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Atrophy
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Abstract

Muscle mass is maintained through an interplay between anabolic and catabolic 
pathways. The ubiquitin-proteasome system plays an important role in the proteoly-
sis progress during skeletal muscle atrophy which can be blocked by some protea-
some inhibitors. But few studies have demonstrated the ability of these inhibitors 
to preserve muscle mass and architecture under catabolic condition in vivo. The 
insulin-like growth factor-1/phosphatidylinositide 3-kinases/protein kinase B/
mammalian target of rapamycin (IGF-1/PI3K/Akt/mTOR) pathway was associ-
ated with anabolic pathways. The activation of IGF-1 causes muscle hypertrophy; 
however, it cannot be used as a drug target. Myostatin pathway maintains activation 
that can induce skeletal muscle atrophy involved with various transcriptional and 
genetic factors. Skeletal muscle atrophy is a debilitating consequence of multiple 
chronic diseases and conditions that involve starvation. It reduces treatment options 
and positive clinical outcomes as well as compromising quality of life and increasing 
morbidity and mortality. Though considerable research has been undertaken to find 
the drug target and the molecular mechanisms that improve skeletal muscle atro-
phy, no drug was approved to treat skeletal muscle atrophy. However, these years, 
the signaling pathways involved in muscle atrophy were clarified and some effective 
treatments were currently available to prevent, attenuate, or reverse muscle atrophy 
for experiment research.
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1. Introduction

The pathophysiology of skeletal muscle atrophy is multifactorial, with cancer, 
sepsis, renal and cardiac failure, acquired immune deficiency syndrome (AIDS) and 
chronic obstructive pulmonary disease (COPD) as well as inactivity or during aging 
[1–3]. These factors gradually lead to muscle wasting and weakness by decreasing 
protein synthesis and accelerating protein degradation, which are characterized 
by substantial decrease in myonuclear number, muscle fiber cross-sectional area, 
muscle strength and protein content while increasing in fatigability and resistance 
to insulin [4, 5]. Muscle atrophy is recognized as an independent predictor of 
mortality and is associated with functional impairment and poor quality of life [6].

Studies have revealed that different types of molecular mediators/catabolic 
players such as pro-inflammatory cytokines i.e. tumor necrosis factor-α (TNF-
α), interleukin-6 (IL-6), interleukin-1 (IL-1), interferon gamma (IFN-γ) and 
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TNF-like weak inducer of apoptosis (TWEAK), eicosanoids and transforming 
growth factor-β (TGF-β) family effectors (such as activin A and myostatin) are 
involved in skeletal muscle atrophy under above mentioned clinical settings [7–9]. 
These cytokines binding to their respective receptor results in activation of several 
catabolic pathways including nuclear factor-kappa B (NF-κB), Janus kinase-signal 
transducer and activator of transcription (JAK-STAT) pathways and small mothers 
against decapentaplegic homolog 2/3 (SMAD2/3). In addition to cytokines, growth 
factors such as insulin-like growth factor-1 (IGF-1) signal through anabolic pathway 
(phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin; 
PI3K/Akt/mTOR) to mediate functional repression of the transcription factors fork-
head box protein O1 (FoxO1) or FoxO3 by inhibiting their nuclear translocation and 
overall levels, which together inhibit the transcription of muscle atrophy genes [10].

In spite of many promising therapeutic targets for improving skeletal muscle 
atrophy, no treatment has been successful to date. In this chapter, we classify the 
potential drugs currently in laboratory/preclinical research into four categories and 
then discuss their mechanism of action.

2. Anabolic medications

2.1 Androgen/androgen receptor modulators

Testosterone treatments increase muscle protein synthesis and fat free mass, and 
its effects on muscle are modulated by nutrition and exercise [11]. Several studies 
have shown the beneficial effects of testosterone supplementation on sarcopenia 
characteristics such as decreases in the muscle mass [12] and grip strength [13]. A 
study recently demonstrated that testosterone administration for 3 years in older 
men (over 60 years old) significantly improved stair-climbing power, muscle 
mass and power [14, 15]. Similarly, lower doses of testosterone supplementation 
in women with hysterectomy or chronic heart failure significantly increases lean 
body mass, 6-m walk time, chest press power and maximal voluntary contraction 
[16]. Evident showed that the effect of testosterone in improving skeletal muscle 
atrophy is related to the positive regulation of IGF-1 [12], wnt [17] and myostatin 
[18]. Although testosterone and its analogs can induce muscle growth and increase 
muscle strength [19], its clinical use is substantially limited by severe side effects 
including the increased risk of developing prostate hypertrophy, cancer, sleep apnea, 
 masculinization, thrombosis complication and behavioral abnormalities [20, 21].

Compared with testosterone, the selective androgen receptor modulator 
(SARM) binds to androgen receptors with differing levels of sensitivity [22], 
showed androgenic effects in some tissues (such as muscle and bone), and has no 
effect on other organs (such as prostate or skin), thereby limiting adverse reactions 
such as prostate hypertrophy or androgen production. Enobosarm (GTx-024), an 
orally bioavailable nonsteroidal SARM, has been shown to increase lean body mass 
in phase I and II clinical trials of cancer cachexia patients [23, 24]. Moreover, the 
stimulation of reproductive organs with enobosarm seems to be less pronounced 
compared to testosterone administration. However, the phase III clinical trial 
of enobosarm failed to meet its common primary endpoint of preserving lean 
body mass and physical function [25]. Phase I clinical trials using another SARM 
non-steroidal oral preparation LGD-4033/VK5211 also showed increased muscle 
mass, but there was no effect on fat mass [26]. The 4-aza steroidal drug MK0773 
(TFM-4AS-1) is a dual SARM and an inhibitor of 5α-reductase. Studies have 
shown that it can improve IGF-1 levels and muscle function in women, however, 
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the trial was terminated due to increased cardiovascular risk [27]. GSK2881078, 
which is assessed for its impact on muscle growth and strength, has completed its 
phase I trial [28] and phase II trial for the treatment of weakness caused by COPD 
(NCT03359473). The development of SARM drugs still requires long-term follow-
up and/or more effective and selective SARM trials to prove the safety and efficacy 
of SARM in improving physical function and health outcomes.

2.2 Ghrelin and its receptor agonist

Ghrelin is a growth hormone (GH)-releasing polypeptide that binds to the 
GH secretagogue receptor (GHSR-1α) and stimulates appetite by activating the 
neuropeptide Y (NY) in the hypothalamus and helps in regulation of body weight 
[29, 30]. Studies have shown that ghrelin can reduce dexamethasone, fasting, dener-
vation, cancer and cisplatin-induced muscle atrophy [31, 32]. In cachexia induced 
by lung adenocarcinoma, ghrelin treatment can reduce the expression of TNF-α, 
IL-1β, IL-6 and C-reactive protein, and inhibit skeletal muscle atrophy by restoring 
the expressions of the p-Akt and p-FoxO1, and reducing the expressions of p-p38 
mitogen-activated protein kinase and p-NF-κB in skeletal muscle of tumor-bearing 
mice [33]. A three-week clinical study of ghrelin therapy in cachexia patients with 
nausea, COPD and chronic heart failure (CHF) showed an increase in lean body 
mass and muscle strength [29, 34]. Although ghrelin plays a key role in stimulating 
appetite, gaining body weight and preventing muscle catabolism, its clinical efficacy 
is limited due to its half-life (0.5 h) and route of administration (intravenous) [35].

Ghrelin agonists (such as anamorelin) have the advantage of oral activity. 
Compared with ghrelin (0.5 h), it has a better half-life (7–12 h) [36]. A randomized, 
double-blind, placebo-controlled phase I clinical study showed that anamorelin 
gained body weight after 6 days of treatment [37]. In two phase II anamorelin trials 
in cachectic patients with advanced or incurable cancer [38] and two multinational 
phase III trials (ROMANA 1 and 2 trials) in cachectic patients with unresectable 
non-small cell lung cancer (NSCLC) [39], significant gains were recorded in lean 
body mass and body weight over 12 weeks, but there was no improvement in 
physical functions and hand-grip strength. Similarly, a multicenter, open-label, 
single-arm study investigated the efficacy and safety of anamorelin in advanced 
gastrointestinal cancer patients with cancer cachexia, and this study showed a posi-
tive effect of anamorelin on lean body mass, body weight, anorexia and patients’ 
nutritional status [40]. Furthermore, anamorelin treatment was well tolerated over 
12 weeks. Finally, two meta-analyses also strongly supported the positive effect of 
anamorelin on lean body mass and body weight [41, 42]. Recently, a single-center 
study on healthy young adults showed anamorelin elicited modest increases in 
hunger and achieved significant increases in hunger and caloric intake [43]. The 
findings are consistent with multi-center findings in cachectic cancer patients and 
expand the evidence supporting anamorelin as a potential intervention.

2.3 β-Adrenoceptor agonists

Muscle growth can also be stimulated by activation of G-protein coupled 
β2-adrenoreceptor (β2-AR), which causes protein kinase A activation [44] and 
thereby stimulating PI3K/Akt/mTOR signaling [45]. Formoterol is a β2-AR agonist, 
the administration of formoterol significantly increased the levels of follistatin 
and decreased the levels of myostatin and its receptors (activin receptor IIB, 
ActRIIB) in tumor-bearing rats, thereby regulating muscle mass loss [46, 47]. In 
addition to skeletal muscle, formoterol also shows a strong protective effect on the 
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heart muscle [48]. Clinical studies have also shown that formoterol treatment can 
increase the content of PGC-1α and mtDNA in skeletal muscle of COPD patients to 
enhance the oxidation process of skeletal muscle and improve exercise ability [49]. 
Clenbuterol is another β2-AR agonist and can improve skeletal muscle atrophy in 
a variety of muscle atrophy models dominated by denervation [50], immobiliza-
tion [51] and spinal cord injury [52]. However, due to concerns about potential 
cardiovascular side effects [44, 53], such as cardiac arrhythmia, there has been little 
interest in the clinical applications of β2-AR agonists for muscle atrophy treatment. 
Among them, espindolol may be a potentially attractive compound. It is a β1 recep-
tor antagonist, a partial β2 receptor agonist and also has 5-HT1a receptor activities. 
In old rats, espindolol has been shown to significantly increase muscle mass, while 
reducing fat mass without negatively affecting heart function [54]. In addition, it 
has also shown very promising results in phase IIa cancer cachexia studies leading to 
increased muscle mass and grip strength [55, 56].

3. Enzyme inhibitors

3.1 Cox2 inhibitors

Cox2 is a bifunctional enzyme with cyclooxygenase and peroxidase activities. 
Cyclooxygenase activity is responsible for the synthesis of prostaglandins (PGE2) 
from arachidonic acid, while peroxidase activity can produce adjacent carcinogens. 
Both Cox2 and PGE2 are downstream effectors of cytokine activity and medi-
ate cachexia [57]. A placebo-controlled study of celecoxib (Cox2 inhibitor) on 
cachectic patients with either head and neck or gastrointestinal cancer showed a 
significant increase of body mass and the quality of life [58]. In addition, a phase 
II non-randomized trial examined the efficacy and safety of celecoxib on cancer 
cachexia. Celecoxib administered at 300 mg/day for 4 months induced a significant 
increase of lean body mass, a decrease of serum TNF-α levels, and a trend toward a 
reduction of fatigue symptom [59]. Moreover, side effects such as grade 1/2 anemia, 
neuropathy and epigastralgia have been observed in only a few patients, and no 
grade 3/4 adverse events have been observed. Recently, a randomized double-blind 
clinical trial of combined treatment with megestrol acetate plus celecoxib versus 
megestrol acetate alone in cachexia-anorexia syndrome induced by gastrointestinal 
cancers was performed, however, this study failed to show that adding celecoxib 
(200 mg/day) to megestrol (320 mg/day) could enhance anti-cachexic effects of 
megestrol [60]. Meloxicam is another Cox2 inhibitor, and can suppress the expres-
sion of Cox2, Atrogin-1 and MuRF1 induced by lipopolysaccharide (LPS), and 
regulate the loss of muscle mass in rats by attenuating protein degradation [61]. In 
addition to cachexia, the administration of meloxicam can also inhibit the up-
regulation of Atrogin-1 and MuRF1 in the muscles of arthritis rats and improve the 
loss of muscle mass [62].

3.2 Histone deacetylase inhibitors

Trichostatin A (TSA) is a well-known class I and II histone deacetylase inhibi-
tor. Published data indicate that TSA regulates atrogenes level and controls muscle 
mass by reducing HDAC4 activity and myogenin expression, and increasing Dach2 
level under denervation condition (neuromuscular disorders) [63]. TSA treatment 
can improve body weight, myofiber cross-sectional area and myofiber number 
[64]. Recent report shows that TSA inactivates FoxO by inhibiting HDAC activity, 
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which leads to atrophy of skeletal muscle atrophy and contractile dysfunction [65]. 
In addition, under nutrition-deprived atrophy on C2C12 myotubes, TSA treatment 
leads to the suppression of FoxO target genes, including Lc3 (autophagy marker), 
MuRF1 and Atrogin-1 [66]. Similarly, TSA treatment can regulate muscle depletion 
by inhibiting the levels of Atrogin-1 and MuRF1 in dexamethasone-induced atro-
phic mice [63]. However, study shows that TSA treatment increased the expression 
level of follistatin (a negative regulator of skeletal muscle development), without 
retaining or increasing muscle mass in tumor-bearing mice [67]. Recent studies 
have shown that TSA can inhibit skeletal muscle atrophy and histomorphological 
alterations induced by unloading [68] and cigarette smoke (the main risk factor 
for COPD) [69]. Due to the contradictory findings, further research is needed to 
confirm the use of HDAC blockers to regulate atrophy.

3.3 PDE inhibitors

Torbafylline (HWA 448) is a xanthine derivative which acts as a phosphodi-
esterase (PDE) inhibitor [70]. Torbafylline treatment down-regulates the mRNA 
expression of cathepsin L, calpain and E3 ligases, and regulates the proteolytic 
pathway in burn-induced injury. In addition, the anti-atrophic effects of torbafyl-
line have been demonstrated in casting, denervation or cancer induced cachexia 
models [70–72]. Torbafylline inhibits PDE activity leading to stimulation of the 
anti-proteolytic effect in PDE4/cAMP/Epac/PI3K/Akt pathway-mediated muscle 
atrophy [73]. Pentoxifylline (PTX) is another xanthine derivative that is non-
selective in inhibiting PDE. Published data indicate that the administration of PTX 
under various pathological conditions in animal models (diabetes, tumors, sepsis) 
can stimulate the formation of cAMP, and by down-regulating calpain, cathepsin 
L and proteasome proteolytic system activity [74–76]. Other selective inhibitors 
of PDE, including rolipram and cilomilast have also been shown to reduce muscle 
atrophy in denervation and casting animal models [77, 78].

3.4 Angiotensin-converting enzyme inhibitors

ANGII induces muscle atrophy through several mechanisms including sup-
presses protein anabolism by reducing IGF-1 level and appetite, and promotes 
protein catabolism by increasing reactive oxygen species (ROS) and intermedi-
ate molecules (TNF-α, IL-6, glucocorticoids) in skeletal muscle [79]. In ACE-Is, 
enalapril treatment can reduce the risk of weight loss by>19% and delay the 
occurrence of cachexia by about 8 months [80]. Studies conducted in an old rat 
model show that the administration of enalapril can increase muscle strength and 
has a protective effect on age-related muscle degeneration [81]. Perindopril (an 
ACE inhibitor) has shown especially in a double-blind randomized controlled 
trial, which evaluated the effect of perindopril on the elderly 6-minute walking 
distance, thereby improving physical function, especially the 6-minute walk 
distance and reduced the incidence of hip fractures [82]. In subjects with dysfunc-
tion, perindopril improved exercise capacity to the extent reported after 6 months 
of exercise training [83]. However, the use of the perindopril in cachectic mice 
bearing colon-26 tumors to inhibit this pathway does not reduce muscle atrophy, 
nor does it increase the production of maximum muscle strength. Nonetheless, 
treatment with ACE inhibitors did enhance physical function and reduce fatigue 
of respiratory muscles. These effects appear to be due to a shift to a more oxidized 
muscle phenotype, as evident from increased oxidative enzyme capacity in the 
muscle cross-section [84].
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4. Anti-inflammatory drugs

4.1 Thalidomide

Thalidomide is a glutamic acid derivative with various pharmacological activities, 
such as anti-inflammatory, immunomodulatory, anti-angiogenic, anti-emetic and 
sedative effects. Report shows that thalidomide and its derivatives can inhibit Cox2 
and PGE2 synthesis induced by LPS in murine macrophages [85], and control systemic 
inflammation. In addition, evidence shows that thalidomide can reduce serum IL-6 
and CRP levels in patients with cancer cachexia [86, 87]. Another study showed that 
thalidomide can maintain the fast-twitch type myofibers by reducing the expression of 
TNF-α and TGF-β1 in soleus muscle of cholangiocarcinoma rats [88]. Down-regulation 
of NF-κB/iNOS pathway by chronic thalidomide treatment improves hepatopulmo-
nary syndrome and skeletal muscle atrophy in rats with biliary cirrhosis [89]. In addi-
tion to anti-inflammatory and anti-cachectic activity, thalidomide treatment (Phase 
II trial) also showed an effect on appetite in 64% of patients with advanced stage of 
cancer [87]. Studies reported that thalidomide (100 mg/day and 200 mg/day) treat-
ment showed a significant improvement in body weight and skeletal muscle atrophy 
in AIDS associated cachexia patients [90]. Similarly, another research team worked 
with pancreatic cachexia patients and observed a significant increase in body weight 
of patients treated with thalidomide [91]. The lack of benefits was mainly due to the 
drug toxicity of thalidomide including peripheral neuropathy, dizziness, constipation 
and rash, considering that 47% of patients receiving active treatment were unable to 
continue taking thalidomide due to side effects and disease-related morbidity [92].

4.2 Anti-IL-6/STAT3

Evidence has shown that antibodies against IL-6 or its receptor can effectively 
reduce skeletal muscle atrophy and cachexia in mouse models [93, 94]. Preliminary 
results of a phase II double-blind trial in patients with advanced NSCLC have 
shown that ALD518 (humanized IL-6 monoclonal antibody) can reverse fatigue 
and prevent muscle loss [95]. Tocilizumab is an IL-6 receptor (IL-6R) neutralizing 
antibody approved by the FDA for rheumatoid arthritis. It can destroy the binding 
of IL-6/IL-6R to GP130, and cause the decrease of JAK/STAT3 pathway activity, 
reduce B cell hyperactivity and lead to a dramatic normalization of the acute phase 
reactions [96, 97]. Pharmacologic inhibition of the IL-6R using tocilizumab anten-
nas skeletal muscle atrophy and function loss during infection [98]. Recently, a case 
of 65-year-old man who underwent percutaneous coronary intervention for acute 
myocardial infarction received tocilizumab led to prompt remission of Takayasu 
arteritis activity and improvement of left ventricular function and skeletal muscle 
atrophy [99]. Ruxolitinib, a JAK1/2 inhibitor, may protect muscle through on-target 
effects because it significantly reduces IL-6-induced STAT3 activation and myotube 
atrophy in vitro [100]. However, due to the inability to recruit qualified patients, 
the clinical trial of cancer patient study (NCT02072057) that investigating whether 
blocking downstream signaling of IL-6 by ruxolitinib improves muscle atrophy were 
terminated. In addition, there is evidence that C188-9 (a small molecule of STAT3 
inhibitor) can reduce skeletal muscle atrophy in tumor-bearing mice [101, 102], but 
there are no relevant clinical studies.

4.3 Anti-TNF-α

Studies have shown that the administration of anti-murine TNF IgG in rats 
bearing Yoshida AH-130 ascites hepatoma can reduce circulating TNF-α and 
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inhibit muscle protein degradation [103]. Similarly, injecting soluble TNF receptors 
(sTNFR1, a specific inhibitor of TNF-α) prevents the interaction of TNF-α with its 
receptor and attenuates ubiquitin transcription, reduce the waste of skeletal muscle 
and preserve body weight in cardiac cachexia [76]. A study reported the opposite 
effect of sTNFR1 on arthritic rat that it did not alter muscle mass and MuRF1 and 
Atrogin-1 gene expression [104]. Infliximab is a chimeric monoclonal antibody 
that blocks TNF-α action, thereby preventing its binding to cellular receptors and 
downstream immunological effects. A phase II study of the combined chemother-
apy drugs gemcitabine and infliximab did not show the benefit of maintaining lean 
body mass or survival in pancreatic cancer cachexia patients [105]. Interestingly, in 
clinical trials of Crohn’s disease patients with skeletal muscle atrophy or sarcopenia 
arising from chronic inflammation, significant gains were recorded in muscle 
volume and strength over 25 weeks of infliximab treatment [106, 107]. Etanercept 
is a recombinant fusion protein that acts as a decoy receptor to neutralize TNF-α, 
and has been used to treat inflammatory diseases including rheumatoid arthritis. In 
another study, significant weight gain was observed in rheumatoid arthritis patients 
who received etanercept twice a week for 12 consecutive months [108]. A phase I/II 
study compared the efficacy of etanercept with gemcitabine and gemcitabine alone 
for the treatment of advanced pancreatic cancer cachexia patients, and the results 
were also disappointing because the addition of etanercept did not improve symp-
toms of cancer cachexia [109].

4.4 Anti-IL-1α

MABp1 is a human antibody against IL-1α (a chronic inflammatory mediator) 
and has anti-tumor activity. Intravenous MABp1 treatment for 8 weeks in adults 
with metastatic solid cancer showed increased lean body mass and improved quality 
of life (fatigue, pain, and loss of appetite), and has no toxic; however, there was no 
control group in this study [110]. A randomized, double-blind, placebo-controlled 
phase III clinical study showed that MABp1 improved the lean body mass, anorexia, 
fatigue and pain scores in advanced colorectal cancer patients [111]. Another phase 
I dose-escalation study evaluating the IL-1α-targeted monoclonal antibody xilonix 
in patients with NSCLC showed increased lean body mass and improved symptoms, 
suggesting a clinically important response [112]. In view of this, a phase III placebo-
controlled study of human antibodies against IL-1α has been conducted in patients 
with advanced colorectal cancer to assess the remission rate of the disease, muscle 
mass and appetite. Xilonix was very well tolerated by NSCLC patients, with the 
clinically significant reductions in pain, fatigue and improved lean body mass and 
appetite [113]. However, the primary limitation of this report is the small number 
of patients which made any comparisons statistically difficult.

4.5 TWEAK/Fn14 inhibition

The inflammatory cytokine TNF-like weak inducer of apoptosis (TWEAK) 
and its related receptor fibroblast growth factor-inducible 14 (Fn14) play multiple 
roles in proliferation, inflammation and wound repair. TWEAK/Fn14 signaling also 
negatively regulates muscle growth and function [8]. Report showed that TWEAK 
activates noncanonical NF-κB pathway and promotes myoblast fusion at low con-
centrations (10 or 100 ng/ml), and activates canonical NF-κB signaling to inhibit 
differentiation at high concentrations (500 ng/ml). Thus, TWEAK can maintain 
myoblast differentiation at physiological conditions; however, under pathological 
conditions (such as denervation and disuse), TWEAK/Fn14 system becomes acti-
vated and causes muscle atrophy [8]. Blocking antibodies against TWEAK antibody 
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can improve muscle function in mice caused by myotonic dystrophy and amyo-
trophic lateral sclerosis (ALS) [114, 115]. Consistent with these findings, colon-26 
tumor-bearing mice treated with anti-Fn14 antibodies showed increased weight and 
muscle mass, improved muscle fatigue, and increased survival [116]. These results 
indicate that neutralizing antibodies against TWEAK and Fn14 should be further 
explored in various muscle atrophy models and clinical trials.

5. Other investigational drugs

5.1 Myostatin inhibition

Existing evidence indicates that members of the TGF-β superfamily, such as 
myostatin and activin A, are powerful catabolic stimuli that can inhibit muscle 
growth and promote muscle protein loss in various disease states [117]. It is reported 
that myostatin can improve the dystrophy phenotype of mdx mouse models, sarco-
penia in aging mouse models and muscle atrophy in tumor-bearing mice [118, 119], 
which can significantly inhibit systemic inflammation and prolong the survival of 
tumor-bearing mice without affecting tumor growth [117]. There are currently two 
main strategies for targeting myostatin signals: First, neutralize myostatin directly 
by using humanized myostatin antibody (LY2495655), and second, block ActRII 
by using soluble ActRIIB (ACE-031) or ActRII antibody (bimagrumab/BMY338). 
LY2495655 treatment had mixed results in elderly subjects: the appendicular lean 
body mass and gait speed were slightly improved, and despite increased muscle 
mass, grip strength was not affected [120]. However, a randomized, phase II trial in 
patients with pancreatic cancer, LY2495655 treatment have no significant improve-
ment in muscle volume or functional. Additionally, among possibly drug-related 
adverse events, fatigue, diarrhea, and anorexia were more common in LY2495655-
treated than in placebo-treated patients [121]. Soluble recombinant ActRIIB and 
other “ligand trap” interventions can generally inhibit TGF-β signaling and affect 
other tissues and processes, including reproduction and angiogenesis, with some 
causing severe off-target effects. Therefore, new strategies that target myostatin 
receptors and thereby reduce the activity of other ligands seem more promising. For 
example, after ACE-031 treatment, a group of 48 postmenopausal women gained 
weight and increased lean body mass [122]. However, in the phase II clinical trial 
conducted by ACE031 with Duchenne muscular dystrophy (DMD) patients and 
healthy volunteers, some participants experienced bleeding gums, nosebleeds, and 
skin vasodilation, which led to the interruption of the trial [123]. Blocking ActRII 
by administering BMY338 can greatly increase muscle mass and prevent dexameth-
asone-induced muscle atrophy in mice [124], and significantly improve patient’s 
lean body mass, muscle mass, and 6-minute walking test in patients with myositis 
after 8 weeks of treatment. However, no significant differences were observed after 
24 weeks of treatment [125]. In addition, there are no beneficial effects on these 
treatments were reported in cancer patients, while in COPD patients, muscle vol-
ume increases without affecting functional indicators, which is similar to the effect 
of BMY338 in sarcopenia patients [126, 127]. Therefore, these treatments seem to 
improve muscle mass and have less effect on muscle strength and other functional 
parameters [128].

5.2 Appetite stimulants

The FDA approved megestrol acetate (MA) as the treatment of cachexia caused 
by cancer and AIDS in 1993. More than 15 clinical trials have shown that this drug 
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can significantly improve appetite and lean body mass at a dose of 160–1600 mg/
day. MA can be used alone or as a supplement along with meloxicam in patients 
with cancer cachexia, showing a positive effect in controlling weight loss [129]. 
Although the mechanism of appetite stimulation/weight gain is unclear, studies 
have shown that it is related to the involvement of neuropeptide Y and the inhibi-
tion of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α [130, 131]. 
However, a newer meta-analysis started in 2015, which studied the use of non-
cancer cachexia (HIV, COPD, renal failure and geriatric cachexia) and concluded 
that progesterone therapy (MA or medroxyprogesterone acetate) has a negligible 
effect on weight gain when treat of non-cancer cachexia [132]. MA treatment can 
also cause serious side effects such as thromboembolism, peripheral edema, hyper-
glycemia, hypertension, adrenal suppression and adrenal insufficiency [132].

Previous studies have shown that cannabinoids have the potential to improve 
appetite, body weight and fat mass, as well as amelioration of quality of life in 
several chronic diseases including cancer [133]. The results of a pilot study con-
ducted in adult patients with advanced solid tumors showed that patients receiving 
delta-9-tetrahydrocannabinol (THC) treatment had a marked increase in appetite 
[134]. However, the study did not record changes in participants’ body weight and 
lean body mass, and a larger trial was needed to study the effect of cannabinoids 
on skeletal muscle atrophy. A pilot study in patients with advanced NSCLC showed 
food intake and quality of life in patients treated with nabilone (a tetrahydrocan-
nabinol) have improved significantly [135]. However, another randomized, double-
blind placebo-controlled trial showed that nabilone did not improve the symptoms 
of nausea during radiotherapy in head and neck cancer patients, nor did it have 
significant benefits for the appetite and body weight [136].

5.3 Natural compounds

Recently, growing evidence has shown that natural products play a key role in the 
prevention and treatment of skeletal muscle atrophy. Numerous studies conducted 
in vitro and in vivo confirmed that resveratrol treatment can prevent proteolysis-
inducing factor (PIF), angiotensin I and II, phorbol ester, 12-O-tetradecanoylphorbol 
13-acetate (TPA), and dexamethasone-induced protein degradation [137]. In addi-
tion, resveratrol has been shown to protect muscle atrophy under various catabolic 
conditions, including cachexia and disuse [138, 139]. Salidroside is one of the main 
phenylpropane glycosides found in Rhodiola rosea. Research shows that salidroside 
treatment can effectively maintain body weight, reduce fat and gastrocnemius 
muscle loss in CT26 and LLC models. Additionally, in combination chemotherapy, 
salidroside can synergistically enhance the anti-tumor activity of cisplatin, especially 
reduce or eliminate cachexia caused by chemotherapy. Further analysis showed that 
salidroside can significantly increase the expression of p-mTOR and MyHC in the 
gastrocnemius muscle [140]. Matrine improves skeletal muscle atrophy in CT26 
induced cachexia via inhibiting the production of TNF-α and IL-6 and activating 
the Akt/mTOR/FoxO3α signaling pathway [141]. Other natural medicines reported 
to improve skeletal muscle atrophy include imperatorin [142], parthenolide [143], 
ursolic acid [144] and cryptotanshinone [145], but more research is still needed to 
prove the anti-muscular atrophy effect of these compounds.

6. Conclusions

Up-regulation of muscle protein catabolic is a sign of atrophy, so most potential 
drugs target the proteolytic system to cure or prevent skeletal muscle atrophy. 
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