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Chapter

Elliptic Curve over a Local Finite
Ring Rn

Abdelhakim Chillali and Lhoussain El Fadil

Abstract

The goal of this chapter is to study some arithmetic proprieties of an elliptic
curve defined by a Weierstrass equation on the local ring Rn ¼ q X½ �= Xnð Þ, where
n≥ 1 is an integer. It consists of, an introduction, four sections, and a conclusion.
In the first section, we review some fundamental arithmetic proprieties of finite
local rings Rn, which will be used in the remainder of the chapter. The second
section is devoted to a study the above mentioned elliptic curve on these finite local
rings for arbitrary characteristics. A restriction to some specific characteristic cases
will then be considered in the third section. Using these studies, we give in the
fourth section some cryptography applications, and we give in the conclusion some
current research perspectives concerning the use of this kind of curves in
cryptography. We can see in the conclusion of research in perspectives on these
types of curves.

Keywords: elliptic curve, finite ring, cryptography

1. Introduction

Elliptic curves are especially important in number theory and constitute a major
area of current research; for example, they were used in Andrew Wiles’s proof of
Fermat’s Last Theorem. They also find applications in elliptic curve cryptography
(ECC), integer factorization, classical mechanics in the description of the move-
ment of spinning tops, to produce efficient codes… For these reasons, the subject is
well known, presented, and worth exploring.

The purpose of cryptography is to ensure the security of communications and
data stored in the presence of adversaries [1–3]. It offers a set of techniques for
providing confidentiality, authenticity, and integrity services. Cryptology, also
known as the science of secrecy, combines cryptography and cryptanalysis. While
the role of cryptographers is to design, build, and prove cryptosystems, among
other things, the goal of cryptanalysis is to “break” these systems. The history of
cryptography has long been the history of secret codes and along all previous times,
this has affected the fate of men and nations [4]. In fact, until 1970, the main goal of
cryptography was to build a signature encryption systems [5, 6], but thanks to
cryptanalysis, the army and the black cabinets of diplomats were able to wage their
wars in the shadows controlling the communication networks, especially of their
enemies [7, 8]. The internet revolution and the increasingly massive use of infor-
mation in digital form facilitated communications but in counterparty it weakened
the security level of information. Indeed, “open” networks create security holes,
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which allow access to the information. Cryptography, or the art of encrypting
messages, a science that sites today in the crossroads of mathematics, computer
sciences, and some applied physics, has then become a necessity for today’s civili-
zation to keep its secrets from adversaries. Confusion is often made between cryp-
tography and cryptology, but the difference exists. Cryptology is the “science of
secrecy,” and combines two branches on the one hand, cryptography, which makes
it possible to encrypt messages, and on the other hand, cryptanalysis, which serves
to decrypt them. Our focus in this chapter is to show how some elliptic curves,
mathematical objects studied particularly in algebraic geometry [9–12]. You can
give several definitions depending on the person you are talking to. Cryptography
indeed used elliptic curves for more than 40 years the appearance of the Diffie-
Hellman key exchange protocol and the ElGamal cryptogram [13–15]. These cryp-
tographic protocols use in particular group structures, for by applying these
methods to groups defined by elliptic curves, a new speciality was born at the end of
the 1980: ECC, Elliptic Curve Cryptography. Recall that Diffie-Hellman key
exchange which is based on the difficulty of the discrete logarithm problem (DLP)
[16–18]. The success of elliptic curves in public key cryptographic systems has then
created a new interest in the study of the arithmetic of these geometric objects. The
group of points on an elliptical curve is an interesting group in cryptography
because there is no known sub-exponential algorithm for sound (DLP) [19–21]. In
general, the DLP is difficult to be solved, but not as much as in a generic group as in
the case of finite field. We know sub-exponential algorithms to solve it depending
on the size of the group to use, which impose criteria for the PLD to be infeasible.
The prime number p which is the characteristic of our base ring must then have at
least 1024 bits, which offers a security level similar to the one given by a generic
order group of 160 bits. Recall that a generic group for the DLP is a group for which
there is no a specific algorithm to solve the DLP [22], so that the only available
algorithms are those for all groups.

In [23], Elhassani et al. have built an encryption method based on DLP and
Lattice. Boulbot et al. in [24] have studied elliptic curves on a non-local ring to
compare these curves on local and non-local rings, while in [25], Sahmoudi et al.
have studied these types of curves on a family of finite rings in the authors have
introduced a cryptosystem on these types of curves, see [26].

In this chapter, d and n are a positive integers and q ¼ pd is a power of a prime
natural number p.

2. The ring Rn ¼ q X½ �= Xnð Þ

Let Rn ¼ q X½ �= Xnð Þ be a q-algebra of dimension n, with 1, ϵ,…, ϵn�1ð Þ as a q-

basis, where ϵ ¼ X, ϵn ¼ 0, q is the finite field of order q ¼ pr, and p being a prime
integer [27–29].

2.1 Internal laws in Rn

Recall that the two laws “+” and “.” are naturally defined on Rn [30, 31]: for

every two elements X ¼
Pn�1

i¼0xiϵ
i and Y ¼

Pn�1
i¼0 yiϵ

i in Rn, with x1,…, xn, y1,…, yn
in q,

X þ Y ¼
Xn�1

i¼0

ziϵ
i, where z j ¼ x j þ y j inq (1)
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X:Y ¼
Xn�1

i¼0

ziϵ
i, wherez j ¼

Xj

i¼0

xiy j�i The  cauchy  product
� �

(2)

Corollary 2.1 Let X ¼Pn�1
i¼0xiϵ

i ∈Rn, then X2 ¼Pn�1
i¼0x

0
iϵ
i where

∀k≥0,
x02k ¼ x2k þ 2

Pk�1
i¼0xix2k�i

x02kþ1 ¼ 2
Pk

i¼0xix2kþ1�i

8

<

:
(3)

Proof.
By formula (2), we have

∀j≥0, x0j ¼
Xj

i¼0

xix j�i: (4)

For j ¼ 2k, x02k ¼
X2k

i¼0

xix2k�i, (5)

so, x02k ¼ x2k þ 2
Xk�1

i¼0

xix2k�i: (6)

Similarly, for j ¼ 2kþ 1, x02kþ1 ¼
X2kþ1

i¼0

xix2kþ1�i, (7)

then, x02kþ1 ¼ 2
Xk

i¼0

xix2kþ1�i: (8)

Under the same hypotheses of the corollary (2.1) and by an analogous proof, we
have the following corollary:

Corollary 2.2 X3 ¼Pn�1
i¼0x

00
i ϵ

i, where

∀k≥0,
x002k ¼ x02kx0 þ

Pk�1
l¼0 x02lx2k�2l þ x02lþ1x2k�1�2l

� �

x002kþ1 ¼
Pk

l¼0 x02lx2kþ1�2l þ x02lþ1x2k�2l

� �

(

(9)

Lemma 2.3 Let Y ¼
Pn�1

i¼0 yiϵ
i the inverse of X ¼

Pn�1
i¼0xiϵ

i. Then

y0 ¼ x�1
0

y j ¼ �x�1
0

P j�1
i¼0 yix j�i, ∀j>0

(

(10)

Proof.

Let Y ¼
Pn�1

i¼0 yiϵ
i be the inverse of X ¼

Pn�1
i¼0xiϵ

i. Then XY ¼ 1, by formula (2),
we have

XY ¼
Xn�1

i¼0

ziϵ
i, where z j ¼

Xj

i¼0

xiyj�i: (11)

So,

z0 ¼ 1and ∀j>0, z j ¼ 0, (12)
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which means that,

y0 ¼ x�1
0

y j ¼ �x�1
0

P j�1
i¼0 yix j�i, ∀j>0

(

(13)

Lemma 2.4 The non inverse elements in Rn are the elements of the form
Pn�1

i¼1 xiϵ
i

where xi ∈
n�1
q for all 1≤ i≤ n� 1:

Proof.

Let X ¼
Pn�1

i¼0xiϵ
i ∈Rn. By lemma (2.3), X is invertible in Rn if and only if x0 is

invertible in q: As q is a field, this means x0 6¼ 0.
Corollary 2.5 The ring Rn is local, with maximal ideal In ¼ ϵRn.
Notation.
Let k≥ 2, we denote:

1.

πk :
Rk ! Rk�1

Pk�1
i¼0xiϵ

i
↦
Pk�2

i¼0xiδ
i

�
�
�
�

the projection of Rk on Rk�1.

2.

kπ :
Rk ! R1

Pk�1
i¼0xiϵ

i
↦ x0

�
�
�
�

the canonical projection of Rk on R1 ¼ q.

Corollary 2.6 πk et k
π are two ring homomorphisms.

Proof.
We have,

πk

Xk�1

i¼0

xiϵ
i þ
Xk�1

i¼0

yiϵ
i

 !

¼ πk

Xk�1

i¼0

xi þ yi
� �

ϵ
i

 !

¼
Xk�2

i¼0

xi þ yi
� �

δi

¼ πk

Xk�1

i¼0

xiϵ
i

 !

þ πk

Xk�1

i¼0

yiϵ
i

 !

(14)

and

Xk�1

i¼0

xiϵ
i

 !
Xk�1

i¼0

yiϵ
i

 !

¼
Xk�1

i¼0

ziϵ
i, where z j ¼

Xj

i¼0

xiy j�i:

πk

Xk�1

i¼0

ziϵ
i

 !

¼
Xk�2

i¼0

ziδ
i

πk

Xk�1

i¼0

xiϵ
i

 !

πk

Xk�1

i¼0

yiϵ
i

 !

¼
Xk�2

i¼0

ziδ
i

(15)
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Note that in addition, for every k≥ 1,

kπ ¼ π2∘π3∘π4……∘πk (16)

So, πk and kπ are tow rings morphisms.
Theorem 2.7 Let n≥ 2 be an integer,

a ¼ ~aþ an�1ϵ
n�1, b ¼ ~bþ bn�1ϵ

n�1, X ¼ ~X þ xn�1ϵ
n�1, Y ¼ ~Y þ yn�1ϵ

n�1 and

Z ¼ ~Z þ zn�1ϵ
n�1 be elements of Rn with:

Y2Z ¼ X3 þ aXZ2 þ bZ3: (17)

Then

~Y
2
~Z ¼ ~X

3 þ ~a~X~Z
2 þ ~b~Z

3 þ D� Ayn�1 þ Bzn�1 þ Cxn�1

� �� �
ϵ
n�1 (18)

where,

A ¼ 2y0z0, (19)

B ¼ y20 � 3z20b0 � 2z0a0x0, (20)

C ¼ � 3x20 þ a0z
2
0

� �
(21)

and

D ¼ bn�1z
3
0 þ an�1x0z

2
0: (22)

Proof.
We have:

Y2Z ¼ ~Y þ yn�1ϵ
n�1

� �2
~Z þ zn�1ϵ

n�1
� �

¼ ~Y
2
~Z þ y20zn�1 þ 2y0z0yn�1

� �
ϵ
n�1

X3 ¼ ~X þ xn�1ϵ
n�1

� �3

¼ ~X
3 þ 3x20xn�1ϵ

n�1

aXZ2 ¼ ~a~X~Z
2 þ 2zn�1z0a0x0 þ a0xn�1z

2
0 þ an�1x0z

2
0

� �
ϵ
n�1

bZ3 ¼ ~b~Z
3 þ bn�1z

3
0 þ 3z20zn�1b0

� �
ϵ
n�1

(23)

If

Y2Z ¼ X3 þ aXZ2 þ bZ3, (24)

then, ~Y
2
~Z ¼ ~X

3 þ ~a~X~Z
2 þ ~b~Z

3 þ ð3x20xn�1 þ 2zn�1z0a0x0 þ a0xn�1z
2
0 þ an�1x0z

2
03z

2
0zn�1b0�

y20zn�1 � 2y0z0yn�1Þϵn�1 and therefore,

~Y
2
~Z ¼ ~X

3 þ ~a~X~Z
2 þ ~b~Z

3 þ D� Ayn�1 þ Bzn�1 þ Cxn�1

� �� �
ϵ
n�1 (25)
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where,

A ¼ 2y0z0, (26)

B ¼ y20 � 3z20b0 � 2z0a0x0, (27)

C ¼ � 3x20 þ a0z
2
0

� �
(28)

and

D ¼ bn�1z
3
0 þ an�1x0z

2
0: (29)

2.2 Primitive triples

Definition 2.8 Let R be a ring. We say that an element x, y, zð Þ∈R3 is primitive if:
xRþ yRþ zR ¼ R. The set of these primitive triplets will be denoted P Rð Þ.

Remark 2.9 The equality xRþ yRþ zR ¼ R means that there exists α, β, λð Þ∈R3

such that 1R ¼ αxþ βyþ λz.

Proposition 2.10 Let R be a local ring, then x, y, zð Þ∈R3 is a primitive triple if and
only if at least one of the elements x, y, and z is invertible in R.

Proof.
Suppose that x, y and z are not invertible in R, then:

x, y, zð Þ∈M3 where M is the unique maximal ideal of R, hence

xRþ yRþ zR⊂M ⊊ R, (30)

which contradicts that x, y, zð Þ is a primitive triple.
Conversely, suppose, for example, that x is invertible in R, then xR ¼ R, so

xRþ yRþ zR ¼ R.

Remark 2.11 If R is a field, then an element x, y, zð Þ∈R3 is primitive if and only if
x, y, zð Þ 6¼ 0, 0, 0ð Þ.

2.3 The projective plane on a finite ring

Let R is a ring. The projective plane on R is the set of equivalence classes of P Rð Þ
modulo; the equivalence relation � R defined by:

x1, y1, z1
� �

� R x2, y2, z2
� �

⇔ ∃λ∈R�
: x2, y2, z2
� �

¼ λ x1, y1, z1
� �

: (31)

We denote the projective plane on R by 
2 Rð Þ, it is the quotient set P Rð Þ

�R , and we
write x : y : z½ � for the equivalence class of x, y, zð Þ∈P Rð Þ. Thus, we have:

x1 : y1 : z1
� �

¼ x2 : y2 : z2
� �

⇔∃λ∈R�
: x2 ¼ λx1, y2 ¼ λy1 and z2 ¼ λz1: (32)

Example 2.12 We Consider the finite ring 2 e½ � ¼ αþ βe=α∈2 andβ∈2f g,
where e is an indeterminate satisfying e2 ¼ 0. The group of units for this ring is
2 e½ �ð Þ� ¼ 1, 1þ ef g.

As this ring is local with maximal ideal e2 e½ �, then an element x, y, zð Þ of 2 e½ �3 is
non primitive if and only if x, y, zð Þ∈ 0, ef g3: As one can see, there are eight elements
which are not primitive, and therefore the set P 2 e½ �ð Þ contains 64� 8 ¼ 56 primitive
triples as given below:
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P 2 e½ �ð Þ ¼  0, 0, 1ð Þ, 0, 1, 1þ eð Þ, 0, 1, 0ð Þ, 0, 1, 1ð Þ, 0, 1, eð Þ, 0, 1, 1þ eð Þ, 0, e, 1ð Þ,f

0, e, 1þ eð Þ, 0, 1þ e, 0ð Þ, 0, 1þ e, 1ð Þ, 0, 1þ e, eð Þ, 0, 1þ e, 1þ eð Þ,

1, 0, 0ð Þ, 1, 0, 1ð Þ, 1, 0, eð Þ, 1, 0, 1þ eð Þ, 1, 1, 0ð Þ, 1, 1, 1ð Þ, 1, 1, eð Þ,

1, 1, 1þ eð Þ, 1, e, 0ð Þ, 1, e, 1ð Þ, 1, e, eð Þ, 1, e, 1þ eð Þ, 1, 1þ e, 0ð Þ,

1, 1þ e, 1ð Þ, 1, 1þ e, eð Þ, 1, 1þ e, 1þ eð Þ, e, 0, 1ð Þ, e, 0, 1þ eð Þ, e, 1, 0ð Þ,

e, 1, 1ð Þ, e, 1, eð Þ, e, 1, 1þ eð Þ, e, e, 1ð Þ, e, e, 1þ eð Þ, e, 1þ e, 0ð Þ, e, 1þ e, 1ð Þ,

e, 1þ e, eð Þ, e, 1þ e, 1þ eð Þ, 1þ e, 0, 0ð Þ, 1þ e, 0, 1ð Þ, 1þ e, 0, eð Þ,

1þ e, 0, 1þ eð Þ, 1þ e, 1, 0ð Þ, 1þ e, 1, 1ð Þ, 1þ e, 1, eð Þ, 1þ e, 1, 1þ eð Þ,

1þ e, e, 0ð Þ, 1þ e, e, 1ð Þ, 1þ e, e, eð Þ, 1þ e, e, 1þ eð Þ, 1þ e, 1þ e, 0ð Þ,

1þ e, 1þ e, 1ð Þ, 1þ e, 1þ e, eð Þ, 1þ e, 1þ e, 1þ eð Þg:

(33)

Let x, y, zð Þ and x0, y0, z0ð Þ be two elements in P 2 e½ �ð Þ, then:
x0 : y0 : z0½ � ¼ x : y : z½ �⇔ x0, y0, z0ð Þ ¼ x, y, zð Þ or x0, y0, z0ð Þ ¼ xþ xe, yþ ye, zþ zeð Þ
so every class in 

2
2 e½ �ð Þ contains two representatives, that is, the projective plane


2
2 e½ �ð Þ contains exactly the following 28 elements:


2
2 e½ �ð Þ ¼ 0 : 1 : 0½ �, 0 : 0 : 1½ �, 0 : 1 : 1½ �, 0 : 1 : e½ �, 0 : 1 : 1þ e½ �, 0 : e : 1½ �, 1 : 0 : 0½ �,f

1 : 0 : 1½ �, 1 : 0 : e½ �, 1 : 0 : 1þ e½ �, 1 : 1 : 0½ �, 1 : 1 : 1½ �, 1 : 1 : e½ �, 1 : 1 : 1þ e½ �,

1 : e : 0½ �, 1 : e : 1½ �, 1 : e : e½ �, 1 : e : 1þ e½ �, 1 : 1þ e : 0½ �, 1 : 1þ e : 1½ �,

1 : 1þ e : e½ �, 1 : 1þ e : 1þ e½ �, e : 0 : 1½ �, e : 1 : 0½ �, e : 1 : 1½ �, e : 1 : e½ �,

e : 1 : 1þ e½ �, e : e : 1½ �g:
(34)

3. Elliptic curve over Rn

In this section, we study the elliptic curves defined on finite local rings Rn of
characteristic a prime number p;

1.A projective Weierstrass equation on Rn is an equation of the form:

E : Y2Z þ a1XYZ þ a3YZ
2 ¼ X3 þ a2X

2Z þ a4X þ a6Z
3 (35)

2.A affine Weierstrass equation on Rn is an equation of the form:

E0
: Y2 þ a1XY þ a3Y ¼ X3 þ a2X

2 þ a4X þ a6 (36)

where a1, a2, a3, a4, a6ð Þ∈Rn
5:

3.1 Elliptic curve form

To an affine (or projective) Weierstrass Eqs. (3) and (4), we associate the
following quantities:
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b2 ¼ a21 þ 4a2

b4 ¼ 2a4 þ a1a3

b6 ¼ a23 þ 4a6

b8 ¼ a21a6 þ 4a2a6 � a1a3a4 þ a2a
2
3 � a24

c4 ¼ b22 � 24b4

Δ ¼ �b22b8 � 8b34 � 27b26 þ 9b2b4b6

j ¼ c34
Δ
ifΔ 6¼ 0

(37)

Δ is called the discriminant of E and j its j – invariant.
Remark3.1On the fieldR1 ¼ q,we denote the discriminant byΔ0 and the j-invariant by

j0, while on the ring Rn, n> 1we denote the discriminant byΔε,n and the j-invariant by jε,n.

We have nπ Δε,nð Þ ¼ Δ0 and nπ jε,n

� �

¼ j0.

Definition 3.2 Let R be a finite ring and let a ¼ a1, a2, a3, a4, a6ð Þ∈R5: An elliptic
curve on R corresponding to a, which we write Ea Rð Þ, is the set of zeros in the projective

plane 2 Rð Þ of the Weierstrass Eq. (3), for which the discriminant Δ is invertible in R.
Remark 3.3 According to the characteristic of the ring R; chra Rð Þ we have the

following cases:

1.If char Rð Þ 6¼ 2 and char Rð Þ 6¼ 3, then:

Ea,b Rð Þ ¼ X : Y : Z½ �∈
2 Rð Þ=Y2Z ¼ X3 þ aXZ2 þ bZ3	 


(38)

for a, bð Þ∈R� R, with Δ ¼ Δa,b ¼ �16 4a3 þ 27b2
� �

∈R�.

2. If char Rð Þ ¼ 2, then Ea,b Rð Þ has one of the following forms:

Ea,b Rð Þ ¼ X : Y : Z½ �∈
2 Rð Þ=Y2Z þ XYZ ¼ X3 þ aX2Z þ bZ3	 


(39)

for a, bð Þ∈R2, with Δ ¼ Δa,b ¼ b∈R�.
Or:

Ea Rð Þ ¼ X : Y : Z½ �∈
2 Rð Þ=Y2Z þ a1XYZ þ a3YZ

2 ¼ X3 þ a4XZ
2 þ a6Z

3
	 


(40)

for a ¼ a1, a3, a4, a6ð Þ∈R4, with a1 non invertible and

Δ ¼ Δa ¼ a31 a31a6 þ a21a3a4 þ a1a
2
4 þ a33

� �
þ a43 ∈R�: (41)

3.If char Rð Þ ¼ 3, then Ea,b Rð Þ has one of the following forms:

Ea,b Rð Þ ¼ X : Y : Z½ �∈
2 Rð Þ=Y2Z ¼ X3 þ aX2Z þ bZ3	 


(42)

for a, bð Þ∈R2, with Δ ¼ Δa,b ¼ �a3b∈R�.
Or:

Ea,b Rð Þ ¼ X : Y : Z½ �∈
2 Rð Þ=Y2Z ¼ X3 þ aXZ2 þ bZ3	 


(43)

for a, bð Þ∈R2, with Δ ¼ Δa,b ¼ �a3 ∈R�.

8
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Remark 3.4 A projective elliptic curve on a field K has one of the following normal
forms (Table 1):

3.2 Projective coordinates and group law

In this subsection, we give in projective coordinates the formulas for adding the
points on an elliptic curve defined by Eq. (3) on the ring Rn, according to the normal
form.

Using Bosma and Lenstra’s theorem see [32], we can deduce the explicit formu-
las for the commutative additive law of the group Ea Rnð Þ. The results are given in
the next theorems following the values of the characteristic of ring Rn [33–36]. Let

X1 : Y1 : Z1½ � þ X2 : Y2 : Z2½ � ¼ X3 : Y3 : Z3½ �: (44)

Theorem 3.5 [Characteristic two case]:

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � ¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼  X1Y1Y
2
2 þ X2Y

2
1Y2 þ X2

2Y
2
1 þ X1X

2
2Y1 þ aX2

1X2Y2 þ aX1X
2
2Y1 þ aX2

1X
2
2þ

bX1Y1Z
2
2 þ bX2Y2Z

2
1 þ bX2

1Z
2
2 þ bY1Z

2
2Z1 þ bY2Z

2
1Z2 þ bX1Z

2
2Z1:

(45)

Y3 ¼  Y2
1Y

2
2 þ X2Y

2
1Y2 þ aX1X

2
2Y1 þ a2X2

1X
2
2 þ bX2

1X2Z2 þ bX1X
2
2Z1þ

bX1Y1Z
2
2 þ bX2

1Z
2
2 þ abX2

2Z
2
1 þ abX2

1Z
2
2 þ bY1Z1Z

2
2 þ bX1Z1Z

2
2 þ abX1Z1Z

2
2þ

abX2Z
2
1Z2 þ b2Z2

1Z
2
2

(46)

Z3 ¼ X2
1X2Y2 þ X1X

2
2Y1 þ Y2

1Y2Z2 þ Y1Y
2
2Z1 þ X2

1X
2
2 þ Y2

1X2Z2 þ X2
1Y2Z2þ

aX2
1Y2Z2 þ aX2

2Y1Z1 þ X2
1X2Z2 þ aX1X

2
2Z1 þ bY1Z1Z

2
2 þ bY2Z

2
1Z2 þ bX1Z1Z

2
2:

(47)

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � 6¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼  X1Y
2
2Z1 þ X2Y

2
1Z2 þ X2

1Y2Z2 þ X2
2Y1Z1 þ aX2

1X2Z2 þ aX1X
2
2Z1þ

bX1Z1Z
2
2 þ bX2Z

2
1Z2:

(48)

Normal form

char Kð Þ 6¼ 2, 3 Y2Z ¼ X3 þ a4XZ
2 þ a6Z

3

Δ ¼ �16 4a34 þ 27a26
� �

j ¼ 1728
4a34

4a34þ27a2
6

char Kð Þ ¼ 3 j ¼ 0 Y2Z ¼ X3 þ a4XZ
2 þ a6Z

3

Δ ¼ �a34

j 6¼ 0 Y2Z ¼ X3 þ a2X
2Z þ a6Z

3

Δ ¼ �a32a6 j ¼ � a32
a6

char Kð Þ ¼ 2 j ¼ 0 Y2Z þ a3YZ
2 ¼ X3 þ a4XZ

2 þ a6Z
3

Δ ¼ a43

j 6¼ 0 Y2Z þ XYZ ¼ X3 þ a2X
2Z þ a6Z

3

Δ ¼ a6 j ¼ 1
a6

Table 1.

Elliptic curve form on a field.
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Y3 ¼  X2
1X2Y2 þ X1X

2
2Y1 þ Y2

1Y2Z2 þ Y1Y
2
2Z1 þ X2

1Y2Z2 þ X2
2Y1Z1 þ aX2

1Y2Z2þ

aX2
2Y1Z1 þ aX2

1X2Z2 þ aX1X
2
2Z1 þ bY1Z1Z

2
2 þ bY2Z

2
1Z2 þ bX1Z1Z

2
2 þ bX2Z

2
1Z2:

(49)

Z3 ¼ X2
1X2Z2 þ X1X

2
2Z1 þ Y2

1Z
2
2 þ Y2

2Z
2
1 þ X1Y1Z

2
2 þ X2Y2Z

2
1 þ aX2

1Z
2
2 þ aX2

2Z
2
1: (50)

Theorem 3.6 [Characteristic three case]:

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � ¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼ Y1Y
2
2X1 þ Y1

2Y2X2 þ 2aX1
2X2Y2 þ 2aX1X2

2Y1 þ 2Z1Z2
2abY1 þ 2Z1

2Z2abY2: (51)

Y3 ¼ Y1
2Y2

2 þ 2a2X1
2X2

2 þ a2bX1Z1Z2
2 þ a2bX2Z1

2Z2: (52)

Z3 ¼ aX1X2 Y1Z2 þ Y2Z1ð Þ þ a X1Y2 þ X2Y1ð Þ X1Z2 þ X2Z1ð Þ þ Y1Y2 Y1Z2 þ Y2Z1ð Þ: (53)

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � 6¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼ 2X1Y2Y1Z2 þ X1Y2
2Z1 þ 2X2Y1

2Z2 þ X2Y1Y2Z1 þ 2aX1
2X2Z2 þ aX1X2

2Z1: (54)

Y3 ¼ 2Y1
2Y2Z2 þ Y1Y2

2Z1 þ 2aX1X2Y1Z2 þ aX1X2Y2Z1 þ 2aX1
2Y2Z2 þ aX2

2Y1Z1: (55)

Z3 ¼ 2Y1
2Z2

2 þ Y2
2Z1

2 þ aX1
2Z2

2 þ 2aX2
2Z1

2: (56)

Theorem 3.7 [The case where the characteristic is different from two and from
three]:

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � ¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼ Y2
1X2Z2 � Z1X1Y

2
2a Z1X2 þ X1Z2ð Þ Z1X2 � X1Z2ð Þ þ 2Y1Y2 � 3bZ1Z2ð Þ Z1X2 � X1Z2ð Þ

(57)

Y3 ¼Y1Y2 Z2Y1 � Z1Y2ð Þ � a X1Y1Z
2
2 � Z2

1X2Y2

� �
þ �2aZ1Z2 � 3X1X2ð Þ X2Y1 � X1Y2ð Þ

� 3bZ1Z2 Z2Y1 � Z1Y2ð Þ
(58)

Z3 ¼ Z1Y2 þ Z2Y1ð Þ Z2Y1 � Z1Y2ð Þ þ 3X1X2 þ aZ1Z2ð Þ Z1X2 � X1Z2ð Þ (59)

• If nπ X1ð Þ : nπ Y1ð Þ : nπ Z1ð Þ½ � 6¼ nπ X2ð Þ : nπ Y2ð Þ : nπ Z2ð Þ½ �, then:

X3 ¼   Y1Y2 � 6bZ1Z2ð Þ X2Y1 þ X1Y2ð Þ þ a2Z1Z2 � 2aX1X2

� �
Z1Y2 þ Z2Y1ð Þ

�3b X1Y1Z
2
2 þ Z2

1X2Y2

� �
� a Y1Z1X

2
2 þ X2

1Y2Z2

� � (60)

Y3 ¼  Y2
1Y

2
2 þ 3aX2

1X
2
2 þ �a3 � 9b2

� �
Z2
1Z

2
2 � a2 Z1X2 þ X1Z2ð Þ2 � 2a2Z1X1Z2X2

þ 9bX1X2 � 3abZ1Z2ð Þ Z1X2 þ X1Z2ð Þ
(61)

Z3 ¼   Y1Y2 þ 3bZ1Z2ð Þ Z1Y2 þ Z2Y1ð Þ þ 3X1X2 þ 2aZ1Z2ð Þ X2Y1 þ X1Y2ð Þþ

a X1Y1Z
2
2 þ Z1X2Y2

� �
:

(62)

4. Elliptic curve on Rn where char Rnð Þ 6¼ 2, 3

The objective of this chapter is to study elliptic curves defined by a Weierstrass
equation with coefficients in a ring Rn such that char Rnð Þ 6¼ 2, 3. We denote it by
En
a,b: Let
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kθ :

k�1
q ! Ek

a,b

x1, x2, :…, xk�1ð Þ ↦
Pk�1

i¼1 xiϵ
i
: 1 :

Pk�1
i¼3 ziϵ

i
h i

�
�
�
�
�
�

(63)

we denote, kG ¼ kθ 
k�1
q

� �

:

4.1 The morphisms πk et θk

Lemma 4.1 The application

πk :
Ek
a,b ! Ek�1

πk að Þ,πk bð Þ

X : Y : Z½ � ↦ πk Xð Þ : πk Yð Þ : πk Zð Þ½ �

�
�
�
�
�

(64)

is a surjective group homomorphism.
Proof.

πk is well defined because πk is a morphism of rings. According to theorem (2.7), we
have AYk�1 þ BZk�1 þ CXk�1 ¼ Dmodp, with

A ¼ 2y0z0, (65)

B ¼ y20 � 3z20b0 � 2z0a0x0, (66)

C ¼ � 3x20 þ a0z
2
0

� �
(67)

and

D ¼ bn�1z
3
0 þ an�1x0z

2
0: (68)

The coefficients A, B and �C are the partial derivatives of the function

F X,Y,Zð Þ ¼ Y2Z � X3 � a0XZ
2 � b0Z

3 (69)

calculated starting from x0, y0, z0
� �

, which are not all equal to zero and deducing

the existence of xk�1 : yk�1 : zk�1

� �
. Hence, πk est surjectif.

Using corollary (2.6), we deduce that πk is a group homomorphism.
Lemma 4.2 For all k≥ 2,

Ker πk
� �

¼ lϵk�1
: 1 : 0

� �
j l∈q

	 

: (70)

Proof.
We have:

Ker πk
� �

¼ P∈Ek
a,bj πk Pð Þ ¼ 0 : 1 : 0½ �

	 

: (71)

Then, P ¼ xk�1ϵ
k�1

: 1þ yk�1ϵ
k�1

: zk�1ϵ
k�1

� �
¼ xk�1ϵ

k�1
: 1 : zk�1ϵ

k�1
� �

:.

As P∈Ek
a,b, we have

zk�1ϵ
k�1 ¼ xk�1ϵ

k�1
� �3 þ axk�1ϵ

k�1 zk�1ϵ
k�1

� �2 þ b zk�1ϵ
k�1

� �3

¼ 0,
(72)

so, zk�1 ¼ 0:
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This yields Ker πk
� �

¼ lϵk�1
: 1 : 0

� �
j l∈q

	 

.

Lemma 4.3 The application

θk :
q ! Ek

a,b

l ↦ lϵk�1
: 1 : 0

� �

�
�
�
�
�
�

(73)

is an injective group homomorphism.
Proof.
The application θk is injective by construction.

Let lϵk�1
: 1 : 0

� �
and hϵk�1

: 1 : 0
� �

be two elements in Ek
a,b, then:

kπ lϵk�1
� �

¼ kπ hϵk�1
� �

kπ 1ð Þ ¼ kπ 1ð Þ

kπ 0ð Þ ¼ kπ 0ð Þ:

(74)

so, using theorem (3.7),

X3 ¼ lþ hð Þϵk�1

Y3 ¼ 1

Z3 ¼ 0:

(75)

This yields

θk lþ hð Þ ¼ θk lð Þ þ θk hð Þ: (76)

Thus, θk is an injective group homomorphism.

4.2 Main applications

In this subsection, we consider a prime p which does not divide N, where

N ¼ ♯E1
kπ að Þ,kπ bð Þ:

Corollary 4.4 Let P∈Ek
a,b, then

NP ¼ 0 : 1 : 0½ �⇔P∈E1
kπ að Þ,kπ bð Þ: (77)

Proof.

If P∈E1
kπ að Þ,kπ bð Þ, then NP ¼ 0 : 1 : 0½ �:

Let P ¼ x0 þ X : y0 þ Y : z0 þ Z
� �

∈Ek
a,b and Q ¼ x0 : y0 : z0

� �
∈E1

kπ að Þ,kπ bð Þ:

If NP ¼ 0 : 1 : 0½ �, then N P� Qð Þ ¼ 0 : 1 : 0½ �:
So, P�Q ¼ kθ l1, l2, :…, lk�1ð Þ:
We deduce that Nli � 0 p½ �, i ¼ 1, 2,…, k� 1, where pgcd N, pð Þ ¼ 1, which

proves that li ¼ 0 et P ¼ Q:
Corollary 4.5

∀P∈Ek
a,b,we have pNP ¼ 0 : 1 : 0½ �: (78)
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Proof.

∀P∈Ek
a,b,NP∈ kG, so pNP ¼ 0 : 1 : 0½ �:.

Lemma 4.6 If p do not divide N, then there exists a unique homomorphism

vk : E
1
a0,b0

! Ek
a,b (79)

for which the following diagram is commutative; (named Diagram(d)).

Proof.
Let P∈ kG, we have pP ¼ 0 : 1 : 0½ �:

Then

kG ⊂ ker p½ �ð Þ: (80)

Hence, there is a unique homomorphism

vk : E
1
a0,b0

! Ek
a,b (81)

which makes the diagram(d) commutative.
Theorem 4.7 If p do not divide N, then there exists a unique homomorphism

sk : E
1
a0,b0

! Ek
a,b (82)

such that πkosk ¼ idE1
a0,b0

:

Proof.
Let N0 ∈ℤ as it exists t∈ℤ checking 1�NN0 ¼ tp: Then,

1�NN0½ � ¼ t½ �o p½ �: (83)

According to Lemma (4.6), there is a unique homomorphism

sk : E
1
a0,b0

! Ek
a,b (84)

which makes the following diagram commutative; (named Diagram(d’)):

Let P∈E1
a0,b0

, then there exists P0 ∈Ek
a,b such that πk P0ð Þ ¼ P: So,
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πkosk Pð Þ ¼ πkoskoπk P0ð Þ

¼ πk 1�NN0½ � P0ð Þð Þ

¼ πk P0 �NN0P0ð Þ

¼ P�NN0P

¼ P:

(85)

Theorem 4.8 If p do not divide N, then Ek
a,b ffi E1

a0,b0
� kG.

Proof.
The isomorphism

f k :
E1
a0,b0

� kG ! Ek
a,b

P,Qð Þ ↦sk Pð Þ þ Q

�
�
�
�
�

(86)

admits an inverse application

Fk :
Ek
a,b ! E1

a0,b0
� kG

P ↦ πk Pð Þ,NN0Pð Þ

�
�
�
�
�

: (87)

Indeed,

f koFk Pð Þ ¼ f k πk Pð Þ;NN0Pð Þð Þ

¼ skoπk Pð Þ þNN0P

¼ 1�NN0ð ÞPþNN0P

¼ P:

(88)

Likewise,

Fkof k P;Qð Þ ¼ Fk sk Pð Þ þQð Þ

¼ πk sk Pð Þ þ Qð Þ;NN0 sk Pð Þ þQð Þð Þ:
(89)

So,

πk sk Pð Þ þ Qð Þ ¼ πk sk Pð Þð Þ þ πk Qð Þ

¼ Pþ 0 : 1 : 0½ �

¼ P:

NN
0
sk Pð Þ þ Qð Þ ¼ NN0 sk Pð Þð Þ þNN0Q

¼ NN0 1�NN0ð ÞP0 þNN0Q

¼ N0tpNP0 þNN0Q

¼ 0 : 1 : 0½ � þNN0Q

¼ NN0Q:

(90)
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As, pQ ¼ 0 : 1 : 0½ �, then we have

NN0Q ¼ 1� tpð ÞQ
¼ Q � tpQ

¼ Q:

(91)

We conclude,

Fkof k P,Qð Þ ¼ P,Qð Þ: (92)

Corollary 4.9 If p do not divide N, then Ek
a,b ffi E1

a0,b0
� 

k�1
q :

Proof.

We have, kG ffi 
k�1
q , see [27, 30, 33].

Corollary 4.10 If p do not divide N, then

Ek
a,b ffi CN � 

k�1
q ,with CN cyclic

or

Ek
a,b ffi =n1� =n2� 

k�1
q ,where n2∣ n1 ∧ p� 1ð Þ:

(93)

Proof.
We have

E1
a0,b0

ffi CN, with CN cyclic

or

E1
a0,b0

ffi =n1� =n2, where n2∣ n1 ∧ p� 1ð Þ:
(94)

And

Ek
a,b ffi E1

a0,b0
� 

k�1
q : (95)

Corollary 4.11 If p do not divide N, then
ffiffiffi
q

p � 1
� �2

qk�1 ≤ ♯ Ek
a,b

� �
≤

ffiffiffi
q

p þ 1
� �2

qk�1:

Proof.
According to Haas’ theorem, we have:

∣qþ 1�N∣ ≤ 2
ffiffiffi
q

p
(96)

so

ffiffiffi
q

p � 1
� �2

qk�1 ≤ ♯ Ek
a,b

� �
≤

ffiffiffi
q

p þ 1
� �2

qk�1: (97)

5. Applications

In this section, we are interested in ECC using elliptic curves over the ring Rn.

5.1 The discrete logarithm on En
a,b

The discrete logarithm problem that we denote DLP, (Discrete logarithm prob-
lem), is a generally difficult problem which depends on the considered group G. In
many situations, due to the asymmetry existing between problems concerning the
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calculation of logarithms and calculation of powers which is more easier and so of
great interest in cryptograph, the above mentioned makes Diffie and Hellman were
the first to build a cryptosystem from this situation [37, 38].

Definition 5.1 Let G be a finite cyclic group of order ρ and s, r two elements of G. We
call discrete logarithm of base s of r, the only element m in 0, ρ� 1½ �½ � such that sm ¼ r:
The discrete logarithm for elliptic curves is defined in an analogous way to be, the only
element m in 0, ρ� 1½ �½ � such that mP ¼ Q, where P, and Q are two points of an additive
subgroup G of En

a,b:

By using the isomorphism proved given in theorem (4.8), we get the results
gathered in the next theorem:

Theorem 5.2 If p does not divide N, then.

• #En
a,b ¼ pd n�1ð Þ �N:

• The problem of the discrete logarithm on the elliptic curve En
a,b is equivalent to

that of E1
a0,b0

:

• If the problem of the discrete logarithm on En
a,b is trivial, then it is also trivial on

the elliptic curve E1
a0,b0

:

5.2 Cryptography based on elliptic curves En
a,b

Elliptic curve cryptography (ECC) is public key cryptography, which relies on
the use of curves over finite fields. Essentially, there are two families of these curves
which are used in cryptography. The first uses elliptic curves on a finite field pd ,

where p is a large prime number. This family is the best choice for a high software
level when implementing ECC. The second family uses elliptic curves on a binary
field 2d where d is a large positive integer, this family is more appropriate at the
material level point of view when implementing ECC. Another family which is also
interesting in ECC implementations is the family of elliptic curves on the previously
seen rings Rn. The most important advantage presented by the use of elliptic curves
in cryptography (ECC) consists in the high security they provide for wireless
applications compared to other asymmetric key cryptosystems, also their small key
size. Indeed, a 160-bit key for (ECC) can replace a 1024-bit key for (RSA). Given d;
a large integer, P∈En

a,b and Q ∈G⊂En
a,b: The discrete elliptical logarithm problem

(DLEP) consists in finding k∈ such that Q ¼ k½ �P, where

k½ �P ¼ Pþ Pþ⋯P
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ktimes

¼ kP: (98)

This is in fact a difficult problem, whose resolution is exponential.

5.3 Elliptical Diffie-Hellman cryptosystem

Recall that Alice and Bob can publicly agree on a common secret (that we
describe below).

1.They choose on a large integer d, En
a,b and P∈En

a,b:

2.Alice chooses t∈ and calculates tP:

16

Number Theory and Its Applications



3.Bob chooses s∈ and calculates sP:

4.Alice let public tP and keep private t:

5.Bob let public sP and keep private s:

6.Then, Alice and Bob build their common secret key K ¼ tsP ¼ stP:

Remark 5.3

1.Unlike the classic Diffie-Hellman algorithm, we do not ask that P be a
generator of En

a,b: The analogue of the subgroup 
∗
p of order p� 1, is the cyclic

subgroup of En
a,b, generated by the point P:

2.As soon as we have a group En
a,b, and an element P∈En

a,b of finite order we can

consider a Diffie-Hellman system on G ¼ <P> which is cyclic. For this
construction to have a cryptographic interest, log P tPð Þ ¼ tmust be not easy to
calculate.

3.En
a,b, is not always cyclical.

4. If, Oscar (program) is giving d,En
a,b, tP and sP, then it is able to solve the

discrete elliptical logarithm problem and find t or s:

5.4 Elliptical ElGamal cryptosystem

Let Pm ∈En
a,b be the point representing the message m, to encrypt Pm :

1.Key generation algorithm

• Bob chooses the private key t∈ known only to him.

• d∈ℕ,P∈En
a,b and R ¼ t½ �P are public.

2.Encryption algorithm

• Alice Randomly chooses k∈;

• She calculates c1 ¼ k½ �P∈En
a,b;

• She also calculates c2 ¼ Pm þ k½ �R;

• Then, he makes public c1, c2, or C ¼ c1; c2ð Þ:

3.To decrypt received message c1, c2ð Þ, Bob calculates:

Pm ¼ c2 � k½ �R ¼ c2 � k½ � t½ �P ¼ c2 � t½ �c1: (99)

Now, Oscar encounters the discrete elliptic logarithm problem, because to
decipher the message Pm he must know t (i.e.; calculate t such that R ¼ t½ �P).
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5.5 Coding example

Let d be a positive integer, we consider the quotient ring R2 ¼ 
2d

X½ �
X2ð Þ , where 2d is

the finite field of order 2d.
Then the ring R2 is identified with the ring 2d ε½ �, where ε2 ¼ 0, i.e.,

R2 ¼ a0 þ a1 � εja0, a1 ∈2d
	 


: (100)

We consider the elliptic curve on the ring R2 given by the equation:

Y2Z þ XYZ ¼ X3 þ aX2Z þ bZ3: (101)

where a, b in R2 and b is invertible in R2: Each element of E2
a,b is of the form;

X : Y : 1½ � or xε : 1 : 0½ �, with x∈2d . Write:

E2
a,b ¼ X : Y : 1½ �∈

2
2jY2 þ XY ¼ X3 þ aX2 þ b

	 

∪ xε : 1 : 0½ �jx∈2d
	 


: (102)

Let E2
a,b be the elliptic curve over R2 and consider the irreducible polynomial

T Xð Þ ¼ 1þ X þ X3 in 2 X½ �: Let α be such that T αð Þ ¼ 0 in 8 ¼ 2 X½ �
T Xð Þð Þ , then

1, α, α2ð Þ is a vector space base of 8 over 2:

8 ¼ 0, 1, α, α2, αþ 1, α2 þ α, α2 þ 1, α2 þ αþ 1
	 


(103)

⋆ Put:

a ¼ 1þ α; (104)

b ¼ 1þ α2ε: (105)

We have: R2 ¼ 8 ε½ � and E2
a,b : Y

2 þ XY ¼ X3 þ 1þ αð ÞX2 þ 1þ α2εð Þ: Consider
P∈E2

a,b of order l, and consider the subgroup G ¼ <P> , generated by P, to

encrypt and decrypt our messages.

1.Coding of elements of G

We will give a code to each element Q ¼ mP, where m∈ 1, 2, ::, lf g, defined as
follows:
If Q ¼ x0 þ x1ε : y0 þ y1ε : Z

� �
, where xi, yi ∈8 for i ¼ 0, 1, and Z ¼ 0 or 1,

then we set:

xi ¼ c0i þ c1iαþ c2iα
2; (106)

yi ¼ d0i þ d1iαþ d2iα
2, (107)

where α is the primitive root of the irreducible polynomial T Xð Þ ¼ 1þ X þ X3,
and cij, dij ∈2.
So, we code Q as follows:
If Z ¼ 1: Q ¼ c00c10c20c01c11c21d00d10d20d01d11d211:
If Z ¼ 0: Q ¼ 00c01c11c21d01d11d2110000:
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2.Example: with the same a and b;

a ¼ 1þ α; (108)

b ¼ 1þ α2ε: (109)

The elliptic curve E2
a,b contains 112 elements to know:

Ea,b A2ð Þ ¼ f α2 þ αþ 1ð Þε : 1 : 0½ �, α2 þ 1ð Þε : 1 : 0½ �, ½ 1þ αð Þε : 1 :
0�, α2 þ αð Þε : 1 : 0½ �, α2ε : 1 : 0½ �, αε : 1 : 0½ �, ½εþ α2 þ 1 : αεþ α :

1�, α2 þ α : α2 þ αþ 1ð Þε : 1½ �, α2ε : εþ 1 : 1½ �, ½ α2 þ 1ð Þεþ α2 þ 1 :

α2 þ αð Þεþ α : 1�, 1þ αð Þεþ α2 : α2 þ αþ 1ð Þεþ α2 þ 1 : 1½ �, ½ α2 þ αð Þεþ 1þ α :

α2 þ αþ 1ð Þεþ α2 : 1�, 1þ αð Þεþ α2 þ 1 : α : 1½ �, ½α2εþ α2 þ αþ 1 : εþ 1 :

1�, 1þ α : α2 þ 1ð Þεþ α2 þ αþ 1 : 1½ �, ½ α2 þ αþ 1ð Þεþ α : α2 þ 1ð Þεþ α2 þ α :

1�, αεþ α2 : α2 þ 1ð Þεþ α2 þ 1 : 1½ �, ½ 1þ αð Þεþ α2 þ αþ 1 : 1þ αð Þεþ 1 :

1�, α2ε : 1þ αð Þεþ 1 : 1½ �, α2εþ 1þ α : α2εþ α2 þ αþ 1 : 1½ �, ½αεþ α2 þ 1 :

εþ α : 1�, 1þ αð Þεþ α2 þ α : α2 þ 1ð Þεþ α2 þ α : 1½ �, ½α2εþ α2 þ αþ 1 :

α2 þ 1ð Þεþ α2 þ α : 1�, α2 þ 1ð Þεþ 1þ α : α2 þ αð Þεþ α2 : 1½ �, ½αεþ α2 þ α :

(110)

0 : 1�, α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 : 1
� �

, ½εþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 :

1�, α2 þ αþ 1
� �

εþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 : 1
� �

, ½ α2 þ αþ 1
� �

εþ α2 :

1þ αð Þεþ 1 : 1�, α2εþ α2 þ 1 : α2 þ αþ 1
� �

εþ α : 1
� �

, ½ 1þ αð Þεþ α2 þ α :

α2 þ α
� �

ε : 1�, α2 þ αþ 1
� �

εþ 1þ α : εþ α2 : 1
� �

, ½ α2 þ α
� �

εþ α2 þ 1 : 1þ αð Þεþ
α2 þ αþ 1 : 1�, α2 þ 1

� �
εþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 : 1

� �
, ½ α2 þ 1
� �

εþ 1þ α :

1þ αð Þεþ α2 þ αþ 1 : 1�, εþ α2 : αεþ 1 : 1
� �

, ½ α2 þ 1
� �

εþ α2 þ αþ 1 : αεþ 1 :

1�, α2ε : αεþ 1 : 1
� �

, εþ α2 þ α : ε : 1
� �

, ½ 1þ αð Þεþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 :

1�, α2εþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 : 1
� �

, ½αεþ α2 þ 1 : 1þ αð Þεþ α2 þ αþ 1 :

1�, α2 þ αþ 1
� �

εþ α2 þ αþ 1 : α2εþ 1 : 1
� �

, 1þ αð Þεþ α2 : α2εþ 1 : 1
� �

, ½α2ε :
α2εþ 1 : 1�, α2 þ αþ 1 : α2 þ α

� �
εþ α2 þ α : 1

� �
, α2ε : 1 : 1
� �

, ½ α2 þ α
� �

εþ α2 :

1 : 1�, εþ α, 1þ αð Þεþ α2 þ α : 1
� �

, ½ α2 þ αþ 1
� �

εþ α2 þ αþ 1 : 1þ αð Þεþ α2 þ α :

1�, α2 þ α
� �

εþ α2 þ α : 1þ αð Þεþ α2 þ α : 1
� �

, ½ α2 þ α
� �

εþ 1þ α : εþ α2 þ αþ 1 :

1�, α2 þ αþ 1
� �

εþ α2 þ α : 1þ αð Þε : 1
� �

, ½εþ α2 þ αþ 1 : α2εþ α2 þ α :

1�, εþ 1þ α : αεþ α2 þ αþ 1 : 1
� �

, α : αεþ α2 þ α : 1
� �

, ½αεþ α2 þ αþ 1 :

αεþ α2 þ α : 1�, αεþ α2 þ αþ 1 : 1 : 1
� �

, ½ α2 þ αþ 1
� �

εþ α2 þ α : α2εþ α2 þ α :

1�, α2 : εþ α2 þ 1 : 1
� �

, ½ 1þ αð Þεþ 1þ α : α2 þ αþ 1
� �

εþ α2 þ αþ 1 :

1�, α2 þ α : α2 þ αþ 1
� �

εþ α2 þ α : 1
� �

, εþ α2 þ α : α2 þ α : 1
� �

, ½αεþ 1þ α :

α2 þ αþ 1 : 1�, α2 : εþ 1 : 1
� �

, ½ α2 þ α
� �

εþ α2 þ αþ 1 : α2 þ αþ 1
� �

εþ 1 :

1�, α2ε : α2 þ αþ 1
� �

εþ 1 : 1
� �

, α2 þ α
� �

εþ α2 þ 1 : α2 þ 1
� �

εþ α : 1
� �

, ½εþ α2 :

1þ αð Þεþ α2 þ 1 : 1�, εþ 1þ α : 1þ αð Þεþ α2 : 1
� �

, ½ α2 þ α
� �

εþ α2 :

α2 þ α
� �

εþ α2 þ 1 : 1�, α2 þ α
� �

εþ α2 þ α : α2 þ 1
� �

ε : 1
� �

, ½εþ α2 þ αþ 1 :

α2 þ 1
� �

εþ 1 : 1�, α2 þ αþ 1
� �

εþ α2 þ 1 : α2εþ α : 1
� �

, ½α2εþ α2 þ α :

αε : 1�, α2 þ α
� �

εþ α : α2εþ α2 þ α : 1
� �

, ½ α2 þ α
� �

εþ α : αεþ α2 :

1�, α2 þ 1
� �

εþ α : αεþ α2 : 1
� �

, 1þ αð Þεþ α : αεþ α2 : 1
� �

, ½ 1þ αð Þεþ α :

εþ α2 þ α : 1�, 1þ αð Þεþ α2 þ αþ 1 : α2 þ α : 1
� �

, ½α2 þ αþ 1 :

α2 þ α
� �

εþ 1 : 1�, α2ε : α2 þ α
� �

εþ 1 : 1
� �

, ½α2εþ α : αεþ α2 :

1�, αεþ 1þ α : αεþ α2 : 1
� �

, αεþ α : αεþ α2 : 1
� �

, ½ α2 þ 1
� �

εþ α2 : α2 þ 1 :

1�, αεþ α : α2 þ α : 1
� �

, 1þ αð Þεþ 1þ α : α2εþ α2 : 1
� �

, ½ α2 þ 1
� �

εþ α2 þ α :

εþ α2 þ α : 1�, αεþ α2 þ α : αεþ α2 þ α : 1
� �

, ½α2εþ α2 : αεþ α2 þ 1 :

1�, α2 þ 1
� �

εþ α2 þ αþ 1 : α2 þ αþ 1
� �

εþ α2 þ α : 1
� �

, ½ α2 þ 1
� �

εþ α :

α2 þ αþ 1
� �

εþ α2 þ α : 1�, α2 þ αþ 1
� �

εþ α2 : α2εþ α2 þ 1 : 1
� �

, ½α2ε :

(111)
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α2 þ 1ð Þεþ 1 : 1�, α2εþ α : α2 þ αð Þεþ α2 þ α : 1½ �, ½1þ α : α2 þ 1ð Þεþ α2 :

1�, α2 þ αþ 1ð Þεþ 1þ α : α2 þ αð Þεþ α2 þ αþ 1 : 1½ �, ½α2εþ α2 : α2 þ αð Þεþ 1 :

1�, α2 þ 1 : 1þ αð Þεþ α : 1½ �, α2 þ 1ð Þεþ α2 þ α : α2ε : 1½ �, ½α2εþ 1þ α : α2 :

1�, 0 : 1 : 0½ �, α : αεþ α2 : 1½ �, εþ α : αεþ α2 : 1½ �, ½ α2 þ αþ 1ð Þεþ α : αεþ α2 :

1�, α2 þ αð Þεþ α2 þ αþ 1 : εþ α2 þ α : 1½ �, ½α2εþ α2 þ α : α2 þ αð Þεþ α2 þ α :

1�, αεþ α2 : α2 þ αþ 1ð Þεþ 1 : 1½ �, ε : 1 : 0½ �, α2 þ 1ð Þεþ α2 : α2 þ 1ð Þεþ 1 : 1½ �g

(112)

We consider: P ¼ α : αþ α2 þ αε : 1½ � ¼ 0100000110101, then G ¼ <P> is of
order 28. We attach to each point Q ∈G a letter of the alphabet and a code. We
collect the results in the following Table 2:

mP Codefor mP Symbol

1 α : α þ α2 þ αε : 1½ � 0100000110101 a

2 1þ α þ ε : α2 þ 1þ αð Þε : 1½ � 1101000011101 b

3 α2 þ αε : 1þ α2 þ α2 þ 1ð Þε : 1½ � 0010101011011 c

4 1þ α þ α2 þ 1þ αð Þε : α þ α2 : 1½ � 1111100110001 d

5 α þ α2 þ 1þ α þ α2ð Þε : 1þ αð Þε : 1½ � 0111110001101 e

6 1þ α2 þ 1þ α þ α2ð Þε : α þ α2ε : 1½ � 1011110100011 f

7 α2ε : 1þ 1þ α2ð Þε : 1½ � 0000011001011 g

8 1þ α2 þ 1þ α2ð Þε : 1þ α þ α2 þ 1þ αð Þε : 1½ � 1011011111101 h

9 α þ α2 þ αε : α þ α2 þ αε : 1½ � 0110100110101 i

10 1þ α þ α2 þ αε : 1 : 1½ � 1110101000001 j

11 α2 þ α2ε : 1þ α þ α2ð Þε : 1½ � 0010011000111 k

12 1þ α þ α þ α2ð Þε : 1þ α þ α2 þ ε : 1½ � 1100111111001 l

13 α þ 1þ αð Þε : α2 þ αε : 1½ � 0101100010101 m

14 α2ε : 1 : 0½ � 0000100010000 n

15 α þ 1þ αð Þε : α þ α2 þ ε : 1½ � 0101100111001 o

16 1þ α þ α þ α2ð Þε : α2 þ 1þ α þ α2ð Þε : 1½ � 1100110011111 p

17 α2 þ α2ε : 1þ α2 þ αε : 1½ � 0010011010101 q

18 1þ α þ α2 þ αε : α þ α2 þ αε : 1½ � 1110100110101 r

19 α þ α2 þ αε : 0 : 1½ � 0110100000001 s

20 1þ α2 þ 1þ α2ð Þε : α þ α þ α2ð Þε : 1½ � 1011010100111 t

21 α2ε : 1þ ε : 1½ � 0000011001001 u

22 1þ α2 þ 1þ α þ α2ð Þε : 1þ α þ α2 þ 1þ αð Þε : 1½ � 1011111111101 v

23 α þ α2 þ 1þ α þ α2ð Þε : α þ α2 þ α2ε : 1½ � 0111110110011 w

24 1þ αα2 þ 1þ αð Þε : 1þ 1þ αð Þε : 1½ � 1111101001101 x

25 α2 þ αε : 1þ 1þ α þ α2ð Þε : 1½ � 0010101001111 y

26 1þ α þ ε : 1þ α þ α2 þ αε : 1½ � 1101001110101 z

27 α : α2 þ αε : 1½ � 0100000010101 space

28 0 : 1 : 0½ � 0000000010000 ,

Table 2.

Points coding.
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5.6 Encryption and decryption procedures

• The encryption of our message “for the elliptical curve”, is;

01111101100110111110001101010000001010100000

11001001011010000000101111100011010100000010

10110110101001111011011111101011111000110101

00000010101011111000110111001111110011100111

11100101101001101011100110011111101101010011

10110100110101001010101101101000000101010010

10101101100000110010011110100110101101111111

110101111100011010000000010000

(113)

• Decryption of this message:

01000001101011101000011101111110011000101111

10001101110011111100110110111111010100000110

10101011000101010110100110101111110011000101

00000010101101101010011101000001101011111100

1100010101100010101010110011100111101001101010

110100110101

(114)

is: hello to abdelhakim.

6. Conclusion

The results obtained are very important from theoretical points of view because
to study an elliptic curve on a finite local ring it suffices to study these curves on
finite fields, for the applications of these curves they can be applied in cryptography
to reinforce security and we can use them in cryptanalysis to solve the PDL on
special curves. This results are very imploring and give applications in different
fields such as classical mechanics, number theory, cryptology, information theory
… and we can quote here:

1.The generalization of Hass’s theorem, corollary 4.9.

2.The result of the corollary 4.11, then in [24], we have the result of the
Proposition 3.12.
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