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Chapter

Effects of Salinity on Seed 
Germination and Early Seedling 
Stage
Cüneyt Uçarlı

Abstract

Salinity is the major environmental stress source that restricts on agricultural 
productivity and sustainability in arid and semiarid regions by a reduction in 
the germination rate and a delay in the initiation of germination and subsequent 
seedling establishment. Salt negatively effects the crop production worldwide. 
Because most of the cultivated plants are salt-sensitive glycophytes. Salt stress 
affects the seed germination and seedling establishment through osmotic stress, 
ion toxicity, and oxidative stress. Salinity may adversely influence seed germination 
by decreasing the amounts of seed germination stimulants such as GAs, enhanc-
ing ABA amounts, and altering membrane permeability and water behavior in the 
seed. Rapid seed germination and subsequent seedling establishment are important 
factors affecting crop production under salinity conditions. Seed priming is one of 
the useful physiological approaches for adaptation of glycophyte species to saline 
conditions during germination and subsequent seedling establishment. In seed 
priming, seeds are exposed to an eliciting solution for a certain period that allows 
partial hydration without radicle protrusion. Seed priming is a simple, low cost, and 
powerful biotechnological tool used to overcome the salinity problem in agricul-
tural lands.

Keywords: salinity, germination, glycophyte, halophyte, seed priming, plant 
hormones

1. Introduction

Seed dormancy and germination are distinct physiological processes, and the 
transition from dormancy to germination is not only a critical developmental step 
in the life cycle of higher plants but also determines the failure or success of the sub-
sequent seedling establishment and plant growth [1]. Seed germination begins with 
the water uptake of dry seed (imbibition) and ends with radicle protrusion. Seed 
germination is affected by adverse environmental conditions including  salinity, 
high temperature, and drought [2].

It is estimated that about approximately 7% of world land is affected by salinity 
and approximately 20% of 230 million ha irrigated land is salt-affected [3]. This 
number could be increased in the future due to increased land salinization as a 
consequence of contaminated artificial irrigation, climate change, and unsuitable 
land management. Salinity is a major stress responsible for the inhibition of seed 
germination or reduction in germination percentage and a delay in germination 
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time in crops. At present, around 30 crop plants provide 90% of plant-based human 
food and the majority of these crops are not salt tolerant, even salt-sensitive, called 
glycophytes [4]. There have been high yield losses in these crops under moderate 
salinity (EC 4–8 dS m−1, approximately 40–80 mM NaCl) [5].

High salinity leads a decrease in osmotic potential of ambient soil water, result-
ing with a decrease in water uptake by dry seeds (imbibition). Besides, the absorp-
tion of excess Na+ and Cl− ions from soils creates ionic stress and cause toxicity 
which contributing to disruption in biochemical processes including nucleic and 
protein metabolism, energy production, and respiration [6]. Salinity also dam-
ages the nutrient and hormone balances, especially gibberellin (GA)/abscisic acid 
(ABA), during germination. As a result, high salinity level causes a delay in germi-
nation, even inhibition of seed germination depending on salt tolerance of plants. 
Dynamic balance between the generation and scavenging of reactive oxygen species 
(ROS) such as hydroxyl radicals, superoxide, and hydrogen peroxide could be dis-
turbed by high salinity stress. ROS damage the macromolecules including proteins, 
carbohydrates, nucleic acids, and lipids, or cellular structures like membranes, 
resulting with inhibition of seed germination [7].

Germination has been found to be under strict regulation of plant hormones, 
especially GA and ABA [8]. ABA promotes seed dormancy and inhibits germination 
of seed, whereas GAs release dormancy and stimulate germination. Plant hormones 
ethylene (ET), and brassinosteroids (BRs) also have positive effect on seed germi-
nation by controlling the inhibitory effects of ABA on germination and rupturing 
testa and endosperm [9, 10]. The plant hormones widely took part in determin-
ing the physiological state of a seed and regulating the germination process by 
interacting each other [11]. Hormones are regulated by distinct transcription 
factors and signaling components including NO and H2O2, showing the complex-
ity of seed germination regulation. While some plant genes control the activity of 
plant hormones, and the other plant genes are activated by plant hormones [10]. 
Signaling molecules, such as NO and H2O2, also promotes germination and reduce 
the  dormancy by enhancing ABA catabolism and GA biosynthesis [12].

Rapid seed germination and subsequent seedling establishment are important 
factors determining crop production and yield under salinity stress. One of the 
useful physiological approaches for glycophytes to adapt saline condition is seed 
priming [7]. Seed priming is an easy, low cost and low risk technique. The seeds are 
hydrated in specific solutions including plant hormones (GA3, ET, auxins, kinetin), 
antioxidant compounds (ascorbic acid, glutathione, tocopherone) organic solutes 
(proline, glycine betaine), inorganic salts (KNO3, CaCl2, and KCl), and particular 
bacteria and fungi species for a certain time to allow metabolic process of germina-
tion, followed by drying the seed to inhibit occurring of radicle protrusion [13].

2. Soil salinity and salinity stress

Plants, being sessile nature, are simultaneously subjected to various adverse 
conditions including salinity, drought, cold, heat, excess water, and heavy metals, 
which limit their development and growth. Salinity is the major environmental 
stress source that restricts on agricultural productivity and sustainability in arid 
and semiarid regions [14]. Salinity is a global issue that affects about 7% of the 
world’s total land area, including 20% total cultivated lands and 33% of irrigated 
land, causing estimated yield losses of 20% worldwide [15, 16]. Besides, it is 
estimated that every year 10 million ha of agricultural land destroyed by salinized 
soil [17]. This rate can be increased by global climate change, use of contaminated 
irrigation water, intensive farming and poor drainage [18–56]. Without proper and 
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sustainable control, salinity-affected areas will increase to more than 50% of the 
world’s total arable land by 2050 [15]. This rate can be accelerated by increase in sea 
water level by climate change, excessive use of groundwater for irrigation, increas-
ing use of low-quality water for irrigation and massive introduction of irrigation 
associated with intensive farming and poor drainage [57].

Soil salinity is a measure of the concentration of all the soluble salts in soil water, 
and is usually expressed as electrical conductivity (EC) of the saturation extract 
(ECe) with units of deci siemens per meter (1 dS m−1) [58]. The soils were classi-
fied as saline, sodic or saline-sodic based on the total concentration of salt and the 
ratio of Na+ to Ca2+ and Mg2+ in the saturated extract of the soil [59]. When the 
ECe exceeds 4 dS m−1 (approximately 40 mM/L NaCl) and exchangeable sodium 
percentage is less than 15 with sodium adsorption ratio (SAR) < 13, the soil is saline. 
The major problem with saline soils is the presence of soluble salts, primarily 
Cl−, SO4

2−, and sometimes NO3
−. The pH of saline soils is usually below 8.5. Sodic 

(alkali) soils have an ECe < 4 dS m−1, ESP > 15, and SAR > 13. Therefore, Na+ is the 
major problem in these soils. Sodic soils have a pH between 8.5 and 10. Saline-sodic 
soils have an ECe > 4 dS m−1, SAR > 13, and an ESP > 15. Thus, both soluble salts and 
exchangeable Na+ are high in these soils. Saline-sodic soils have similar salt and pH 
levels as saline soils. USSL Staff [59] has described the general relationship of ECe 
and plant growth as the following:

• non-saline (ECe ≤ 2 dS m−1): salinity effects mostly negligible;

• very slightly saline (ECe = 2–4 dS m−1): yields of very sensitive crops may be 
restricted;

• slightly saline (ECe = 4–8 dS m−1): yields of many crops are restricted;

• moderately saline (ECe = 8–16 dS m−1): only salt tolerant crops yield 
 satisfactorily; and

• strongly saline (ECe ≥ 16 dS m−1): only a few very salt tolerant crops yield 
satisfactorily.

3. Seed germination

Seed germination is a complex multi-stage developmental process and regulated 
by internal and external factors. Internal factors include proteins, plant hormones 
(gibberellins/ABA balance, ethylene, and auxin), chromatin-related factors such as 
methylation, acetylation, histone ubiquitination, related genes (maturating genes 
and hormonal and epigenetics-regulating genes), non-enzymatic processes, seed 
age, seed size, and structural components of seed including (endosperm and seed 
coat). Besides, external factors containing moisture, light, salinity, temperature, 
acidity, and nutrient also affect the seed germination [60, 61].

Seed germination begins with imbibition, the uptake of water by the dry mature 
seed, and ends with visible protrusion of radicle through testa [62]. Successful 
germination requires optimum environmental conditions, including water, oxy-
gen, and temperature to initiate this process. Germination/sprouting is regulated 
by plant hormones such as gibberellic acid (GA), abscisic acid (ABA), ethylene, 
auxins, cytokinins, and brassinosteroids [63]. Among them, ABA and GA are 
two important regulators, which play antagonistic roles in seed dormancy and 
 germination [64].
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The process of seed germination can be divided into three phases (Figure 1) 
[65]. Phase I begins with imbibition of dry seeds and ends with the early plateau 
phase of water uptake. Phase II includes reactivation of metabolisms, significant 
induction of hormonal and enzyme activity using surviving structures and 
components in the desiccated cells, genes involved in amino acid and nucleic acid 
synthesis, restarting of cellular respiration with genesis of mitochondria, mobiliza-
tion of reserved, RNA and protein synthesis machinery [66, 67]. Phase III is post-
germination stage involves establishment of seedling and the induction of genes for 
photosynthetic metabolism after radicle cells elongate and divide [68].

Gibberellins and ABA are two key phytohormones regulating seed germina-
tion and seedling growth [69]. While GA breaks dormancy and enhances the seed 
germination and seedling, ABA inhibits germination and enhances seed dormancy 
[10]. However, the ratio of the two hormones, rather than the absolute level of each 
hormone, plays a key role in regulating the breaking of seed dormancy and the 
onset of germination [70]. GA/ABA balance determines fate of the seed; germina-
tion or dormancy. Gibberellins induce the synthesis and production of α-amylase, 
proteases, and β-glucanases, resulting in the germination of seeds [71]. GAs also 
stimulate the genes involved in weakening of endosperm and expansion of embryo 
cell [10]. On the other hand, ABA suppresses expression of many hydrolytic 
enzyme genes to prevent viviparous germination and inhibits promoting effect of 
GA on radicle growth and embryo expansion by inhibiting water uptake and hence 
cell-wall loosening, which is a key step to start germination [72].

Ethylene is a gaseous hormone involved in various processes, including positive 
regulation of seed germination. Ethylene breaks the primary and secondary dor-
mancy and promotes seed germination by reducing ABA levels or sensitivity [73]. 
Brassinosteroids (BRs) and auxin induce the secretion of ethylene which works in 
conjunction with GAs to induce germination [10]. Auxins reduce seed sensitivity 
to ABA by overexpressing microRNAs and interacting with GAs to counteract ABA 
suppression during germination [74, 75].

Low temperature decreases seed dormancy and enhances germination in many 
species, while high temperature has the negative effect on germination and induces 
secondary dormancy [70]. High temperature down-regulates the genes involved in 
synthesis of GA synthesis and deactivation of ABA, whereas genes involved in ABA 
synthesis are up-regulated by high temperature. Therefore, transcriptional changes 
in ABA and GA metabolism and signal pathways results with inhibition of germina-
tion or a delay in germination [76]. Light has been considered both to stimulate 

Figure 1. 
Major events associated with germination and subsequent post-germinative growth (based on [13, 65]).
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germination and to terminate dormancy by increasing the expression of GA 
anabolic genes, GA3ox1 and GA3ox2, and repressing expression of GA  catabolism 
gene GA2ox2 [77].

In addition to phytohormones, several signal molecules, including as nitric 
oxide (NO) and reactive oxygen species (ROS), also regulate seed dormancy and 
germination [68]. ROS is an important regulator during seed germination because 
of the interaction with lipids, DNA, and protein molecules, as well as phyto-
hormones including ABA and GA in the cell [78]. The biochemical and cellular 
reactions stimulated by water uptake are accompanied by the generation of ROS 
[79]. Hydrogen peroxide (H2O2) serves as a signaling hub for the regulation of seed 
dormancy and germination; the accurate regulation of H2O2 accumulation by the 
cell antioxidant mechanism is important to achieve a balance between oxidative 
signaling that enhances germination and oxidative damage that inhibits germina-
tion or delays in germination time [80]. N compounds, including NO, promotes 
seed germination through increasing amylase activities, adjusting K+/Na+ balance, 
and enhancing seed respiration and ATP production [81].

4. Effect of salinity on seed germination and early seedling stage

Salinity affects seed germination process through osmotic stress, ion-specific 
effects and oxidative stress, shown by decreasing germination rate and extended 
germination time [82]. Salinity increases external osmotic potential that reduces 
water uptake during imbibition [83]. Salinity may affect the germination of seeds 
by the toxic effects of excess sodium and chloride ions on embryo viability [84, 85]. 
The toxic effects include disruption to the structure of enzymes and other macro-
molecules, damage to cell organelles and the plasma membrane, the disruption of 
respiration, photosynthesis and protein synthesis [85–87].

In general, seed germination progresses in three phases under normal condi-
tions. Seed germination begins with the rapid water uptake by dry seed (imbibi-
tion) (Phase I). A plateau phase, known as phase II, follows this phase. The cellular 
metabolisms are reactivated, and water uptake is restricted in phase II. This is 
followed by phase III, a post-germination phase, which is characterized by continu-
ous water uptake until germination is complete (Figure 1). Based on these three 
phases, the inhibition of seed germination or delaying in germination time under 
salinity stress may be generally ascribed to osmotic stress in the phase I and ionic 
stress in the phase II. Osmotic stress and ionic stress interact together to inhibit or 
delay germination of seed during the phase III [88].

Salinity may adversely influence seed germination by decreasing the amounts 
of seed germination stimulants such as GAs, enhancing ABA amounts, and alter-
ing membrane permeability and water behavior in the seed [89]. In higher plants, 
salinity has been demonstrated to change expression profiles of the genes encoding 
GA metabolic enzymes, including copalyl diphosphate synthase (CPS), ent-kaurene 
synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KOA), GA 
20-oxidase (GA20ox), GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox), resulting 
with change in endogenous GA levels during germination [12].

The germination of seeds is characterized by transcriptional induction of hydro-
lytic enzymes such as α-amylase [90]. The α-amylase is excreted into the endosperm 
to break the stored starch to metabolizable sugars that provide ready energy and 
nutrients for the growing embryo and radicle. Salinity stress may have much effect 
on delayed germination time than on final germination percentage for most crops. A 
delay of water uptake and a decrease in the activity of α-amylase with an increase in the 
concentration of NaCl may be main reasons for delaying of the germination time [91]. 
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The decrease in the α-amylase activity have been reported to be higher in the salt- 
sensitive genotypes than in the salt-tolerant genotypes. This reduction in the α-amylase 
activity results with a significant reduction in the translocation of sugars, essential 
for the developing embryo. Besides, decreasing sugar concentrations also change the 
osmotic potential of growing cells, resulting in a decrease in water uptake [88].

Both osmotic and ionic effects of salt stress leads to generation of excess reactive 
oxygen species (ROS) and oxidative damage, which disrupts proteins, lipids, and 
nucleic acids or the cellular structure including lipid membrane [83].

Plants can be divided into two main groups based on their response to saline 
stress; salt-tolerant halophytes and salt-sensitive glycophytes (non-halophytes) 
[6]. The halophytes are plants that are able to grow in the presence of high salt 
concentrations that generate a low water potential of the soil and kill 99% of other 

Plant species *Maximum salt 

tolerance

Salt tolerance 

type

Reference

Salicornia herbacea 1.7 M NaCl Halophyte [93]

Suaeda aralocapsica 1.5 M NaCl Halophyte [94]

Limonium vulgare 1.5 M NaCl Halophyte [95]

Sarcocornia perennis 1.3 M NaCl Halophyte [96]

Haloxylon ammodendron 1.3 M NaCl Halophyte [97]

Kochia scoparia 1.0 M NaCl Halophyte [98]

Kochia prostrata 0.85 M NaCl Halophyte [99]

Haloxylon salicornicum 0.8 M NaCl Halophyte [100]

Prosopis juliflora 0.6 M NaCl Halophyte [100]

Limonium mansanetianum 0.5 M NaCl Halophyte [101]

Limonium stocksi 0.4 M NaCl Halophyte [102]

Limonium lilacinum 0.3 M NaCl Halophyte [103]

Tanacetum cinerariifolium 0.26 M NaCl Halophyte [104]

Quinoa (Chenopodium quinoa Willd.) 0.3 M NaCl Halophyte [105]

Barley (Hordeum vulgare L.). 0.25 M NaCl Glycophyte [106]

Maize (Zea mays) 0.24 M NaCl Glycophyte [107]

Chicory (Cichorium intybus L.) 0.21 M NaCl Glycophyte [108]

Lentil (Lens culinaris Medik.) 0.2 M NaCl Glycophyte [14]

Brassica napus 0.2 M NaCl Glycophyte [109]

Peanut (Arachis hypogaea) 0.2 M NaCl Glycophyte [110]

Rice (Oryza sativa) 0.16 M NaCl Glycophyte [111]

Fig (Ficus carica L.) 0.17 M NaCl Glycophyte [112]

Button grass (Dactyloctenium radulans) 0.1 M NaCl Glycophyte [113]

Sorghum (Sorghum bicolor Moench) 0.1 M NaCl Glycophyte [114]

Ryegrass (Lolium rigidum) 0.1 M NaCl Glycophyte [115]

Chickpea (Cicer arietinum L.) 0.09 M NaCl Glycophyte [116]

Tomato (Solanum lycopersicum) 0.05 M NaCl Glycophyte [117]
*Maximum NaCl concentration at which seed germination percentage reduced to 10–20%.

Table 1. 
Maximum salt tolerance of halophytes and glycophytes at the germination stage.
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species. They are adapted to survive and complete their life cycle under saline 
levels of higher than 200 mM NaCl. However, seed germination was also affected 
under salt stress and germination percentage was reduced to less than 10% under 
1.7 M NaCl [92, 93]. In halophytes, maximum salt tolerance for seed germina-
tion has been reported to vary from 1.7 to 0.26 M NaCl depending on halophyte 
 species and other environment conditions such as temperature, moisture, and light 
(Table 1).

A majority of the common crops, such as tomato, bean, rice, corn, etc., are salin-
ity sensitive or even hypersensitive and they are described as glycophytes [5]. The 
glycophytes contain 99% of the world’s flora and are susceptible to even low levels 
of salinity (ECe < 4 dS m−1, approximately 40 mM NaCl) [92]. Under conditions of 
moderate salinity (EC 4–8 dS m−1), all important glycophytic crops reduce average 
yields by 50–80% [118]. Seed germination in glycophytes is severely inhibited under 
salinity due to both osmotic stress and ionic toxicity stress, while halophytes are less 
affected by osmotic stress during germination [12].

5. Alleviation salinity stress on germination by seed priming

Most crops are highly susceptible to saline soil, even when soil has electrical 
conductivity (ECe) as low as 3 dS m−1 [119]. Therefore, salinity stress appears to 
be a major limitation factor for crop productivity. Seed germination and seedling 
establishments are the two critical stages in plant growth. These stages are the most 
sensitive to environmental conditions including salinity [120]. Plants are usually 
seeded within the top layer of the soil which is more saline than lower layers [121]. 
Salinity stress may delay or prevent germination of germination of high quality 
seeds, resulting with crop loss. Rapid seed germination and subsequent seedling 
establishment are important factors affecting crop production under salinity condi-
tions. Therefore, to decrease the negative effects of salinity stress on seed germina-
tion, it is important to know to what extent the genotypic variation in the water 
uptake pattern during these phases is associated with the salt tolerance of genotypes 
at the germination stage.

Seed priming is one of the useful physiological approaches for adaptation of 
glycophyte species to saline conditions during germination and subsequent seedling 
establishment. Seed priming is a simple, low cost and powerful biotechnological 
tool used to overcome the salinity problem by promoting seed germination and 
seedling establishment in agricultural lands [122]. Seed are exposed to an eliciting 
solution for a constant period that allows partial hydration, but radicle emergence 
does not occur by re-drying of seed. Seed germination occurs three distinct phases: 
(i) imbibition, (ii) lag phase (reactivation of metabolisms) and (iii) protrusion of 
the radicle through the testa. The goal of seed priming is to extend the lag phase, 
which allows pre-germinative physiological and biochemical processes, but prevent 
the seed transition towards full germination [123]. Enhanced and uniformed germi-
nation of primed seeds occurs by reduction in the lag time of imbibition, activation 
of enzyme involved in seed germination, initiation of biochemical mechanisms 
of cell repair, increase in the RNA content and DNA replication, decrease in ROS 
and lipid peroxidation with increased activity of antioxidant enzymes including as 
superoxide dismutase, catalase, and glutathione reductase, and increase in osmotic 
adjustment and starch metabolism [124, 125].

Several methods of seed priming have been developed in order to revive seeds 
under salt stress conditions. Some of these methods are hydro-priming, osmoprim-
ing, solid matrix priming, hormonal-priming, bio-priming, chemical priming, and 
nutripriming [13]. In recent years, many studies have been reported to exhibit the 
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positive effects of seed priming on germination under salinity conditions in many 
crops (Table 2).

Hydro-priming is the simplest and one of the mostly used seed priming 
method. Hydro-priming depends on seed soaking in pure water without chemical 
substances for 6–24 h and re-drying to original moisture content prior to sowing 
without emergence of radicle [144]. This method is a low-cost and environmentally 
friendly due to no use of additional chemicals. The uncontrolled water uptake by 
seeds is major disadvantage of this technique. Rapid hydration may cause leakage of 

Plant Treatment Alleviating effect Reference

Barley (Hordeum 

vulgare cv. 
Bülbül 89)

Priming with aqueous solution 
of 30 μM H2O2 for 24 h at room 
temperature

H2O2 increased the germination 
index from 16.71 to 25.07%, 
and from 8.19 to 14.65% under 
250 mM and 300 mM NaCl, 
respectively

[126]

Tomato 
(Solanum 

lycopersicum cv. 
Hezuo 903)

Priming with 100 μM 
Epigallocatechin-3-Gallate 
(EGCG) at 28 ± 3°C

EGCG increased germination 
rate and index from 84.7 to 
97.0%, and from 29.4 to 35.2%, 
respectively

[127]

Wheat (Triticum 

aestivum cv. 
Chamran)

Priming with 0.5 mM 
spermidine for 24 h, 25 mM 
proline for 2 days, or 1.5 mM 
silicon (K2SiO3) for 6 h

Spermidine, proline, and K2SiO3 
enhanced the germination rate 
by 32, 18, and 17%, respectively, 
under salinity stress (20 dS m−1)

[128]

Zea mays, 
Pisum sativum, 

Lathyrus sativus

Priming with 0.2 g/L GA3 
solution for 12 h at room 
temperature without light. 

GA3 enhanced germination 
percentage from 16.67, 26.67, 
and 50 to 60, 73.3, and 86.67% 
in Z. mays, P. sativum, and 
L. sativus, respectively, and 
resulted in 20% reduction in 
mean germination time under 
salinity stress (12 dS m−1)

[129]

Pakchoi (Brassica 

chinensis L. cv 
Tiancuiqing)

Priming with sodium 
nitroprusside (SNP) for 2 h in 
dark at 25 ± 1°C

Germination potential, 
germination index, and vitality 
index were increased by 7.67%, 
14.20% and 74.51% after 10 μM 
SNP pre-treatment under 
100 mM NaCl

[130]

Melilotus 

officinalis

Soaking with 10 mM Ca2+ Ca2+ significantly increased 
the germination percentage 
and recovery germination 
percentage under 200 mM NaCl

[131]

Melon (Cucumis 

melo)
Priming with 10–50 μM 
melatonin for 6 h

Melatonin increase the 
germination percentage from 
50 to 80% under salinity stress 
(14 dS m−1)

[132]

Wheat (Triticum 

aestivum cv. 
Khirman)

Priming with 50 mg L−1 
ascorbate, 50 mM proline, 
25 μM triacontanol, or 100 μM 
indole acetic acid for 12 h

Priming treatments 
significantly enhanced 
germination index and final 
germination percentage, and 
reduced mean germination time 
under salinity stress (12 dS m−1)

[133]

Grain sorghum 
(Sorghum bicolor 
Moench)

Priming with 100–500 mg L−1 
nano-iron oxide (n-Fe2O3) 
for 10 h and soaking with 
10 mg L−1 n-Fe2O3 for 3 days

Treatments improved the speed 
and percent of germination 
under 150 mM NaCl

[134]
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Plant Treatment Alleviating effect Reference

Lentil (Lens 

culinaris cv. 
Ncir)

Soaking with 0.5 mM salicylic 
acid or 0.1 mM H2O2 at 25°C in 
the dark

Salicylic acid and H2O2 
enhanced the germination 
percentage from 71 to 86 and 
87%, respectively

[135]

Limonium bicolor Priming with 80 μM salicylic 
acid (SA)

SA significantly increased 
germination rate, germination 
potential, and germination 
index of the seeds under 
200 mM NaCl

[136]

Sweet sorghum 
(Sorghum bicolor 
cv. Chuntian 1)

Priming with 288 μM 
Gibberellin (GA3) for 32–48 h

GA3 significantly increased 
the water uptake, resulting 
with increased cumulative 
germination percentage and 
germination index under 
100 mM NaCl

[122]

Maize (Zea 

mays)
Priming with 2 mM silicon 
(K2SiO3) for 7 days at 25°C in 
the dark

Silicon significantly enhanced 
the germination rate and 
percentage, as well as 
vitality index under 90 mM 
NaCl

[137]

Oat (Avena 

sativa cv. 
NDO-2)

Priming with 150 ppm 
gibberellin (GA3) for 24 h

GA3 enhanced the 
germination percentage from 
56.64 to 76.03% under 100 mM 
NaCl

[138]

Cucumber 
(Cucumis sativus 
cv. Jinyou 1)

Priming with 0.3 mM silicon 
(NaSi) for 36 h

Silicon enhanced the 
germination percentage and 
index, and seedling vigor index 
under 200 mM NaCl

[139]

Limonium bicolor Priming with 200 μM 
melatonin

Melatonin significantly 
increased germination rate, 
potential and index under 
200 mM NaCl

[140].

Ceratoides lanata Priming with 10 mM 
ethephon, 5 μM fusicoccin or 
50 μM kinetin

Fusicoccin, kinetin, and 
ethephon increased the 
germination percentage 
from 10 to 40, 50, and 84%, 
respectively under 900 mM 
NaCl

[141]

Leymus chinensis 
cv. Jisheng 3

Priming with 200 μM 
gibberellins (GA4 + 7), 
200 μM fluridone (FLU), 
200 μM cytokinin (CK), 
100 μM sodium nitroprusside 
(SNP), or 100 μM thiourea 
(TH) in the dark or light

GA and FLU significantly 
increased the germination 
percentage from 7 to 23 and 
59% in the light, respectively, 
while SNP, CK and TH 
increased the germination 
percentage from 9 to 54, 55, and 
30%, respectively, in the dark 
under 200 mM NaCl

[142]

Salicornia 

ramosissima

Inoculation with Bacillus 

aryabhattai SP1016-20
Inoculation with B. aryabhattai 
enhanced the final germination 
percentage and mean daily 
germination from 21.3 to 
46.7%, and from 1.6 to 4.5%, 
respectively, under 510 mM 
NaCl

[143]

Table 2. 
The functions of seed priming in plant at the germination stage under salinity condition.
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essential nutrients out of the seed during germination, resulting in seed damage in 
some species [145].

Osmo-priming, also known as osmotic conditioning, involves soaking seeds in 
aerated low water potential solution including sugar, polyethylene glycol (PEG), 
glycerol, sorbitol, or mannitol with low water potential instead of pure water, fol-
lowed by air drying before sowing. Due to low water potential of osmotic solutions, 
water is absorbed slowly by dry seed, which allows gradual seed imbibition [146]. 
While osmo-priming promotes activation of early phases of germination, inhibit-
ing radicle emergence. Osmo-priming improves seed germination and enhances 
general crop performance under salt conditions. Water potential of osmotic agent 
is critical factor since main purpose is to restrict oxidative damage caused by ROS 
by inhibiting excess water from entering [147]. If inorganic salts such as NaCl, KCl, 
KNO3, K3PO4, MgSO4, and CaCl2 are used as an osmo-priming agent, the method is 
generally referred as halopriming.

In hormonal priming, seed imbibition occurs in the presence of plan hormones 
such as GA3, ethylene, auxins, and salicylic acid, which can gave effect on seed 
metabolism. Chemical priming is a promising seed priming technique to enhance 
germination under high salinity stress. Seeds were pre-treated with different chemi-
cal solutions used as priming agents. Chemical agents includes a wide range of both 
natural and synthetic compounds such as antioxidants (ascorbic acid, glutathione, 
tocopherol, and melatonin), sodium hydrosulfide, polyamines hydrogen peroxide, 
sodium nitroprusside, urea, selenium, chitosan, fungicide, etc. [13].

Biopriming involves seed imbibition together with particular bacteria or fungi. 
These microorganisms are able to create endophytic connections with the plant. As 
other priming method, this treatment increases rate and uniformity of germina-
tion under salt conditions, as well as protects seeds against the soil and seed-borne 
pathogens [147]. The most frequently used biopriming species are Bacillus spp., 
Enterobacter spp., Pseudomonas spp., and Trichoderma spp. [148].

Seed priming efficiency is influence by many factors and strongly depends on 
treated plant species and chosen priming technique. Physical and chemical factors 
including osmotica and water potential, priming agent, duration, temperature, 
presence or absence of light, aeration, and seed condition also influence priming 
success and determine germination rate and time, seedling vigor, and further plant 
development [13, 144].
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