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Chapter

A New Boundary Element
Formulation for Modeling
and Optimization of
Three-Temperature
Nonlinear Generalized
Magneto-Thermoelastic
Problems of FGA Composite
Microstructures
Mohamed Abdelsabour Fahmy

Abstract

The main purpose of this chapter is to propose a new boundary element formu-
lation for the modeling and optimization of three-temperature nonlinear general-
ized magneto-thermoelastic functionally graded anisotropic (FGA) composite
microstructures’ problems, which is the gap of this study. Numerical results show
that anisotropy and the functionally graded material have great influences on the
nonlinear displacement sensitivities and nonlinear thermal stress sensitivities of
composite microstructure optimization problem. Since, there are no available data
for comparison, except for the problems with one-temperature heat conduction
model, we considered the special case of our general study based on replacing three-
temperature radiative heat conductions with one-temperature heat conduction. In
the considered special case, numerical results demonstrate the validity and accuracy
of the proposed technique. In order to solve the optimization problem, the method
of moving asymptotes (MMA) based on the bi-evolutionary structural optimization
method (BESO) has been implemented. A new class of composite microstructures
problems with holes or inclusions was studied. The two-phase magneto-
thermoelastic composite microstructure which is studied in this chapter consists
of two different FGA materials. Through this chapter, we investigated that the
optimal material distribution of the composite microstructures depends strongly on
the heat conduction model, functionally graded parameter, and shapes of holes or
inclusions.

Keywords: boundary element method, modeling and optimization,
three-temperature, nonlinear generalized magneto-thermoelasticity, functionally
graded anisotropic, composite microstructures
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1. Introduction

In the last few years, there is significant interest in using advanced composite
structures, and among the oldest examples of them, reinforced concrete, mixing
concrete and steel, and plastics laminated with wood. The main benefit of the
composite structures which consist of two or more different materials is that the
properties of each material can be combined to form a single unit that performs
better than the separate component parts. The most common form of a composite
structure in construction is a steel and concrete composite, where concrete works
well in pressure but has less resistance to tension. However, steel is extremely
strong in tension, and when tied together, it results in a highly efficient and light-
weight unit usually used for structures such as buildings and multistory bridges.
Although fiberglass and carbon/epoxy composites are not yet as important as the
oldest advanced composite structures in terms of tonnage or total revenue, they are
very important in engineering, aerospace, transportation, bioengineering, optics,
electronics, commodities, chemical plant, and energy industries, especially for the
new airplanes that will concentrate on achieving major improvements in the fuel
use, emissions, noise, transportation energy consumption, and other important
issues to conserve the environment [1–21].

Microstructure has been known to play a major role in determining the behavior
of material. Therefore, material engineers strive to control the microstructure by
improving their properties with the aim of producing a uniform microstructure
throughout the material. They also produced FGMs whose microstructures depend
on the position by treating the microstructure as a position-dependent variable; the
properties of different materials can be combined into one component to achieve an
optimum performance in a specific application [22, 23].

In recent years, great attention has been directed toward the study of nonlinear
generalized magneto-thermoelastic interactions in functionally graded anisotropic
(FGA) structures due to its many applications in physics, geophysics, earthquake
engineering, astronautics, aeronautics, mining engineering, military technologies,
plasma, robotics, high-energy particle accelerators, nuclear reactors, automobile
industries, nuclear plants, soil dynamics, and other engineering and industrial
applications. Duhamel [24] and Neuman [25] proposed the classical
thermoelasticity (CTE) theory which has the following two paradoxes: first, the
infinite propagation speeds of thermal signals are predicted, and second, there is no
any elastic term included in heat equation. Biot [26] invented the classical coupled
thermoelasticity (CCTE) theory to beat the first paradox in CTE, but CTE and
CCTE share the second paradox. Then, numerous generalized thermoelasticity the-
ories have been introduced to overcome the two paradoxes inherent in CTE, such as
the extended thermoelasticity (ETE) theory of Lord and Shulman [27];
temperature-rate-dependent thermoelasticity (TRDTE) theory of Green and
Lindsay [28]; three linear generalized thermoelasticity theories of Green and
Naghdi (GN) [29, 30]; namely I, II, and III, respectively [where, GN theory I is
based on Fourier’s law of heat conduction and is identical to CTE theory, GN theory
II characterizes the thermoelasticity without energy dissipation (TEWOED), and
GN theory III characterizes the thermoelasticity with energy dissipation
(TEWED)]; dual phase-lag thermoelasticity (DPLTE) [31, 32]; and three-phase-lag
thermoelasticity (TPLTE) [33].

A large amount of research has been done on the generalized problems of
thermoelasticity [34–44]. Our interest in studying the three-temperature
thermoelasticity [45–49] has increased due to its important low-temperature and
high-temperature applications. Due to the computational difficulties, inherent in
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solving three-temperature nonlinear generalized magneto-thermoelastic problems
of FGA composite microstructures, the problems become too complicated with no
general analytical solution. Therefore, we propose a new boundary element model-
ing technique which has recently been successfully developed and implemented to
obtain the approximate solutions for such problems. Now, the boundary element
method (BEM), which is also called boundary integral equation method, has been
widely adopted in a large variety of engineering and industrial applications. In the
BEM, only the boundary of the solution domain needs to be discretized, so, it has a
major advantage over other methods which require the whole domain
discretization, such as the finite difference method (FDM) [50–52], discontinuous
Galerkin method (DGM) [53], and finite element method (FEM) [54–57]. This
advantage of BEM over domain methods has significant importance for modeling of
nonlinear generalized thermoelastic problems which can be implemented using
BEM with little cost and less input data [58–71]. Recently, scientists were convinced
that only the FEM method could solve complex engineering problems. But now
after the huge achievements of the BEM and its ability to solve complex engineering
problems with high efficiency, it gets them to change their conviction. Also, they
tried to combine FEM and BEM in the solution of their complex problems.

The main aim of this chapter is to propose a novel boundary element formula-
tion for modeling and optimization of three-temperature nonlinear generalized
thermoelastic problems of functionally graded anisotropic (FGA) composite micro-
structures. The proposed boundary element technique has been implemented suc-
cessfully for solving several engineering, scientific and industrial applications due to
its simplicity, efficiency, ease of use, and applicability [72–85]. The numerical
results are presented graphically to show the influence of anisotropy and function-
ally graded materials on the sensitivities of displacements and thermal stresses.
Also, numerical results show the effect of heat conduction model, functionally
graded parameter, holes shape, and inclusions shape. Numerical results demon-
strate the validity and accuracy of our proposed BEM formulation and technique.

A brief summary of the chapter is as follows: Section 1 introduces an overview of
the historical background for a better understanding of the nonlinear generalized
magneto-thermoelastic problems and composite materials applications. Section 2
describes the physical modeling of the three-temperature nonlinear generalized
thermoelastic problems of FGA composite microstructures. Section 3 outlines the
BEM implementation for solving the governing equations of the considered prob-
lem to obtain the three temperatures and displacement fields. Section 4 outlines the
topology optimization technique used to obtain the optimal composite microstruc-
ture with and without holes or inclusions of various shapes. Section 5 presents the
new numerical results that describe the effects of anisotropy and functionally
graded parameters on the problem’s fields’ sensitivities during the optimization
process. Section 6 outlines the significant findings of this chapter.

2. Formulation of the problem

Consider a Cartesian coordinates system Ox1x2x3 as shown in Figure 1. We shall
consider a functionally graded anisotropic composite microstructure of a finite
thickness β placed in a primary magnetic field H0 acting in the direction of the
x3-axis. The considered composite microstructure occupies the region

R ¼ x1, x2, x3ð Þ : 0< x1 < α, 0< x2 < β, 0< x3 < γ

n o

with functionally graded

material properties in the thickness direction.
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The unified governing equations of three-temperature nonlinear generalized
magneto-thermoelasticity for FGA composite microstructures can be expressed as
follows [45–49]:

σab,b þ τab,b ¼ ρ xþ 1ð Þm€ua (1)

σab ¼ xþ 1ð Þm Cabfgu f ,g � βab T � T0 þ τ1 _T
� �� �

(2)

τab ¼ μ xþ 1ð Þm ~haHb þ ~hbHa � δba
~h fH f

� �� �

(3)

The 2D-3T radiative heat conduction Eqs. (7)–(9) can be expressed as follows:

∇ δ1jα þ δ2j
∗
α

� �
∇Tα r, τð Þ

� �
� r, τð Þ ¼ Cvα ρ xþ 1ð Þmδ1δ1j

∂Tα r, τð Þ

∂τ
(4)

where

 r, τð Þ ¼

ρei Te � Tið Þ þ ρer Te � Tp

� �
þ, α ¼ e, δ1 ¼ 1

�ρei Te � Tið Þ þ, α ¼ i, δ1 ¼ 1 ,Cvα ¼

ce α ¼ e

ci α ¼ i

cpT
3
p α ¼ p

8

>><

>>:

�ρer Te � Tp

� �
þ, α ¼ p, δ1 ¼ T3

p

8

>>>>>>>><

>>>>>>>>:

(5)

in which

 r, τð Þ ¼ �δ2jα
_Tα,ab þ βabTα0 xþ 1ð Þm Åδ1i _ua,b þ τ0 þ δ2ið Þ€ua,b

� 	

þρcα xþ 1ð Þm τ0 þ δ1jτ2 þ δ2j
� �

€Tα

� � (6)

and

ei ¼ ρeiT
�2=3
e ,er ¼ ρerT

�1=2
e ,α ¼ αT

5=2
α , α ¼ e, i,p ¼ pT

3þ
p (7)

Figure 1.
Computational domain of considered structure.
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where σab, τab, uk, Tα, and Tα0 are the mechanical stress tensor, Maxwell’s
electromagnetic stress tensor, displacement vector, temperature, and reference
temperature, respectively; Cabfg Cabfg ¼ Cfgab ¼ Cbafg

� �
and βab βab ¼ βbað Þ are,

respectively, the constant elastic moduli and stress-temperature coefficients of the
anisotropic medium; μ is the magnetic permeability; ~h is the perturbed magnetic
field; α α ¼ e, i, pð Þ are the thermal conductivity coefficients; Cvα α ¼ e, i, pð Þ are
specific heat coefficients; e, i, and p denote electron, ion, and phonon, respectively;
 ∗

α is the second order tensor associated with the TEWED and TEWOED theories;
ei is the electron-ion energy coefficient; ep is the electron-phonon energy
coefficient; cα α ¼ e, i, pð Þ are constants; ρ, τ, and Å are the density, time, and unified
parameter which introduced to consolidate all theories into a unified equations
system, respectively; τ0, τ1, and τ2 are the relaxation times; and m is a functionally
graded parameter. Also, g1, g2, Ψ f , and δ f are suitably prescribed functions; ta are
the tractions defined by ta ¼ σabnb; and δ1j and δ2j are the Kronecker delta functions.

A superposed dot denotes the differentiation with respect to the time, and a
comma followed by a subscript denotes partial differentiation with respect to the
corresponding coordinates.

The unit mass total energy can be written as

P ¼ Pe þ Pi þ Pp,Pe ¼ ceTe,Pi ¼ ciTi,Pp ¼
1
4
cpT

4
p (8)

By using the following initial and boundary conditions:

Tα x, y, 0ð Þ ¼ T0
α x, yð Þ ¼ g1 x, τð Þ (9)

α

∂Tα

∂n









C1

¼ 0, α ¼ e, i,Tr











C1

¼ g2 x, τð Þ (10)

α

∂Tα

∂n









C2

¼ 0, α ¼ e, i, p (11)

u f x, y, 0ð Þ ¼ _u f x, y, 0ð Þ ¼ 0 for x, yð Þ∈R∪C (12)

u f x, y, τð Þ ¼ Ψ f x, y, τð Þ for x, yð Þ∈C3 (13)

ta x, y, τð Þ ¼ δ f x, y, τð Þ for x, yð Þ∈C4, τ>0,C ¼ C3 ∪C4,C3 ∩C4 ¼ ∅ (14)

By using the fundamental solution that satisfies the following equation:

D∇2Tα þ
∂T ∗

α

∂n
¼ �δ r� pi

� �
δ τ � rð Þ,D ¼

α

ρc
(15)

where pi are singular points.
The above governing Eqs. (1)–(4) can be reduced to the different theories of

three-temperature nonlinear generalized magneto-thermoelasticity for FGA com-
posite microstructures as follows [77]:

CTE : j ¼ 1, Å ¼ 0 and τ0 ¼ τ1 ¼ τ2 ¼ 0 (16)

CCTE : j ¼ 1, Å ¼ 1 and τ0 ¼ τ1 ¼ τ2 ¼ 0 (17)

ETE : j ¼ 1, Å ¼ 1 and τ1 ¼ τ2 ¼ 0 (18)

TRDTE : j ¼ 1, Å ¼ 1 and τ0 ¼ 0 (19)
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TEWED : j ¼ 2, Å ¼ 0 and τ0 ¼ 0 (20)

TEWOED : j ¼ 2, Å ¼ 0, τ0 ¼ 0 and α ! 0 (21)

3. BEM implementation

By using Eqs. (2) and (3), we can write Eq. (1) as follows:

Lgbu f ¼ ρ€ua �DaT ¼ f gb (22)

where

Lgb ¼ Dabf
∂

∂xb
þDaf þ ΛDa1f ,Dabf ¼ Cabfgε, ε ¼

∂

∂xg
,

Daf ¼ μH2
0

∂

∂xa
þ δa1Λ

� �
∂

∂x f
,Da ¼ �βab

∂

∂xb
þ δb1Λþ τ1

∂

∂xb
þ Λ

� �
∂

∂τ

� �

,

Λ ¼
m

xþ 1
, f gb ¼ ρ€ua �DaT: (23)

The field equations can be written in the following operator form:

Lgbu f ¼ f gb (24)

LabT ¼ f ab (25)

where the operators Lgb and f gb are defined above in Eq. (23), and the operators
Lab and f ab are defined as follows:

Lab ¼ ∇ δ2j
∗
α

� �
∇ (26)

f ab ¼ �∇ δ1jα

� �
∇þ cαρδ1δ1j xþ 1ð Þm

∂Tα r, τð Þ

∂τ
þ r, τð Þ (27)

By applying the weighted residual method (WRM) to the differential Eq. (24),
we obtain

ð

R

Lgbu f � f gb

� �

u ∗
dadR ¼ 0 (28)

Now, we can choose the fundamental solution u ∗
df as weighting function as

Lgbu
∗
df ¼ �δadδ x, ξð Þ (29)

The corresponding traction field can be expressed as

t ∗da ¼ Cabfg xþ 1ð Þmu ∗
df ,gnb (30)

The traction vector can be expressed as

ta ¼
ta

xþ 1ð Þm
¼ xþ 1ð Þm Cabfgu f ,g � βab T þ τ1 _T

� �� �
nb (31)
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By applying integration by parts to Eq. (28) and using the sifting property with
Eqs. (29) and (31), we obtain

ud ξð Þ ¼

ð

C

u ∗
data � t ∗daua þ u ∗

daβab xþ 1ð ÞmTnb
� �

dC�

ð

R

f gbu
∗
dadR (32)

The fundamental solution T ∗ can be expressed as

LabT
∗ ¼ �δ x, ξð Þ (33)

By implementing the WRM and integration by parts, we can write Eq. (25) in
the following form:

ð

R

LabTT
∗ � LabT

∗Tð ÞdR ¼

ð

C

q ∗T � qT ∗ð ÞdC (34)

where

q ¼ �αt:bna (35)

q ∗ ¼ �αT
∗
:bna (36)

Based on the sifting property, we can express Eq. (34) as follows:

T ξð Þ ¼

ð

C

q ∗T � qT ∗ð ÞdC�

ð

R

f abT
∗ dR (37)

The field Eqs. (32) and (37) can be written in one equation of the form:

ud ξð Þ

T ξð Þ

" #

¼  

ð

C

�
t ∗da �u ∗

daβab xþ 1ð Þmnb

0 �q ∗

" #
ua

T

" #

þ
u ∗
da 0

0 �T ∗

" #
ta

q

" #( )

dC

�

ð

R

u ∗
da 0

0 �T ∗

" #
f gb

� f ab

2

4

3

5dR

(38)

The generalized thermoelastic vectors and tensors can be written in contracted
notation as follows:

UA ¼
ua a ¼ A ¼ 1, 2, 3

T A ¼ 4




(39)

TA ¼
ta a ¼ A ¼ 1, 2, 3
q A ¼ 4




(40)

U ∗
DA ¼

u ∗
da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

0 d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�T ∗ D ¼ 4;A ¼ 4

8

>>>><

>>>>:

(41)
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~T
∗

DA ¼

t ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

�u ∗
d d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�q ∗ D ¼ 4;A ¼ 4

8

>>>>><

>>>>>:

(42)

~u ∗
d ¼ u ∗

daβafn f (43)

The thermoelastic representation formula (38) can be written in contracted
notation as

UD ξð Þ ¼

ð

C

U ∗
DATA � ~TDAUA

� �
dC�

ð

R

U ∗
DASAdR (44)

The vector SA can be splitted as

SA ¼ STA þ S
_T
A þ S

€T
A þ S _u

A þ S€uA (45)

where STA ¼ ωAFUF

with

ωAF ¼

�Da A ¼ 1, 2, 3;F ¼ 4

∇ δ2j
∗
α

� �
∇Tα þ

ρei Te � Tið Þ þ ρer Te � Tp

� �
, α ¼ e, δ1 ¼ 1

�ρei Te � Tið Þ, α ¼ i, δ1 ¼ 1

�ρer Te � Tp

� �
, α ¼ p, δ1 ¼

4
ρ
T3
p

8

>>>><

>>>>:

otherwise

8

>>>>>><

>>>>>>:

(46)

S
_T
A ¼ �δ2jα

∂

∂xa

∂

∂xb
þ cαρδ1δ1j xþ 1ð Þm

� �

δAF _UF

with δAF ¼
1 A ¼ 4;F ¼ 4

0 otherwise




(47)

S
€T
A ¼ �ρcα xþ 1ð Þm τ0 þ δ1jτ2 þ δ2j

� �
δAF €UF (48)

S _u
A ¼ �βab xþ 1ð ÞmTα0Åδ1j _UF (49)

S€uA ¼ Ⅎ€UF with Ⅎ

¼
ρ xþ 1ð Þm A ¼ 1, 2, 3; F ¼ 1, 2, 3,
�Tα0βfg xþ 1ð Þm τ0 þ δ2j

� �
A ¼ 4; f ¼ F ¼ 4

(

(50)

The thermoelastic representation formula (38) can also be expressed as follows:

SA½ � ¼  

�DaTα

∇ δ2j
∗
α

� �
∇Tα þ

ρei Te � Tið Þ þ ρer Te � Tp

� �
, α ¼ e, δ1 ¼ 1

�ρei Te � Tið Þ, α ¼ i, δ1 ¼ 1

�ρer Te � Tp

� �
, α ¼ p, δ1 ¼

4
ρ
T3
p

8

>>>>><

>>>>>:

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5
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þ δ2jα

∂

∂xa

∂

∂xb
� cαρδ1δ1j xþ 1ð Þm

� � 0

_Tα

2

4

3

5

�ρcα xþ 1ð Þm τ0 þ δ1jτ2 þ δ2j
� �

0

€Tα

2

4

3

5� βab xþ 1ð ÞmTα0Åδ1j
0

_u f ,g

2

4

3

5

þ
ρ xþ 1ð Þm€ua

�Tα0βfg xþ 1ð Þm τ0 þ δ2j
� �

€u f ,g

2

4

3

5

(51)

In order to transform the domain integral in Eq. (44) to the boundary, we
approximate the source vector SA by a series of given known functions f

q
AE and

unknown coefficients αqE:

SA ≈
XN

q¼1

f
q
ANα

q
N (52)

Thus, the thermoelastic representation formula (44) can be expressed as

UD ξð Þ ¼

ð

C

U ∗
DATA � ~T

∗

DAUA

� �

dC�
XN

q¼1

ð

R

U ∗
DA f

q
ANdRα

q
N (53)

By applying the WRM to the following elastic and thermal equations:

Lgbu
q
fn ¼ f qan (54)

LabT
q ¼ f

q
pj (55)

Now, the weighting functions were chosen as the elastic and thermal funda-
mental solutions u ∗

da and T ∗ .
Then, the representation formulae of elastic and thermal fields are given as

follows:

u
q
dn ξð Þ ¼

ð

C

u ∗
dat

q
an � t ∗dau

q
an

� �
dC�

ð

R

u ∗
da f

q
an dR (56)

Tq ξð Þ ¼

ð

C

q ∗Tq � qqT ∗ð ÞdC�

ð

R

f qT ∗ dR (57)

The elastic and thermal representation formulae can be combined in one single
equation as

U
q
DN ξð Þ ¼

ð

C

U ∗
DAT

q
AN � T ∗

DAU
q
AN

� �
dC�

ð

R

U ∗
DA f

q
ANdR (58)

By substituting from Eq. (58) into Eq. (53), the coupled thermoelastic represen-
tation formula can be expressed as follows:
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UD ξð Þ ¼

ð

C

U ∗
DATA � �T

∗

DAUA

� �

dCþ
XN

q¼1

U
q
DN ξð Þ þ

ð

C

T ∗
DAU

q
AN � U ∗

DAT
q
AN

� �
dC

0

B
@

1

C
Aα

q
N

(59)

By differentiation of Eq. (59) with respect to ξl, we obtain

∂UD ξð Þ

∂ξl
¼�

ð

C

U ∗
DA,lTA � �T

∗

DA,lUA

� �

dC

þ
XN

q¼1

∂U
q
DN ξð Þ

∂ξl
�

ð

C

T ∗
DA,lU

q
AN �U ∗

DA,lT
q
AN

� �
dC

0

B
@

1

C
Aα

q
N

(60)

According to the procedure described in Fahmy [78], the boundary integral
Eq. (59) can be expressed as

~ζU � ηT ¼ ζ �U � η �℘
� �

α (61)

According to the technique of Partridge et al. [68], the displacements UF and
velocities _UF can be approximated as

UF ≈
XN

q¼1

f
q
FD xð Þγ

q
D (62)

_UF ≈
XN

q¼1

f
q
FD xð Þ~γ

q
D (63)

where f
q
FD are known functions, and γ

q
D and ~γ

q
D are unknown coefficients.

The gradients of the displacement and velocity can be approximated as

UF,g ≈
XN

q¼1

f
q
FD,g xð Þγ

q
K (64)

_UF,g ≈
XN

q¼1

f
q
FD,g xð Þ~γ

q
D (65)

By substituting from Eqs. (62) and (63) into Eqs. (46) and (49), the
corresponding source terms can be expressed as

STA ¼
XN

q¼1

S
T,q
ADγ

q
D (66)

S _u
A ¼ �βab xþ 1ð ÞmTα0Åδ1j

XN

q¼1

S
_u,q
AD~γ

q
D (67)
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where

S
T,q
AD ¼ SAF f

q
FD,q (68)

S
_u,q
AD ¼ SFA f

q
FD,g (69)

By applying the point collocation procedure of Gaul et al. [10] to Eqs. (52), (62),
and (63), we obtain the following equation system:

�S ¼ Jα,U ¼ J0γ, _U ¼ J0~γ (70)

Solving the system (70) for α, γ, and ~γ yields

α ¼ J�1�Sγ ¼ J0
�1
U ~γ ¼ J0

�1 _U (71)

Now, we can write the coefficients α in terms of nodal values of the
displacements, U, velocities, _U, and accelerations, €U as follows:

α ¼ J�1 �S0 þ BTJ0�1U
�

þ δ2jα

∂

∂xa

∂

∂xb
� cαρδ1δ1j xþ 1ð Þm

� �

δAF � βabðx

�

þ1ÞmTα0Åδ1jJ0�1
�

_U

þ �cαρ xþ 1ð Þm τ0 þ δ1jτ2 þ δ2j
� �

δAF
� �

€U

�

(72)

By substituting from Eq. (72) into Eq. (61) and implementing implicit-implicit
staggered algorithm of Farhat et al. [86], the governing equations can be rewritten as

M
z}|{

€U þ Γ
z}|{

_U þ K
z}|{

U ¼ 
z}|{

(73)

X
z}|{

€T þ A
z}|{

_T þ B
z}|{

T ¼ 
z}|{

€U þ 
z}|{

_U (74)

where

V ¼ η �℘� ζ �U
� �

J�1, M
z}|{

¼ V ~A, X
z}|{

¼ �ρcα xþ 1ð Þm τ0 þ δ1jτ2 þ δ2j
� �

,

K
z}|{

¼ ~ζ þ VBTJ0
�1, ¼ ηT þ VS

^0
, B
z}|{

¼ δ1jα þ δ2j
∗
α ,

Γ
z}|{

¼ V α

∂

∂xa

∂

∂xb
� cαρ xþ 1ð Þmδ1j

� �

δAF � T0Åδ1jβfg xþ 1ð ÞmJ0
�1

� �

,


z}|{

¼ T0βab xþ 1ð ÞmÅδ1j, 
z}|{

¼ Tα0βab xþ 1ð Þm τ0 þ δ2j
� �

,

A
z}|{

¼ δ2j
∗
α

∂

∂xa

∂

∂xb
� ρcα xþ 1ð Þmδ1j

� �

δAF: (75)

where V, M
z}|{

, Γ
z}|{

, K
z}|{

, A
z}|{

, and B
z}|{

are represent the volume, mass,
damping, stiffness, capacity, and conductivity matrices, respectively; €U, _U, U, T,

and 
z}|{

represent the acceleration, velocity, displacement, temperature, and
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external force vectors, respectively, X
z}|{

is a Green and Lindsay material constants

vector, and 
z}|{

and 
z}|{

are coupling matrices.
Hence, the governing equations lead to the following coupled system of

differential-algebraic equations (DAEs) as in Farhat et al. [86]:

M
z}|{

€Unþ1 þ Γ
z}|{

_Unþ1 þ K
z}|{

Unþ1 ¼ 
z}|{p

nþ1 (76)

X
z}|{

€Tnþ1 þ A
z}|{

_Tnþ1 þ B
z}|{

Tnþ1 ¼ 
z}|{

€Unþ1 
z}|{

_Unþ1 (77)

where 
z}|{p

nþ1 ¼ ηT
p
nþ1 þ V�S

0
and T

p
nþ1.

By integrating Eq. (73) and using Eq. (76), we get

_Unþ1 ¼ _Un þ
Δτ

2
€Unþ1 þ €Un

� �

¼ _Un þ
Δτ

2
€Un þ M

z}|{�1


z}|{p

nþ1 � Γ
z}|{

_Unþ1 � K
z}|{

Unþ1

� �" # (78)

Unþ1 ¼ Un þ
Δτ

2
_Unþ1 þ _Un

� �

¼ Un þ Δτ _Un þ
Δτ2

4
€Un þ M

z}|{�1


z}|{p

nþ1 � Γ
z}|{

_Unþ1 � K
z}|{

Unþ1

� �" # (79)

From Eq. (78) we obtain

_Unþ1 ¼ γ�1 _Un þ
Δτ

2
€Un þ M

z}|{�1


z}|{p

nþ1 � K
z}|{

Unþ1

� �� �� �

(80)

where γ ¼ I Δτ2 M
z}|{�1

Γ
z}|{

� �

.

Substitution of Eq. (80) in Eq. (79), we obtain

Unþ1 ¼  Un þ Δτ _Un

þ
Δτ2

4
€Un þ M

z}|{�1


z}|{p

nþ1 � Γ
z}|{

γ�1 _Un þ
Δτ

2
€Un þ M

z}|{�1


z}|{p

nþ1 � K
z}|{

Unþ1

� �� �� �

� K
z}|{

Unþ1

� �� �

(81)

Substituting _Unþ1 from Eq. (80) into Eq. (76), we obtain

€Unþ1 ¼ M
z}|{�1


z}|{p

nþ1 � Γ
z}|{

γ�1 _Un þ
Δτ

2
€Un þ M

z}|{�1


z}|{p

nþ1 � K
z}|{

Unþ1

� �� �� �� �

� K
z}|{

Unþ1

� �

(82)

Integrating the heat Eq. (74) using the trapezoidal rule and Eq. (77), we get

_Tnþ1 ¼ _Tn þ
Δτ

2
€Tnþ1 þ €Tn

� �

¼ _Tn þ
Δτ

2
X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1 � A
z}|{

_Tnþ1 � B
z}|{

Tnþ1

� �

þ €Tn

� �

(83)
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Tnþ1 ¼ Tn þ
Δτ

2
_Tnþ1 þ _Tn

� �

¼ Tn þ Δτ _Tn þ
Δτ2

4
€Tn þ X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1 � A
z}|{

_Tnþ1 � B
z}|{

Tnþ1

� �� �

(84)

From Eq. (83), we have

_Tnþ1 ¼ γ�1 _Tn þ
Δτ

2
X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1 � B
z}|{

Tnþ1

� �

þ €Tn

� �� �

(85)

where γ ¼ I þ 1
2 A
z}|{

Δτ X
z}|{�1� �

.

On substitution of Eq. (85) in Eq. (84), we obtain

Tnþ1 ¼  Tn þ Δτ _Tn þ
Δτ2

4
€Tn þ X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1

��

� A
z}|{

γ�1 _Tn þ
Δτ

2
X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1 � B
z}|{

Tnþ1

� �

þ €Tn

� �� �� �

� B
z}|{

Tnþ1

�� (86)

On substitution of _Tnþ1 from Eq. (85) in Eq. (77), we get

€Tnþ1 ¼   X
z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1

�

� A
z}|{

γ�1 _Tn þ
Δτ

2
X

z}|{�1


z}|{

€Unþ1 þ 
z}|{

_Unþ1 � B
z}|{

Tnþ1

� �

þ €Tn

� �� �� �

� B
z}|{

Tnþ1

�� (87)

Now, our algorithm for the solution of Eqs. (81) and (86) is obtained as follows:
First step. Predict the displacement field: Up

nþ1 ¼ Un.
Second step. Substituting for _Unþ1 from Eq. (78) and substituting for €Unþ1 from

Eq. (76). Then, by using the resulted equations in Eq. (86) to obtain the tempera-
ture field.

Third step. Correct the displacement field (81) by using the computed temper-
ature.

Fourth step. Compute _Unþ1, €Unþ1, _Tnþ1, and €Tnþ1 from Eqs. (80), (82), (85),
and (87), respectively.

4. Design sensitivity and optimization

According to Fahmy [77, 78], the design sensitivities of the nonlinear tempera-
ture field and nonlinear displacement field can be performed by the implicit differ-
entiation of Eqs. (76) and (77), respectively, which describe the structural response
with respect to the design variables, then we can compute the nonlinear thermal
stresses sensitivities.

In order to solve our topology optimization problem, the method of moving
asymptotes (MMA) [87] has been implemented as an optimizer in our topology
optimization program. The benefit of MMA algorithm is that it replaces the original
nonlinear, non-convex optimization problem by a sequence of approximating con-
vex subproblems which are much easier to solve. The implemented MMA is based
on the bi-directional evolutionary structural optimization (BESO), which is the
evolutionary topology optimization approach that allows modification of the
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structure by either adding efficient material or removing inefficient material to or
from the structure design [88–96]. This addition or removal depends upon the
sensitivity analysis. Sensitivity analysis is the estimation of the response of the
structure to the modification of the input design variables and is dependent upon
the calculation of derivatives.

The homogenized vector of thermal expansion coefficients αH can be written in
terms of the homogenized elastic matrix DH and homogenized stress-temperature
coefficients vector βH as follows:

αH ¼ DH
� ��1

βH (88)

For the material design, the derivative of the homogenized thermal expansion
coefficients vector can be expressed as

∂αH

∂Xm
kl

¼ DH
� ��1 ∂βH

∂Xm
kl

�
∂DH

∂Xm
kl

αH
� �

(89)

where ∂DH

∂Xm
kl
and ∂βH

∂Xm
kl
for any lth material phase, can be calculated using the adjoint

variable method [91] as

∂DH

∂Xm
kl

¼
1
∣Ω∣

ð

Y
I � BmUmð ÞT

∂Dm

∂Xm
kl

I � BmUmð Þdy (90)

and

∂βH

∂Xm
kl

¼  
1
∣Ω∣

ð

Y

I � BmUmð ÞT
∂Dm

∂Xm
kl

αm � Bmφmð Þdy

þ
1
∣Ω∣

ð

Y
I � BmUmð ÞTDm ∂αm

∂Xm
kl

dy

(91)

where, ∣Ω∣ is the volume of the base cell.

5. Numerical examples, results, and discussion

The proposed technique used in the current chapter should be applicable to any
three-temperature nonlinear generalized magneto-thermoelastic problem. The
application is for the purpose of illustration.

The two anisotropic materials considered in the calculation are monoclinic
graphite-epoxy and North Sea sandstone reservoir rock, where the physical data of
monoclinic graphite-epoxy material is given as follows:

Elasticity tensor:

Cpjkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1

18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0

201:3 70:1 2:4 0 0 147:3

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

GPa (92)
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Mechanical temperature coefficient:

βpj ¼

1:01 2:00 0

2:00 1:48 0
0 0 7:52

2

6
4

3

7
5 � 106N=Km2 (93)

Tensor of thermal conductivity:

kpj ¼

5:2 0 0
0 7:6 0

0 0 38:3

2

6
4

3

7
5W=km (94)

Mass density ρ ¼ 7820kg=m3 and heat capacity c ¼ 461 J/(kg�K),
H0 ¼ 1000000 Oersted, μ ¼ 0:5 Gauss/Oersted, h ¼ 2, and Δτ ¼ 0:0001.

The physical data of the North Sea sandstone reservoir rock is given as follows:
Elasticity tensor:

Cpjkl ¼

17:77 3:78 3:76

3:78 19:45 4:13

3:76 4:13 21:79

0:24 �0:28 0:03

0 0 1:13

0 0 0:38

0 0 0

0 0 0

0:03 1:13 0:38

8:30 0:66 0

0:66 7:62 0

0 0 7:77

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

GPa (95)

Mechanical temperature coefficient:

βpj ¼

0:001 0:02 0

0:02 0:006 0
0 0 0:05

2

6
4

3

7
5 � 106 N=Km2 (96)

Tensor of thermal conductivity:

kpj ¼

1 0:1 0:2
0:1 1:1 0:15

0:2 0:15 0:9

2

6
4

3

7
5W=km (97)

Mass density ρ ¼ 2216kg=m3 and heat capacity c ¼ 0:1 J/(kg�K), H0 ¼ 1000000
Oersted, μ ¼ 0:5 Gauss/Oersted, h ¼ 2, and Δτ ¼ 0:0001.

The initial and boundary conditions considered in the calculations are

at τ ¼ 0 u1 ¼ u2 ¼ _u1 ¼ _u2 ¼ 0,T ¼ 0 (98)

at x ¼ 0
∂u1
∂x

¼
∂u2
∂x

¼ 0,
∂T

∂x
¼ 0 (99)

at x ¼ h
∂u1
∂x

¼
∂u2
∂x

¼ 0,
∂T

∂x
¼ 0 (100)

at y ¼ 0
∂u1
∂y

¼
∂u2
∂y

¼ 0,
∂T

∂y
¼ 0 (101)
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at y ¼ b
∂u1
∂y

¼
∂u2
∂y

¼ 0,
∂T

∂y
¼ 0 (102)

In order to study the effects of anisotropy and functionally graded materials on
composite microstructure, we consider the following four cases, namely, isotropic
homogeneous (IH), isotropic functionally graded (IF), anisotropic homogeneous
(AH), and anisotropic functionally graded (AF). Also, we considered total temper-
ature T T ¼ Te þ Ti þ Tp

� �
as the considered temperature field in all calculations of

this study.
Figure 2 shows the variations of the nonlinear three-temperature Te, Ti, and Tp

and total temperature T T ¼ Te þ Ti þ Tp
� �

, with the time τ through composite
microstructure.

Figures 3 and 4 show the variation of the nonlinear displacement sensitivities u1
and u2, with time τ for different cases IH, IF, AH, and AF. It was shown from these
figures that the anisotropy and functionally graded material have great effects on
the nonlinear displacement sensitivities through the FGA composite microstructure.

Figures 5–7 show the variation of the nonlinear thermal stress sensitivities σ11,
σ12, and σ22, respectively, with time τ for different cases IH, IF, AH, and AF. It was
noted from these figures that the anisotropy and functionally graded material have

Figure 2.
Variation of the temperature sensitivity with time τ.

Figure 3.
Variation of the displacement u1 sensitivity with time τ.
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Figure 4.
Variation of the displacement u2 sensitivity with time τ.

Figure 5.
Variation of the thermal stress σ11 sensitivity with time τ.

Figure 6.
Variation of the thermal stress σ12 sensitivity with time τ.
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great influences on the nonlinear thermal stress sensitivities through the FGA com-
posite microstructure.

For comparison purposes with those of other studies, we only considered one-
dimensional numerical results of the considered three-temperature problem. In the
considered special case, the nonlinear displacement u1 and nonlinear thermal stress
σ11 results are plotted in Figures 8 and 9, respectively. It can be noticed from these
that the BEM results, which are based on replacing one-temperature heat conduc-
tion with three-temperature heat conduction, are in excellent agreement when
compared to results obtained from the finite difference method of Pazera and
Jędrysiak [97] and the finite element method (FEM) of Xiong and Tian [98]. We
thus demonstrate the validity and accuracy of our proposed BEM technique.

Three numerical examples of BESO topological optimization of composite
microstructures are performed to illustrate the optimization results of this study
[99]. In order to obtain the functionally graded parameter effects during the opti-
mization process of the considered composite microstructure, we consider the
following values m ¼ 0, 0:5, 0:75, and 1 in the one-temperature heat conduction
model and the three-temperature radiative heat conduction model.

Example 1. Composite microstructures without holes or inclusions.

Figure 7.
Variation of the thermal stress σ22 sensitivity with time τ.

Figure 8.
Variation of the displacement u1 sensitivity along x-axis.
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The mean compliance has been minimized, to obtain the maximum stiffness for
the composite microstructures made from two competitive materials and without
holes or inclusions. Investigation of the effect of the functionally graded parameter
on the optimal composite microstructure has been shown in Table 1 for the 1T
model and in Table 2 for the 3T model. It is noticed from these tables that the heat
conduction model and functionally graded parameter have a significant effect on
the topology optimization process of the multi-material FGA composite
microstructures.

Example 2. Composite microstructures with circular or square holes.
The mean compliance has been minimized to obtain the maximum stiffness for

the composite microstructures made from two competitive materials and with
circular or square holes. Investigation of the effect of the functionally graded

Figure 9.
Variation of the thermal stress σ11 sensitivity along x-axis.

Table 1.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure for
the 1T model.

Table 2.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure for
the 3T model.
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parameter on the optimal composite microstructure with circular holes has been
shown in Table 3 for the 1T model and in Table 4 for the 3T model. Also, the
investigation of the effect of the functionally graded parameter on the optimal
composite microstructure with square holes has been shown in Table 5 for the 1T
model and in Table 6 for the 3T model. It is noticed from these tables that the heat

Table 3.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with circular shape holes for the 1T model.

Table 4.
Investigation of the influence of functionally graded parameter m on the optimal composite microstructure with
circular shape holes for the 3T model.

Table 5.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with square shape holes for the 1T model.

Table 6.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with square shape holes for the 3T model.
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conduction model, functionally graded parameter, and holes shape have a signifi-
cant effect on the topology optimization process of the multi-material FGA com-
posite microstructures.

Example 3. Composite microstructures with circular or square inclusions.
The mean compliance has been minimized to obtain the maximum stiffness for

the composite microstructures made from two competitive materials and with
circular or square inclusions. Investigation of the effect of the functionally graded
parameter on optimal composite microstructure with circular inclusions has been
shown in Table 7 for the 1T model and in Table 8 for the 3T model. Also, the
investigation of the effect of the functionally graded parameter on the optimal
composite microstructure with square inclusions has been shown in Table 9 for the
1T model and in Table 10 for the 3T model. It is noticed from these tables that the
heat conduction model, functionally graded parameter, and inclusions shape have a
significant effect on the topology optimization process of the multi-material FGA
composite microstructures.

The BESO topology optimization problem implemented in the numerical exam-
ples to find the distribution of the two materials in the design domain that minimize

Table 8.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with circular shape inclusions for the 3T model.

Table 9.
Investigation of the influence of the functionally graded parameter, m, on the optimal composite microstructure
with square shape inclusions for the 1T model.

Table 7.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with circular shape inclusions for the 1T model.
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the compliance of the structure subject to a volume constraint in both phases can be
stated as

Find XM

That minimize CM ¼ 1
2 PM
� �T

uM ¼ 1
2 fM,ter þ fM,mec
� �T

uM

Subject to VM, ∗
j � ΣN

i¼1V
M
i X

M
ij � Σ

j�1
i¼1 V

M, ∗
i ¼ 0; j ¼ 1, 2

KMuM ¼ PM

XM
i ¼ xminV1; j ¼ 1, 2

where XM is the design variable; VM, ∗
j is the volume of the jth material phase,

where i and j denote the element ith which is made of jth material; CM is the mean
compliance; P is the total load on the structure, which is the sum of mechanical and
thermal loads; uM is the displacement vector; VM, ∗ is the volume of the solid
material; N is the total number of elements; KM is the global stiffness matrix; xmin is
a small value (e.g., 0.0001), which guarantees that none of the elements will be
removed completely from design domain; fM,mec is the mechanical load vector; and
fM,ter is the thermal load vector. Also, the BESO parameters considered in these
examples can be seen in Table 11. The validity of our implemented BESO topology
optimization technique has been demonstrated in our recent reference [100].

Table 10.
Investigation of the influence of functionally graded parameter, m, on the optimal composite microstructure
with square shape inclusions for the 3T model.

Variable name Variable description Variable value

VM
f 1 Final volume fraction of the material 1 for both interpolations 0.10

VM
f2 Final volume fraction of the material 2 for both interpolations 0.20

ERM Evolutionary ratio for interpolation 1 2%

ERM Evolutionary ratio for interpolation 2 3%

ARM
max

Volume addition ratio for interpolation 1 3%

ARM
max

Volume addition ratio for interpolation 2 2%

rMmin
Filter ratio for interpolation 1 4 mm

rMmin
Filter ratio for interpolation 2 3 mm

τ Convergence tolerance for both interpolations 0.01%

N Convergence parameter for both interpolations 5

Table 11.
Multi-material BESO parameters for minimization of a composite microstructure.
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Example 4. Laminated composite microstructure with three different sets of
boundary conditions are considered in this example to validate the BEM formula-
tion of the current study. These boundary conditions are called: simply—simply
supported (SS), clamped—clamped (CC), and clamped—simply supported (CS).
One-temperature (1T) and three-temperature (3T) models of nonlinear thermal
stresses sensitivities results have been compared with the finite element method
(FEM) results of Rajanna et al. [101] as well as with the finite volume method
(FVM) results of Fallah and Delzendeh [102], which are tabulated in Table 12 for
different types of boundary conditions and different methods. It can be observed
that the BEM results for all the three types of boundary conditions are in excellent
agreement with FEM results of [101] and the FVM results of [102].

6. Conclusion

The main aim of this chapter is to describe a new boundary element formulation
for the modeling and optimization of the three-temperature nonlinear generalized
magneto-thermoelastic functionally graded anisotropic (FGA) composite micro-
structures. The governing equations of the considered model are very difficult to
solve analytically because of the nonlinearity and anisotropy. To overcome this, we
propose a new boundary element formulation for solving such equations, where we
used the three-temperature nonlinear radiative heat conduction equations com-
bined with electron, ion, and phonon temperatures. Numerical results show the
three-temperature distributions through composite microstructure. The effects of

Model Type Method σ11 sensitivity σ12 sensitivity σ22 sensitivity

BEM (present) 0.4084297 0.0509346 0.5332620

IT SS FEM [101] 0.4084297 0.0509346 0.5332620

FVM [102] 0.4084297 0.0509346 0.5332620

BEM (present) 0.3591487 0.0408259 0.3758618

IT CC FEM [101] 0.3591487 0.0408259 0.3758618

FVM [102] 0.3591487 0.0408259 0.3758618

BEM (present) 0.2518379 0.0307736 0.2613532

IT CS FEM [101] 0.2518378 0.0307735 0.2613531

FVM [102] 0.2518379 0.0307736 0.2613532

BEM (present) 0.3147697 0.0304365 0.4767924

3T SS FEM [101] 0.3147696 0.0304364 0.4767923

FVM [102] 0.3147697 0.0304365 0.4767924

BEM (present) 0.2432756 0.0204748 0.3052857

3T CC FEM [101] 0.2432755 0.0204747 0.3052856

FVM [102] 0.2432756 0.0204748 0.3052857

BEM (present) 0.1258948 0.0107825 0.2079735

3T CS FEM [101] 0.1258947 0.0107824 0.2079734

FVM [102] 0.1258948 0.0107825 0.2079737

Table 12.
Models of 1T and 3T nonlinear thermal stresses’ sensitivities for different types of boundary conditions and
different methods.
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anisotropy and functionally graded material on the three-temperature nonlinear
displacement sensitivities and nonlinear thermal stress sensitivities through the
composite microstructure are very significant and pronounced. Because there are
no available results in the literature to confirm the validity and accuracy of our
proposed technique except for one-temperature heat conduction, we replace the
three-temperature radiative heat conduction with one-temperature heat conduction
as a special case from our current general study. In the considered special case, the
BEM results have been compared graphically with the FDM results and FEM
results, and it can be noticed that the BEM results are in excellent agreement with
the FDM and FEM results. These results thus demonstrate the validity and accuracy
of our proposed technique.

Numerical examples are solved using the method of moving asymptotes (MMA)
algorithm based on the bi-evolutionary structural optimization method (BESO),
where we used the topological optimization to manufacture three-temperature
magneto-thermoelastic composite microstructures to obtain the required specific
engineering properties. A new class of FGA composite microstructures consisting of
two competitive materials has been studied, taking into account existence of holes
or inclusions. The effects of the heat conduction model, functionally graded
parameter, and holes shape and inclusions shape on the optimal composite micro-
structure are investigated through the considered examples with great practical
interest.

The ability to understand and manipulate composite microstructures has been
fundamental to our technical development over time. Today, scientists and engi-
neers recognize the importance of composite microstructures use for economic and
environmental reasons. Based on the BEM implementation and its results, this study
concluded that the boundary element technique is the most suitable technique for
the manufacturing of FGA composite microstructures in the future works. This
technique aimed to describe the behavior of FGA composite microstructures and
achieves improvement in the composition optimization and mechanical properties
of the resulting FGA composite microstructures.

Due to three-temperature and numerous low-temperature and high-
temperature applications in laminated composites microstructures, as a future work
and based on the findings obtained in the present study, we would suggest further
research to develop numerical techniques for solving the three-temperature
nonlinear thermoelastic wave propagation problems and for manufacturing of
advanced laminated composites. The numerical results of our considered study can
provide data references for mechanical engineers, computer engineers, geotechnical
engineers, geothermal engineers, technologists, new materials designers, physicists,
material science researchers, and those who are interested in novel technologies in
the area of three-temperature magneto-thermoelastic FGA composite microstruc-
tures. Application of three-temperature theories in advanced manufacturing tech-
nologies, with the development of soft machines and robotics in biomedical
engineering and advanced manufacturing, and nonlinear generalized magneto-
thermoelastic problems will be encountered more often where three-temperature
radiative heat conduction will turn out to be the best choice for thermomechanical
analysis in the design and analysis of advanced composite microstructures.
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