substrate [38].

Ceramic materials can be divided into bioinert materials and bioactive materials 
according to their biological properties. Bioinert materials do not induce any visible 
tissue reactions; the majority of ceramics belong to this group. Al2O3 and ZrO2 as bio-
inert materials have inherently low levels of reactivity, which have great potential for 
medical application owing to nontoxic, non-allergenic, and non-carcinogenic [39].

Some ceramics regarded as bioactive materials favor organ/tissue repairs and 
the integration of associated devices, which are essentially used in orthopedics, like 
favor bone repair and the integration of implants in bone tissues. As the most repre-
sentative bioactive ceramic material, HA is widely used in bone tissue engineering 
for it is the main component of bones and teeth of human and animal. To improve 
the biodegradation performance of AZ91D Mg alloy, Song et al. prepared the bioac-
tive HA coating electrodeposited on the Mg alloy, which can obviously reduce the 
biodegradation rate of AZ91D Mg alloy in stimulated body fluid (SBF) [40]. More 
importantly, HA-coated implants have been used in clinical research [41].

2.3 Fabrication of ceramic coating on metallic materials

The preparation and application of ceramic coatings have been studied for a long 
time. In order to adapt to different substrates, various technologies have been devel-
oped. These technologies of ceramics coated metallic materials enable to expand the 
application range in many fields.

Sol-gel method can easily prepare the ceramic coatings on metallic materials. 
Villatte et al. prepared TiO2 antibacterial coating on fixation pins by using sol-gel 
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method. This fabrication involved two steps: to create TiO2 coating via a sol-gel 
process, and then to anneal at 500°C for 1 h [15]. In order to improve oxidation 
resistance, Małecka et al. used the sol-gel method to obtain a SiO2 coating on 
Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni alloy [42]. Moreover, sol-gel nanostructured Al2O3 
coating can be fabricated on mild steel by hydrolysis and polycondensation of 
aluminum isopropoxide and catalyzed by HNO3 [36].

Micro-arc oxidation (MAO) has been used as a critical method for many years 
to prepare much thicker and harder ceramic coatings on metallic materials. Shen 
et al. used the MAO technology to fabricate the TiO2/Al2O3 composite coatings on 
Ti-6Al-4 V alloy in the Na2SiO3-(NaPO3)6-NaAlO2 solution. The growth process 
revealed that O2− reacted rapidly with Al3+ and Ti4+ (from substrate) to form the 
Al2O3 and Al2TiO5 simultaneously, and then Al2TiO5 was immediately decomposed 
into rutile TiO2 and α-Al2O3 [33]. In addition, the porous Cu-TiO2 coatings can be 
fabricated on titanium through MAO process under the constant current density of 
20 A/dm2 for 5 min, and the high stability TiO2 coating formed during MAO process 
improved the corrosion resistance of titanium [43].

Atomic layer deposition (ALD) is a surface modification method through depos-
iting inorganic species on the surface of different substrates, and the materials with 
arbitrary shape could be modified through vapor phase ALD. After multiple cycles 
of deposition, a conformal and uniform ceramic coating with good heat resistance 
and stiffness would be formed [44]. Huang et al. deposited the dense TiO2 thin 
coatings on Co-Cr alloy with excellent antifungal activity by using ALD process 
[45]. Impressively, in order to prevent copper from water corrosion, Abdulagatov 
et al. developed an ultrathin barrier film on Cu. In this context, the barrier film was 
prepared by utilizing Al2O3 ALD and then TiO2 ALD to protect the substrate [46].

Electrochemical method is usually used to fabricate oxide ceramics coated 
metallic materials. Notably, the electrochemical method is independent on the 
shape and the size of substrate. As such, Song et al. used electrodeposit technology 
to obtain the HA coatings on AZ91D Mg alloy [40], and Charlot et al. employed 
anodic electrophoretic deposition (EPD) to fabricate the SiO2 submicron coatings, 
and found that the thickness of the film was related to the applied electric field [47]. 
In addition, the anodizing method is another well-established electrochemistry to 
form the ceramic coatings. Vengatesh et al. reported an anodic aluminum oxide sur-
face by using anodizing process to prepare the superhydrophobic Al surface [48]. 
The prepared aluminum anodizing film not only had strong surface adhesion to the 
substrate, but also enabled fatty acids graft on the substrate ensuring the stability of 
superhydrophobic surface.

As a surface-deposited technology, plasma treatment is a simple and effective 
way to obtain ceramics coated metallic materials showing fine adhesion strength of 
coating-substrate. To improve corrosion resistance and bioactivity, the HA coat-
ing was prepared on AZ91HP Mg alloy by using plasma spraying method [49]. In 
addition, Sun et al. fabricated a TiO2 coating on titanium substrate by using plasma 
electrolytic oxidation method in a sodium silicate (Na2SiO3) aqueous solution. In 
this regard, the TiO2 coating was obtained on the titanium substrate with the best 
quality of density and adhesion by adjusting the duty ratio, frequency, and positive/
negative pulse proportion on the microstructure and phase compositions [50].

Magnetron sputtering is also an efficient method to prepare ceramic coatings on 
the surface of metallic materials. Krishna et al. developed a novel process to improve 
the tribological and corrosion properties of austenitic stainless steels, a titanium 
coating deposited onto AISI 316 L stainless steel by magnetron sputtering, and then 
to partially convert the titanium coatings into titanium oxide by thermal oxidation. 
The resultant coating showed strong adhesion, good corrosion resistance, together 
with excellent surface hardness and tribological properties [51].
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Solution immersion is a conventional method for fabrication of ceramic coat-
ings on the surface of metallic materials. In this context, it is inexpensive and easy 
to carry out [52, 53]. In order to obtain a HA coating on Mg and its alloy, Hiromoto 
et al. immersed AZ31 Mg alloy and pure Mg in a 250 mmol/L C10H12N2O8Na2Ca 
aqueous solution of pH 8.9 [23]. Recently, a superhydrophobic MnO2 coating was 
fabricated on AZ31B Mg alloy using two-step in situ immersion method, and post-
modification with stearic acid. The superhydrophobic surface showed excellent 
corrosion resistant and anti-bioadhesion [54].

Laser-cladding is considered to be one of the most effective methods to fabricate 
a ceramic coating on metallic materials because of the powerful energy of laser 
to accelerate metal oxidation [55]. Boinovich et al. fabricated a superhydrophobic 
surface on Al alloys by nanosecond laser treatment [56]. After laser etching, a thick 
oxide film with high roughness was formed after several stages of melting and 

Method Ceramic coating Substrate Property Ref.

Sol-gel TiO2 Stainless steel Antibacterial and 

sufficient

Mechanical strength

[15]

SiO2 Titanium alloy Oxidation resistance [42]

Al2O3 Mild steel Corrosion resistance [36]

Micro-arc oxidation TiO2/Al2O3 Ti-6Al-4 V alloy Wear resistance [33]

TiO2 Titanium Corrosion resistance [43]

Atomic layer 

deposition

TiO2 Co-Cr Antifungal [45]

Al2O3/TiO2 Copper Corrosion resistance [46]

Electrochemical HA Mg alloy Biodegradation 

performance

[40]

SiO2 Platinum [47]

Al2O3 Aluminum Corrosion resistance [48]

Plasma treatment HA Mg alloy Corrosion resistance 

and bioactivity

[49]

TiO2 Titanium Corrosion resistance [50]

Magnetron sputtering HA Titanium Corrosion resistance [25]

TiO2 Stainless steel Tribological properties 

and corrosion 

resistance

[51]

Solution immersion HA Mg alloy Corrosion resistance [23]

MnO2 Mg alloy Self-cleaning [54]

Laser-cladding Al2O3 Aluminum Corrosion resistance [56]

Al2O3/TiB2/TiC Carbon steel Microhardness and 

wear resistance

[57]

Metal organic 

chemical vapor 

deposition

SiO2 Alloys / [17]

Dip-coating Na2SiO3/Al2O3 Stainless steel High temperature 

oxidation inhibition 

and corrosion 

resistance

[60]

Table 1. 
Summary of fabrication methods of ceramic coated metallic materials.
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solidifying. Similarly, through laser cladding, Al2O3-TiB2-TiC ceramic coatings can 
be fabricated on carbon steel surface providing high microhardness and good wear 
resistance due to the results that the cladding thin film was uniformly and densely 
organized on the substrate [57].

Chemical vapor deposition can produce the ceramic coatings with controlled 
surface topography. Hofman et al. deposited the SiO2 coatings on alloys by metal 
organic chemical vapor deposition (MOCVD) in sulphidizing high-temperature 
environments. The results indicated that the presence of silanol groups in SiO2 
coatings reduced the viscosity of the coating and enhanced the stress relaxation, 
thereby improving the coating performance [17].

Dip-coating is a time-saving and low-cost method for preparation of ceramic 
coatings [58, 59]. In 2017, Yu et al. produced a chemically robust and corrosion 
resistant Na2SiO3/Al2O3 composite coating on the surface of the 304 stainless steel, 
on which Na2SiO3 was incorporated into the nanopore of porous alumina layer by 
dip-coating heat treatment [60].

The fabrication methods of ceramic coated metallic materials are summarized in 
Table 1.

3. The applications of ceramics coated metallic materials

Up to now, the ceramics coated metallic materials have great potential in a wide 
variety of applications due to its unusual properties, such as good mechanical 
properties, corrosion resistance, thermal stability, and biological properties. It is 
worth noted that hydrophobic treatment of ceramic coatings on metallic materials 
ensuring superhydrophobic surfaces with special surface physicochemistry has 
recently received much attention in many fields.

It is well known that metallic material is irreplaceable in industrial application. 
The ceramic coatings bestow numerous unusual properties to metallic materials. 
Early in 1987, Ceramic coating as thermal barrier coating was tested on turbine 
blades in a research engine. Today, thermal barrier ceramic coatings are used in 
a low risk location within the turbine section of certain gas turbine engines [11]. 
In addition, Qin et al. reported that multiphase ceramic coatings significantly 
improved the hardness and wear resistance properties of 5052 Al alloy, which is 
conducive to industrial application [61]. In 2018, an alumina-titania ceramic coating 
was fabricated on carbon steel for corrosion protection [62].

Recently, superhydrophobic surface has been extensively developed due 
to its unique property including corrosion protection, self-cleaning, oil water 
separation, anti-fouling, anti-icing, and drag reduction [63]. Superhydrophobic 
ceramic coating was obtained by hydrophobic treatment of ceramic coating with 
hierarchical rough structure, which greatly expanded the application range of 
metal materials [64, 65]. In 2020, Emarati et al. fabricated a superhydrophobic 
nano-TiO2/TMPSi ceramic composite coating on 316 L steel by using a one-step 
electrophoretic deposition method, the results indicated that the superhydrophobic 
ceramic nanocomposite coating had excellent corrosion resistance [66]. Also, the 
water shear stress and drag can be reduced on superhydrophobic ceramic coated 
metallic materials surfaces resulting from the air pockets present between the 
liquid and solid substrate. In this context, the rolling-off droplets can remove 
contamination particles displaying self-cleaning feature [22]. Furthermore, a 
superhydrophobic ceramic coating is also reported as an emerging material exhibit-
ing their promising diverse applications for anti-fogging, anti-fouling, and oil 
water separation [67–69]. Figure 2 shows the oil/water separation of 1H, 1H, 2H, 
2H-perfluorodecyltriethoxysilane-modified CuO-grown copper foam (PCCF).
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In addition, ceramic coatings have numerous applications in the field of 
 biomedical engineering, mainly because of their biological properties. The bioinert 
properties of ceramic coatings help them with biocompatibility, and good hardness 
and wear-resistance properties make them suitable for substitution of hard tissues 
(bones and teeth). On the contrary, bioactive ceramic coatings such as HA coating 
have been clinically used onto the metallic implant surfaces combining the mechan-
ical strength of metals and their alloys with the excellent biological properties of 
ceramics for the enhancement of new bone osteogenesis [70, 71].

Importantly, researching work shows that superhydrophobic surfaces can 
dramatically reduce the contact between fouling organisms and substrate surfaces 

Figure 2. 
Separation apparatus with an 18:25 v:v isooctane/water mixture above PCCF. Inset, PCCF was fixed in Cu 
flange and then sandwiched between two glass tubes (a). Isooctane passed through PCCF whereas water was 
retained (b). Water is dyed blue. Scale bar, 3 cm. Reproduced with permission [69]. Copyright 2013, Royal 
Society of Chemistry.

Figure 3. 
The comparison of properties of unmodified ceramic coating and superhydrophobic ceramic coating on metallic 
materials.
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exhibiting excellent anti-fouling and hemocompatibility properties [72, 73]. Hu 
et al. designed a superhydrophobic SiO2 biodegradable coating with exceptional 
anti-bioadhesion through one-step co-electrospraying poly(L-lactide) (PLLA) 
modified with silica nanoparticles [74]. It was revealed that the superhemophobic 
TiO2 surface with a robust Cassie–Baxter state displayed more hemocompatible 
compared to hemophobic or hemophilic TiO2 surface [75]. The comparison of 
properties of unmodified ceramic coating and superhydrophobic ceramic coating 
on metallic materials is shown in Figure 3.

4. Conclusion

In this chapter, we introduce and discuss various techniques utilized to fabricate 
a range of different ceramic coatings on metal materials with desirable properties 
such as good mechanical property, corrosion resistance, thermal stability, and 
biological property. It is not surprising that superhydrophobic ceramic coatings on 
metallic materials can make the materials be attractive for applications in anti-
fouling, self-cleaning, corrosion protection, wear resistance, oil/water separation 
and biotechnology.
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