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Chapter

Some Applications of Clitford
Algebra in Geometry

Ying-Qiu Gu

Abstract

In this chapter, we provide some enlightening examples of the application of
Clifford algebra in geometry, which show the concise representation, simple calcu-
lation, and profound insight of this algebra. The definition of Clifford algebra
implies geometric concepts such as vector, length, angle, area, and volume and
unifies the calculus of scalar, spinor, vector, and tensor, so that it is able to naturally
describe all variables and calculus in geometry and physics. Clifford algebra unifies
and generalizes real number, complex, quaternion, and vector algebra and converts
complicated relations and operations into intuitive matrix algebra independent of
coordinate systems. By localizing the basis or frame of space-time and introducing
differential and connection operators, Clifford algebra also contains Riemann
geometry. Clifford algebra provides a unified, standard, elegant, and open language
and tools for numerous complicated mathematical and physical theories. Clifford
algebra calculus is an arithmetic-like operation that can be well understood by
everyone. This feature is very useful for teaching purposes, and popularizing
Clifford algebra in high schools and universities will greatly improve the efficiency
of students to learn fundamental knowledge of mathematics and physics. So,
Clifford algebra can be expected to complete a new big synthesis of scientific
knowledge.

Keywords: Clifford algebra, geometric algebra, gamma matrix, multi-inner
product, connection operator, Keller connection, spin group, Cross ratio, conformal
geometric algebra

1. A brief historical review

It is well known that a rotational transformation in the complex plane is equiv-
alent to multiplying the complex number by a factor ¢. How to generalize this
simple and elegant operation to three-dimensional space is a difficult problem for
many outstanding mathematicians in the early nineteenth century. William Rowan
Hamilton (1805-1865) spent much of his later years studying the issue and eventu-
ally invented quaternion [1]. This generalization requires four elements {1,4,7,k},
and the spatial basis should satisfy the multiplying rules i = j2 = k* = —1 and jk =
—kj =1, ki = —ik =j, and ij = —ji = —k. Although a quaternion is still a vector, it
constitutes an associative algebra according to the above rules. However, the com-
mutativity of multiplication is violated. Quaternion can solve the rotational trans-
formation in three-dimensional space very well and simplify the representation of
Maxwell equation system of electromagnetic field.
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When Hamilton introduced his quaternion algebra, German high school teacher
Hermann Gunther Grassmann (1809-1877) was constructing his exterior algebra
[2]. He defined the exterior product or outer product a A b of two vectors 4 and b,
which satisfies anti-commutative law a Ab = —b Aa and associativity (a Ab) Ac =
a A (b Ac). The exterior product is a generalization of cross product in three-
dimensional Euclidian space. Its geometrical meaning is the oriented volume of a
parallel polyhedron. Exterior product is now the basic tool of modern differential
geometry, but Grassmann’s work was largely neglected in his lifetime.

British mathematician William Kingdon Clifford (1845-1879) was one of the
few mathematicians who read and understood Grassmann’s work. In 1878, he com-
bined the algebraic rules of Hamilton and Grassmann to define a new algebraic
system, which he himself called geometric algebra [3]. In this algebra, both the
inner and exterior products of vectors can be uniquely represented by a linear
combination of geometric product. In addition, geometric algebra is always
isomorphic to some special matrix algebra.

Clifford algebra combines all the advantages of quaternion with the advantages
of vector algebra and uniformly and succinctly describes the contents of geometry
and physics. However, the vector calculus introduced by Gibbs had also successfully
described the mathematical physics problem in three-dimensional space [4].
Clifford died prematurely at the age of 34, so that the theory of geometric algebra
was not deeply researched and fully developed, and people still could not see the
superiority of this algebra at that time. Thus, the important insights of Grassmann
and Clifford were lost in the late nineteenth century papers. Mathematicians
abstracted Clifford algebra from its geometric origins, and, for the most part of a
century, it languished as a minor subdiscipline of mathematics and became one
more algebra among so many others.

With the establishment of relativity, especially the introduction of Pauli and
Dirac’s matrix algebra for spin and the successful application in quantum theory [5],
it was felt that there is an urgent need for a mathematical system to deal with
problems in high-dimensional space-time. In the 1920s, Clifford algebra re-entered
the field of vision and was paid attention and researched by some of the famous
mathematicians and physicists such as R. Lipschitz, T. Vahlen, E. Cartan, E. Witt, C.
Chevalley, and M. Riesz [6-8]. When only formal algebra is involved, we usually
use the term “Clifford algebra,” but more often use the “geometric algebra” named
by Clifford himself if applied to geometric problems.

The first person who realized that Clifford algebra is a unified language in
geometry and physics should be David Hestenes. By the 1960s, Hestenes began to
restore the geometric meaning behind Pauli and Dirac algebra. Although his initial
motivation was to gain insight into the nature of quantum mechanics, he quickly
realized that Clifford algebra was a unified language and tool for mathematics,
physics, and engineering. He published “space-time algebra” in 1966 and has been
working on the promotion of Clifford algebra in teaching and research [9-12].
Because representation and algorithm in geometric algebra are seemingly as ordi-
nary as arithmetic, his work has been neglected by the scientific community for
more than 20 years. Only with the joint impetus of computer-aided design, com-
puter vision and robotics, protein folding, neural networks, modern differential
geometry, mathematical physics [13-17], and especially the Journal “Advances in
Applied Clifford algebras” founded by Professor Jaime Keller, geometric algebra
began to move towards popularity and prosperity.

As a unified and universal language of natural science, Clifford algebra is
developed by many mathematicians, physicists, and engineers according to their
different requirements and knowledge background. Such situation leads to
“There are a thousand Hamlets in a thousand people’s eyes.” In this chapter,
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by introducing typical application of Clifford algebra in geometry, we show some
special feature and elegance of the algebra.

2. Application of Clifford algebra in differential geometry

In Euclidean space, we have several important concepts such as vector, length,
angle, area, volume, and tensor. The study of relationship between these concepts
constitutes the whole content of Euclidean geometry. The mathematical tools pre-
viously used to discuss these contents are vector algebra and geometrical method,
which are complex and require much fundamental knowledge. Clifford algebra
exactly and faithfully describes the intrinsic properties of vector space by introduc-
ing concepts such as inner, exterior, and geometric products of vectors and thus
becomes a unified language and standard tool for dealing with geometric and
physical problems. Clifford algebra has the characteristics of simple concept,
standard operation, completeness in conclusion, and easy understanding.

Definition 1 For Minkowski space M" over number field F, if the multiplication rule
of vectors satisfies

1. Antisymmetry, X Ay = —y AX; (1)
2. Associativity, (x /\y) AZ=XA (y /\z); (2)
3. Distributivity, x A (ay +bz) =ax Ay +bx Az, a,b€eF, (3)

the algebra is called Grassmann algebra and x A y exterior product.

The Grassmann is also called exterior algebra. The geometrical meaning of x Ay
is oriented area of a parallelogram constructed by x and y, and the geometrical
meaning of XAy A -+ Az is the oriented volume of the parallelohedron constructed
by the vectors (see Figure 1). We call x Ay two-vector, X Ay Az three-vector, and

so on. For k-vector x € A¥ and [-vector yE AL, we have
xAy = (—1)y Axe AFH

By the definition, we can easily check:
Theorem 1 For exterior algebra defined in V = M", we have

X
/ Vector x, a directed line segment

y
Q Bivector x 'y, an oriented area

X

Trivector X 'y z, an oriented volume

X

Figure 1.
Geometric meaning of exterior products of vectors.
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W =F@VOA(V) A (V) = & A(V).
The dimension of the algebra is
dim(W") = "C =2".

Under the orthonormal basis {e1, e, -+, e, }, the exterior algebra takes the following
form:

w =w’ + whe, + Zwklekz + Z whey + - + w2 e, (4)
k<l j<k<l

in which Yw* 1 €T, €. = ejNep A Nep, and Vley..| = 1.
The exterior product of vectors contains alternating combinations of basis, for
example:

Vi=X1IAXo A AX, = x{ ’;---xiejk...l

®)

k 1 1A
= ij...zx{xz---xnelz...n = det (xj>e12...n.

Definition 2 For any vectors x,y,z € M", Clifford product of vectors is denoted by

Xy =%y +xAY, (6)
(xAy)zs=(y-2)x— (x-2)y +xAYAZ = — (Y AX)3, (7)
F(xAy)=(x-2)y— (y 2)x +xAYAZ = —5(y Ax), (8)

(xy)s=(y-2)x— (x-2)y+ (x-y)s + X AP Az =x()3). 9)

Clifford product is also called geometric product.
Similarly, we can define Clifford algebra for many vectors as xy---z. In (6),

X -y = 1,,x°y" is the scalar product or inner product in M". By x Ay = —~y AX, we
find Clifford product is not commutative. By (6), we have

X'Y:%(XYJFYX), X/\Y:%(Xy—yx)’ x-x=xx=x.  (10)

Definition 3 For Minkowski space MP*? with metric n,;, = diag (I,, —1;), if the

Clifford product of vectors satisfies

2 k.l
epe; + e, =2, Or X~ =X X,

then the algebra

c=c"+cre, + chlekel + Z cjklejekel 4 e+ 20y 0y, (11)
k<l j<k<l

is called as Clifford algebra or geometric algebra, which is denoted as Ct), ;.

There are several definitions for Clifford algebra [18, 19]. The above definition is
the original definition of Clifford. Clifford algebra has also 2" dimensions.
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Comparing (11) with (4), we find the two algebras are isomorphic in sense of linear
algebra, but their definitions of multiplication rules are different. The Grassmann
products have clear geometrical meaning, but the Clifford product is isomorphic to
matrix algebra and the multiplication of physical variables is Clifford product.
Therefore, representing geometrical and physical variables in the form of (4) will
bring great convenience [20, 21]. In this case, the relations among three products
such as (6)—(9) are important.

In physics, we often use curvilinear coordinate system or consider problems
in curved space-time. In this case, we must discuss problems in #» dimensional
pseudo Riemann manifold. At each point x in the manifold, the tangent space
TM(x) is a » dimensional Minkowski space-time. The Clifford algebra can be also
defined on the tangent space and then smoothly generalized on the whole manifold
as follows.

Definition 4 In n = p + q dimensional manifold TNIP*? over R, the element is
defined by

dx = y,dx" = y'dx, = y,0X" = y"6X,, (12)

where y,, is the local orthogonal frame and y* the coframe. The distance ds = |dx|
and oriented volumes 4V, is defined by

1 v 12 a
dx* = 3 (rrs +rr,)dxtdx” =g, dotdx” = n,,6X sX?, (13)
AV, = dxy Adxy A+ Ndxy, = 7. ,dxdxs-dx)), (1<k<n), (14)

in which (1)) = diag (I,, —I,) is Minkowski metric and g, is Riemann metric.
Vi = Vu ATy A v AY o € N(TMPHA)

is Grassmann basis. The following Clifford-Grassmann number with basis
c =col +c, " +cpy™ + - + ey ™, (Vep(x) ER) (15)

defines veal universal Clifford algebra C¢, , on the manifold.
The definitions and treatments in this chapter make the corresponding subtle
and fallible concepts in differential geometry much simpler. For example, in spher-

ical coordinate system of R3, we have element dx and the area element ds in sphere
dr =0 as

dx = o1dr + o,7d6 + o3rsin Od g,
ds = 062rd0 A 637 sin 0 = icq1r* sin 0dOd .
We have the total area of the sphere
A= dds = i011f255 sin 0d0de = ic14mr”.

The above definition involves a number of concepts, some more explanations
are given in the following:

1. The geometrical meanings of elements dx, dy,dx Ady are shown in Figure 2.
The relation between metric and vector basis is given by:
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y=c¢1
X=C1
dy odx dy
k < dx
y=c'o
X=Co
Figure 2.
Geometric meaning of vectors dx,dy and dx Ady.
1
g/,t E (y,uyu + yyy,u> =Vu Vv (16)
1
Nab = 5 (YaVb + Vb¥a) = Va * V> (17)

which is the most important relation in Clifford algebra. Since Clifford algebra is
isomorphic to some matrix algebra, by (17) y, is equivalent to some special
matrices [20]. In practical calculation, we need not distinguish the vector basis
from its representation matrix. The relation between the local frame coefficient

( , f“) and metric is given by:

a’J u

=far's nw=Ffue Fufy =8 fufa=2,
v _ab v b
fﬂf “ g,M > f:l,fyr]ab :g/w'

2.Assume {y,|a = 1,2---n} to be the basis of the space-time, then their exterior
product is defined by [22]:

1 b
For My M = g 2 GZ;; Dy T (1< <),

In which o222 bk is permutation function, if b1b;---by, is the even permutation

of aqay-+-ay, it equals 1. Otherwise, it equals —1. The above formula is a
summation for all permutations, that is, it is antisymmetrization with respect
to all indices. The geometric meaning of the exterior product is oriented
volume of a higher dimensional parallel polyhedron. Exterior algebra is also
called Grassmann algebra, which is associative.

3.By (12) and (13) we find that, using Clifford algebra to deal with the problems
on a manifold or in the tangent space, the method is the same. Unless
especially mentioned, we always use the Greek alphabet to stand for the index
in curved space-time, and the Latin alphabet for the index in tangent space.
We use Einstein summation convention.

4.1n Eq. (15), each grade-k term is a tensor. For example, col € A° is a scalar,
cuyt € Al is a true vector, and cuyt € A?isan antisymmetric tensor of rank-2,
which is also called a bivector, and so on. In practical calculation, coefficient
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and basis should be written together, because they are one entity, such as (12)
and (15). In this form, the variables become coordinate free. The coefficient is
the value of tensor, which is just a number table, but the geometric meaning
and transformation law of the tensor is carried by basis.

The real difficulty in learning modern mathematics is that in order to get a little
result, we need a long list of subtle concepts. Mathematicians are used to defining
concepts over concepts, but if the chain of concepts breaks down, the subsequent
contents will not be understandable. Except for the professionals, the common
readers impossibly have so much time to check and understand all concepts care-
fully. Fortunately, the Clifford algebra can avoid this problem, because Clifford
algebra depends only on a few simple concepts, such as numbers, vectors, deriva-
tives, and so on. The only somewhat new concept is the Clifford product of the
vector bases, which is isomorphic to some special matrix algebra; and the rules of
Clifford algebra are also standardized and suitable for brainless operations, which
can be well mastered by high school students.

Definition 5 For vector x = y,x" € A and multivector m =y, g, ...q m®% % € A%,
their inner product is defined as

X @ m = (yﬂ @ yelgzn-ek)xﬂmglezmg}e’ m Qx = (76192-~~0k @ yﬂ)xﬂm%ez-"@k’ (18)
in which
Y Oyt‘hﬁz-"ﬁk Eg/t91y92--~91e _gﬂ92y9163”'9k 4o (_1)k+1g.“€k}/01"'9k—1, (19)

y9192"'0k oy = (_1)k+1g/491},92'"9k + (_1)kgﬂ92y0193“'9k + . _|_gM9k},91"-9k71‘ (20)

Theorem 2 For basis of Clifford algebra, we have the following relations

}/ﬂyglgz...gk _ )/ﬂ o 7/9192""91@ + yﬂ'gf"@k, (21)
y 00z Okt = 01020 @yt 01 e, (22)
yﬂ1ﬂ2“-an_1 = €ﬂ1ﬂ2"'ﬂn}/12---nyan, (23)
1 n—1an
7/bllﬂz'-'ﬁlrkz 3 jealaz--unhz---n?’a b (24)
1 n—k+1"""n
yﬂlﬂz"'ﬂn_k = ]yeﬂMzmﬂnylZmnya . (25)

Proof. Clearly y#y%% % ¢ AF1U AR s0 we have

yﬂyglgz...gk _ a]gﬂalyez--'ek +agu92},0193~--9k 4 .. +akgﬂ9ky91"'9k—1 +Ayﬂ91"'9k_ (26)

Permuting the indices 6, and 0,, we find a; = —a;. Let u = 61, we geta; = 1.

Check the monomial in exterior product, we get A = 1. Thus, we prove (21). In like
manner, we prove (22). For orthonormal basis y,,, by (22) we have:

Yaay-an_1Va, = Caaz-a,¥12..n- (27)

Again by y, v = 1 (not summation), we prove (23). Other equations can be
proved by antisymmetrization of indices. The proof is finished.
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Likewise, we can define multi-inner product A ® *B between multivectors as
follows:

7/,uz/ 0 yaﬂ :gﬂﬂ]/l/a _g;myvﬂ _I_gvayuﬂ _guﬁ}//m’ (28)
}//w szaﬁ :gyﬁgva _gﬂagvﬁ” },pw Qk}/aﬂ =0, (k >2). (29)

We use A ©*B rather A*B, because the symbol “.” is too small to express
exponential power. Then for the case y*1#2#7y%1% % we have similar results. For
example, we have

7y =y o+ oy 4y (30)

In C¢13, denote the Pauli matrices by

EDEDCDE )
0 1 1 0 i 0 0 -1
=5"=1, &F=-0, (k=12,3). (32)

We use k,f,j standing for spatial indices. Define Dirac y— matrix by:

0 &
= (M 0 ) v’ = diag (I, —I). (33)

y”* forms the grade-1 basis of Clifford algebra C¢; 3. In equivalent sense, the
representation (33) is unique. By y-matrix (33), we have the complete bases of C#; 3
as follows [21]:

i

abcd
€
2

abe __ ieabcdydyS, 7/0123 — _in‘ (34)

I ¥, r*= Yeals ¥

Based on the above preliminaries, we can display some enlightening examples of
application, which show how geometric algebra works efficiently. For a skew-

symmetrical torsion 7, = g,,,7" # in M3, by Clifford calculus, we have:

T = T,uuw)/lww = abc}’ahc = Tﬂbceﬂhmzyd (Zys) = iydySTd e i}’a)’STaa (35)
and then
a a c v rw ra_abe 1 oa
T = fiTanee™™ = Tyuf o f o fe™ = ﬁeﬂ 7w (36)

where g = |det (gw) |. So we get:
T,uua) = \/geﬂu(urxTua T/waw =0, TZDTD =0. (37)

So, the skew-symmetrical torsion is equivalent to a pseudo vector in M"3. This
example shows the advantages to combine variable with basis together.

The following example discusses the absolute differential of tensors. The defini-
tion of vector, tensor, and spinor in differential geometry involving a number of
refined concepts such as vector bundle and dual bundle, which are too complicated
for readers in other specialty. Here, we inherit the traditional definitions based on
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the bases y* and y*. In physics, basis of tensors is defined by direct products of
grade-1 bases y*. For metric, we have [23]:

g=g,/®r =¢"7,Q®r,=6y"®y,

(38)
=" ®7 =1"1, @1, = 57" @1,
For simplicity, we denote tensor basis by:
Q yftr i = yf1 @y @ «eeytn, ®},ﬂ1;42;43~-~/4,, =7, QY2 @ eyt e (39)
In general, a tensor of rank # is given by:
T = Tyyeos, @Y =TH, ., @y, [ = . (40)

The geometrical information of the tensor such as transformation law and dif-
ferential connection are all recorded by basis y#, and all representations of rank (7, s)
tensor denote the same one practical entity T(x). TZ'_','_ is just a quantity table similar

to ¢, in (15), but the physical and geometrical meanings of the tensor T are
represented by basis y*. Clifford algebra is a special kind of tensor with exterior
product. Its algebraic calculus exactly reflects the intrinsic property of space-time
and makes physical calculation simple and clear.

For the absolute differential of vector field A = y,A*, we have

dA= AlimO[A(x + Ax) — A(x)]
(41)
= (0.A"y, + Alday,)dx” = (0. A" + Auday")dx”.

We call 9, connection operator [23]. According to its geometrical meanings,
connection operator should satisfy the following conditions:

1.1t is a real linear transformation of basis y#,
2.1t satisfies metric consistent condition dg = 0.
Thus, the differential connection can be generally expressed as:
— H uo\,p N o 77 (A U
0t = — (Haﬁ + Taﬂ)y s Mgy =1, Ty = =T, (42)
For metric g =g, 7" ® v, by metric consistent condition we have:
0=dg= d(gﬂyy" ® J/”)
= [(aogw> rer +g,00")Qr +g,/M® Day”} dx” (43)
= [(a()’g;w _gz/ﬂnfty _gyﬂnfw)dxa - <g1/ﬂT(€/4 +gﬂﬂT§l/)dxai| rer.

By (43), we have:

(08, — 801 — 8,11 )™ = (8,55, + 8, Th, )" = 0. (44)
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Since dx” < 6X? is an arbitrary vector in tangent space, (44) is equivalent to:
p
a‘lg/w _gl/ﬂngﬂ _gﬂﬁnéﬂ/ :gUﬁTgﬂ +gyﬁT§u’ (45)

(45) is a linear nonhomogeneous algebraic equation of (Hﬁﬁ, TZ/;’) .

Solving (45), we get the symmetrical particular solution “Christoffel symbols” as
follows;

a 1 a a a a
H;u/ = ig / <aﬂgﬁy + al/gﬂﬁ' o 0ﬁg/w> + Ty = F/w + e (46)

a

in which Iy, is called Levi-Civita connection determined by metric, my, =Ty, is2

symmetrical post-metric part of connection. In this chapter, the “post-metric con-
nection” means the parts of connection cannot be determined by metric, i.e., the
components 7, and T}, different from Levi-Civita connection I';,. Denote

T yva :gﬂﬂTf(l’ T ylva :gyﬁ”z/ja’ Kua = upa + 7T yas (47)

where K, is called contortion with total n* components [24]. Substituting (46)
and (47) into metric compatible condition (45), we get % (n + 1)n? constraints for K,

I<,uya + I<1//m =0= (77;4|1/a + 771/|;wz) + (Tulwx + Tulua) . (48)

By (48), K, has only % (n — 1)n* independent components. Noticing torsion
T uva has just 2 (n — 1)n* independent components, s0 K, OF 7,4 can be

represented by 7,

Theorem 3 For post-metric connections we have the following relations
Tylva — Tvlau + Talv/u (49)
I<pw(x = Tl/l(lﬂ + T{x|y/4 + Tﬂ|l/(x> (50)

1 _
Tﬂll/(l - § (”alyy - ﬂulya) + T,uum (51)
and consistent condition

Tylva + i + Tylau — 0. (52)

T = T or™® € A is an arbitrary skew-symmetrical tensor.

Proof If we represent 7., by 7 .4, by (48) and symmetry we have solution as
(49). By (49), we get consistent condition (52). By (49) and (47), we get (50).

If we represent 7 . by 7,4, We generally have linear relation

Tﬂll/d = k(ﬂulﬂa - ﬂal;w) + T,ul/aa (53)

in which k is a constant to be determined, 7 e 18 particular solution as 7, = 0.

7 ,wa satisfies

IZ:MI/(I = fa,uu = Tz/au = _Tym/ = _Tu;m - _fay/r (54)

So this part of torsion is a skew-symmetrical tensor 7 = 7 ,,,y** € A3, which has

C3 =1(n —2)(n — 1)n independent components. Substituting (53) into (48), we get

10
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(k= 1) (Tt + Zola) = R (55)

Calculating the summation of (55) for circulation of {y,v, a}, we also get con-
sistent condition (52). Substituting (52) into (55) we getk = % Again by (53), we get
solution (51). It is easy to check, (49) and (51) are the inverse representation under
condition (52). The proof is finished.

Substituting (42) into

0 =dg = & [(0ur,) ®7" +7, ®Var*]dx", (56)
we get
0ty = (T + 7 + T )10 (57)
To understand the meaning of o, and T/‘fy, we examine the influence on
geodesic.
dv  dv” dv”
g = ﬁya + vabﬂyavﬂz <§ + (FZD + JT,ZV + TZI/>UMUV> Vas
p (58)
= <5 "+ FZI/U””U) Ya + TV 07
The term 7, v"v" = 0 due to 7;, = —77 . So the symmetrical part z;,, influences

the geodesic, but the antisymmetrical part 7, only influences spin of a particle.
This means 7;,, # 0 violates Einstein’s equivalent principle. In what follows, we take
7, = 0.

By (42) and (57), we get:

Theorem 4 In the case n;, = 0, the absolute differential of vector A is given by

dA = V,Aly,dx® = VA, y'dx", (59)

in which V, denotes the absolute derivatives of vector defined as follows:
VoAl = Al + Th AP, Al = 0,A" + T A, (60)
Vol =Aya —ThAp,  Apa = 0.4, — T4 A, (61)

where A¥  and A, are usual covariant derivatives of vector without torsion. Torsion

T o € A3isan antisymmetrical tensor of Cf; independent components.

Similarly, we can calculate the absolute differential for any tensor. The example
also shows the advantages to combine variable with basis.

Now we take spinor connection as example to show the power of Clifford algebra.
For Dirac equation in curved space-time without torsion, we have [23, 25, 26]:

, 1 v v a
yﬂz(dﬂ + Fﬂ)qb =me, r,= 2 <8My + Iy ) (62)

I', is called spinor connection. Representing y*I", € A'U A3 in the form of (15),
we get:

&P b — 5. 2P = my°p, (63)

11
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where o is current operator, p, is momentum operator, and s, spin operator.
They are defined respectively by:

o' = diag(c",5"), p,=i(0,+Y,) —eA,, = % diag (o, —6"),  (64)

where ¢ = f'6* and ¢ = f' 6" are the Pauli matrices in curved space-time.

Y, € Al is called Keller connection, and Qe A3 is called Gu-Nester potential, which
is a pseudo vector [23, 26, 27]. They are calculated by

1 v a be d bc B QUL
Yﬂ T ifa <aﬂfz - a’/fZ>’ Q" = ¢ ¥ dfufb Mfy Nee = 4 df/SlblcaﬂgﬂV’
(65)

where §%) = £ gt b Ysign(a — b) for LU decomposition of metric. In the Hamilto-
nian of a spinor, we get a spin-gravity coupling potential 5,Q¥. If the metric of the
space-time can be orthogonalized, we have Q, = 0.

If the gravitational field is generated by a rotating ball, the corresponding met-
ric, like the Kerr one, cannot be diagonalized. In this case, the spin-gravity coupling
term has nonzero coupling effect. In asymptotically flat space-time, we have the
line element in quasi-spherical coordinate system [28]:

dx = yoVU(dt + Wdg) + NV (y,dr + y,rd0) + 73V U rsin 0de, (66)
dx* = U(dt + Wdg)® — V(dr* +r*d6?) — U~ sin?0d¢?, (67)

in which (U, V, W) is just functions of (r, ). As 7 — oo we have:

2 4L 2
U-1-" w- =, V—>1+—m (68)
7 r

where (m, L) are mass and angular momentum of the star, respectively. For
common stars and planets, we always have 7 >>m > L. For example, we have m=3
km for the sun. The nonzero tetrad coefficients of metric (66) are given by:

£ = VO£ = VT f =Ty =0 £ = VoW,

(69)
1 ., 1 VU —VUW
fi) :—9f1 :—,fg :—,fg) :—:f’; = -
VU VV 'V rsin@ rsin@
Substituting it into (65) we get
= Fof3f5r4 (0, 0ug,, ~0,,,0)
— (V2 sin6) (0, 05(UW), —0,(UW), 0) (70)

L
— — (0,2rcos6, sin6,0).

By (70), we find that the intensity of Q* is proportional to the angular momen-
tum of the star, and its force line is given by:
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dxt dr _ 2rcosé

A o VR — Rsin 26. 1
ds = daé sin @ <r sl 71)

(71) shows that the force lines of Q“ is just the magnetic lines of a magnetic
dipole. According to the above results, we know that the spin-gravity coupling
potential of charged particles will certainly induce a macroscopic dipolar magnetic
field for a star, and it should be approximately in accordance with the Schuster-
Wilson-Blackett relation [29-31].

3. Representation of Clifford algebra
The matrix representation of Clifford algebra is an old problem with a long

history. As early as in 1908, Cartan got the following periodicity of 8 [18, 19].
Theorem 5 For real universal Clifford algebra Ct), 4, we have the following isomorphism

( Mat(2:,R), if mod(p —¢,8) = 0,2
Mat(ﬁ,R) @Mat(ﬁl, R), if mod(p —¢,8) =1
Clyy = Mat<2”2;l, C) , if mod(p —¢,8) =3,7 (72)
Mat<2% H), if mod(p —¢,8) = 4,6
Mat(z% H) @Mat(ﬁ,H), if mod(p —q,8) = 5.

\

For C¢y,, we have C = tI + xy; + yy, + 2y, with

)= —Lyira = —va¥1 = v12: V2712 = —V12¥2 = Y7121 = —Y1V12 = V2
(73)

By (73), we find C is equivalent to a quaternion, that is, we have isomorphic
relation C¢, = H.
Similarly, for C#,,y, we have C = tI + xy; + yy, + 271, with
2_ 2.2 _ _ _ _ N _ _
1= =ro=Lrnr=—rr =rerrn= —rnr = “rurol1 = Vo = Y
(74)

Y

By (74), the basis is equivalent to

B 0 1 B 1 0 B 0 -1
71—(1 0)’ 72_(0 _1)’ 712—(1 0)- (75)

Thus, (75) means C¢; = Mat(2, R).

In geometry and physics, the matrix representation of generators of Clifford
algebra is more important and fundamental than the representation of whole
algebra. Define y* by

o & . /JH 9
= (8" O) =I%(m), 9,=diag <6ﬂ,6ﬂ,"',0u), Oy

m

—
=diag | 6,,6,, .06, |- (76)

13
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which forms the generator or grade-1 basis of Clifford algebra C#; 3. To denote
y* by I'*(m) is for the convenience of representation of high dimensional Clifford
algebra. For any matrices C* satisfying C¢; 3 Clifford algebra, we have [20, 32]:

Theorem 6 Assuming the matrices C* satisfy anti-commutative relation of C¢1 3

C'C¥ + C'C = 2, (77)

then there is a natural number m and an invertible matrix K, such that
K 'C'K =T*"(m).

This means in equivalent sense, we have unique representation (76) for genera-
tor of C#13. In [20], we derived complex representation of generators of CZ,,
based on Theorem 6 and real representations according to the complex representa-

tions as follows.
Theorem 7 Let

v’ = idiag (E,—E), E =diag(In, 1), k-+Il=n. (78)

Other y*, (u < 3) are given by (76). Then the generators of Clifford algebra Ct¢1 4 are
equivalent to Vy*, (u = 0,1,2,3,5).

In order to express the general representation of generators, we introduce some
simple notations. I,, stands for 7 x m unit matrix. For any matrix A = (A, ), denote
block matrix

A®lLy = (Aply),  [A,B,C,] = diag(4,B,C, ). (79)

in which the direct product of matrix is Kronecker product. Obviously, we have
LRL =14, [, ®, ®I, = Ig, and so on. In what follows, we use I'*(m) defined in
(76). For ue{0,1,2,3}, I*(m) is 4m x 4m matrix, which constitute the generator of
C?1,3. Similar to the above proofs, we can check the following theorem by method
of induction.

Theorem 8

1.In equivalent sense, for CC 4, the matrix representation of generators is uniquely

o (o) (3o
@)-r@)- )@
(3o @) (@G ) () ron)

(80)
in which n = 2" N, where N is any given positive integer. All matrices are
2N x 2"FIN gype.
2.For C€ 411, besides (80) we have another real generator

y*"*' =[E,~E,-E,E,~E,E,E,—E--],  E=[Iy, I (81)

If and only if k = 1, this representation can be uniquely expanded as generators of
Cl amt4.
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3.For any Cty 4, {p,qlp +q<4m,mod(p +gq, 4) # 1}, the combination of p +q
linear independent generators {y*,iy"} taking from (80) constitutes the complete set
of generators. In the case {p,q|p +q <4m,mod(p + q,4) = 1}, besides the
combination of {y*,iy"}, we have another normal representation of generator

taking the form (81) with k # 1.

4.For Cty,, (m <4), we have another 2 x 2 Pauli matrix representation for its
generators {c',6%,0%}.

Then, we get all complex matrix representations for generators of real C7),,
explicitly.

The real representation of C¢, 4 can be easily constructed from the above com-
plex representation. In order to get the real representation, we should classify the
generators derived above. Let G.(n) stand for any one set of all complex generators
of C¢, given in Theorem 8, and set the coefficients before all ¢# and 6" as 1 or i.
Denote G stands for the set of complex generators of C¢, o and G,_ for the set of
complex generators of C¢,. Then, we have:

GC - GC+ U GL‘—’ GC— & iGC+. (82)

By the construction of generators, we have only two kinds of y# matrices. One is
the matrix with real nonzero elements and the other is that with imaginary nonzero
elements. This is because all nonzero elements of ¢° are imaginary but all other
0" (Vu # 2) are real. Again assume

G.. =G, UG;, G, = {y!|y" is real}, G; = {//|y/ is imaginary}. (83)

Denote J, = io?, we have J3 = —I,. ], becomes the real matrix representation for
imaginary unit i. Using the direct products of complex generators with (I,,/,), we
can easily construct the real representation of all generators for C#),, from G, as

follows.
Theorem 9

1.For C¢y,0, we have real matrix representation of generators as
G ={/'eL(freG,); irej, (if y¥€G)}. (84)

2.For C?y,, we have real matrix representation of generators as
G ={/®LIreG,}. (85)

3.For Ct) 4, we have real matrix representation of generators as

1—‘5_“ — }/ﬂa EGV+’ (a — 1’2’ ...’p>
(86)

G, = {F’_‘;‘,I"’b
Flf = }/Vh EGV*) (b = 1: 2) 3Q)

Obviously we have CE C1 = (CT';L)2 choices for the real genevators of Ct, 4 from each
complex representation.

Proof. By calculating rules of block matrix, it is easy to check the following
relations:

QL) ®J,) + (' ®L) L) = Yy +r'r")®J, (87)
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L) &L+ (L)L) = -0 +r'r") L. (88)

By these relations, Theorem 9 becomes a direct result of Theorem 8.
For example, we have 4 x 4 real matrix representation for generators of C¢ 3 as
follows:

i{01,02,03} = {61 ®]2,i02®12,03 ®]2} = {21,22,23} =

(/0 0 0 1 0 0 1 0 0 1 0 0)\)
0 0 -1 0 0 0 0 1 -1 0 0 O (89)
< bl b .
0 1 0 0 -1 0 0 0 0 0 0 -1
(\-1. 0 0 0 0 -1 0 0 0 01 0)/)]
It is easy to check
eyl 4 sivk = o8¢, syl _ siyk — pekimy, (90)

4. Transformation of Clifford algebra

Assume V is the base vector space of C?, 4, then Clifford algebra has the
following global properties [22, 33, 34]:

_ i kyr __ -+ -
Ctpq= & NV =CC &CF, ), (91)
cet = @ AV, cto= @ AV, 92
P k=even P k=odd ( )
Ctpq = Cf;’ g1 (93)

Cty,q is a Z;-graded superalgebra, and sz;, ; 1s a subalgebra of C7),,;. We have:
CerCet =Ce~Ce™ =Cet, C7Ce~ =Ce~Cem =Ce. (94)
Definition 6 The conjugation of element in C¢), , is defined by

Tkyoen) = (=1 Yty = (_1>%m(m+1)7k1k2~--km’ (0<m<n). (95)
The main involution of element is defined by
A(Viyeten) = (= 1) Vioie,» (0 Sm <) (96)
The norm and inverse of element are defined by
NX)=XX*, X '=X*/NX) if N(X)#0. (97)

By the definition, it is easy to check

Yh = ~Vhs Yap = Vabs Yabe = Yabes " (98)
ax*)=a(x)", aln) =10 aw) =Vw» - (99)
g =g {g=g8 8.Vg €A N(g)=1} (100)
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Definition 7 The Pin group and Spin group of C¢,, are defined by
Pin,, = {g€Ct,4IN(g) = £1,a(g)xg* e VVx eV}, (101)
Spin,,, = {g€Ct;,IN(g) = +1,gxg* €V¥x eV} =PinnCr*.  (102)

The transformation x — a(g)xg* is called sandwich operator. Pin or Spin group
consists of two connected components with A'(g) =1 or N'(g) = —1,

Spin, = { ect; N (g) = +1,gxg’ evaeV}, (103)
Spin}j’q = {gGCf;“’qL/\/’(g) =—-1,gxg" EVVXEV}. (104)
For Vg € Pin, 4, x € V, the sandwich operator is a linear transformation for vec-

torin V,

T

x =a(g)xg* = X =KX, X = (x",x>x") . (105)

In all transformations of vector, the reflection and rotation transformations are
important in geometry. Here, we discuss the transformation in detail. Let m € A’ be
a unit vector in V, then the reflection transformation of vector X € A! with respect
to n — 1 dimensional mirror perpendicular to m is defined by [35]:

X' =mXm* = —-mXm. (106)
Let m = y,m*, X = y,X", substituting it into (106) and using (21), we have:
X/: - (m O] X + mabeab)m = _(m © X)m - maXme (yabyc>
—(mOX)m — m*X’m* (g0 — &u¥b + Vanc) (107)
= —2(m®X)m+X = XJ_ — X”.

Eq. (107) clearly shows the geometrical meaning of reflection. By (106), we
learn reflection transformation belongs to Pin, , group (Figure 3).
The rotation transformation R € Spin,, ,

X' = RXR L (108)

The group elements of elementary transformation in A? are given by [22, 36]:

( cosh 22 ¢ Yap Sinh —> . (cosh Vab _

>~ Yab sinh %) , 0. ER, (109)

2
O O 0, .0
<cos > + 7,4 Sin Tb) = (cos Tb — ¥ap SIN %h> 00, € -1, 7). (110)

The total transformation can be expressed as multiplication of elementary
transformations as follows:

) 0
R = H (cosh > + 7, sinh —) H (cos %b + 7,45 Sin %b) (111)
{nuunhh:_l} {”aanbbzl}

17



Structure Topology and Symplectic Geometry

mirror

X ®

Figure 3.
Reflection transformation X' = X| — X|.

(111) has 3 (n — 1)n generating elements like SO(n). In (111), we have commuta-
tive relation as follows:

0, .0, . .0
{cosh U“Tb + 7,5 sinh D”Th, cos Td + 7,4 Sin Td} = 2sinh w%b sin Tdyﬂb OVeds
(112)
0 0, 0, .0, . O . O,
{cos %b + 7, SID %b, cos 7”[ + Yeq SIN 7’11 = 2sin %b sin 7‘1)/“10 Qv (113)

in which

2
Yab OVed = MpcVad — Nac¥bd T Nad¥be — Mpd¥ac € A”. (114‘)

If a # b # ¢ # d, the right hand terms vanish, and then two elementary trans-
formations commute with each other.

R forms a Lie Group of  (# — 1)n paraments. In the case CZ,,o or CZp,, R is
compact group isomorphic to SO(n). Otherwise, R is noncompact one similar to
Lorentz transformation. The infinitesimal generators of the corresponding Lie
group is y,,, and the Lie algebra is given by:

R =%y, [VaprVed) = 20 O €A%, Ve €R. (115)

Thus, A?(MP*) is just the Lie algebra of proper Lorentz transformation of the
space-time M1,

5. Application in classical geometry

Suppose the basic space of projective geometry is #-dimensional Euclidean space
7 (see Figure 4), and the basis is {y,|a = 1,2, ---,n}. The coordinate of point x is
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ﬁl i

t

Figure 4.
Diagram of parameter setting for projective geometry.

given by x = y,x“. The projective polar is P, and its height from the basic space 7 is
h. The total projective space is # + 1 dimensional, and an auxiliary basis 7,1 = 7,
is introduced. The coordinate of the polar P is p = y,p*. In this section, we use
Greek characters for # + 1 indices. Assume the unit directional vector of the
projective ray is t = y,t*, the unit normal vector of the image space 7’ is n = y,n”,
coordinate in 7’ is y = y,y¥, and the intercept of #’ with the n + 1 coordinate axis is
a. Then, we have:

(y—a)on=0, or yon=ny" =an,. (116)

The equation of projective ray is given by:

s=p-+it, (117)
where 4 is parameter coordinate of the line. In the basic space 7, we have s"*! =
0 and 4 = —h/t?, so the coordinate of the line in 7 reads
h
=p——t 118
x=p- (118)

Let s = y and substitute (117) into (116) we get image equation as follows:

an, —poONn an, —poOn

y=p+ ton t, A= ol - (119)

In the above equation t © n # 0, which means t cannot be perpendicular to n;
otherwise, the projection cannot be realized. Eliminating coordinate t in (118)
and (119), we find the projective transformation y < x is nonlinear. In (119),
only the parameters (a, n) are related to image space 7’; so, all geometric
variables independent of two parameters (a2, n) are projective invariants. In
what follows we prove the fundamental theorems of projective geometry by
Clifford algebra.

Theorem 10 For 4 different points {J’v V2 V3 Y 4} on a straight line L, the following
cross ratio is a projective invariant

(12;34) = 21723l D2 = 2al. (120)
Wy —ysl 1 =4l
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Proof Substituting (119) into (120) we get

(on)t — (LOn)t| |(tsOn)t; — (L ON)ty|

12;34) = . 121
( ) (tzon)t — (LON)t3| [(t4ONn)t; — (t O n)ty] (12)
By (19) and (20), we get

(t, On)t, — (t, On)ty, = (L, At,) On = L|t, At mOn, (122)

where m is the unit normal vector of the plane spanned by (t,, t,), which is
independent of the image space 7. Substituting it into (121), we get

_IsAt] [t AL
[tz Aty| |ts Aty]

(12; 34) (123)

(123) is independent of (@, n); so, it is a projective invariant. Likewise, (13;24)
and (14;23) are also projective invariants. The proof is finished.

Now we examine affine transformation. In this case, the polar P at infinity and
the directional vector t of rays becomes constant vector. The equation of rays is
given by y = x + At. Substituting it into (116), we get the coordinate transformation
from basic space 7 to image space 7,

y:XH_&mp—n@xt i:anp—ncax

(124)
tOn tOn

Since t and n are constant vectors for all rays, the affine transformationy < x is
linear. A variable independent of (@, n) is an affine invariant.

Theorem 11 Assume {x1, %2, %3} are 3 points on a straight line L in basic space r, and
{y.1>9,,95} are respectively their projective images on line L' in . Then the simple ratio

(12,13) = P2 =2l (125)
ly; — il

is an affine invariant.
Proof By equation of transformation (124) we get

any —n@xkt

12
tOn (126)

Vi = %k +

In (126), only the parameters (a2, n) are related to image space 7’. Substituting
(126) into (125), we have:

_ton)(x2 —x1) —nO (X2 —x1)t|  |((x2 —X1) At)On]
(1213 = |t on)x —x) —no (s —x)t| (s —x)rtjon O

Denote the unit directional vector of line L by k, then we have
X, — X1 = £|x; — x1]k, X3 — X1 = £|x3 — xq|k. (128)

Substituting them into (127) we get:

(12,13) = P2 =Vl _ e = x| (129)
|Y3 - Y1| |x3 — x4
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This proves the simple ratio (12,13) is an affine invariant. Likewise, we can
prove (12,23) and (13, 23) are also affine invariants. The proof is finished.

The treatment of image information by computer requires concise and
general algebraic representation for geometric modeling as well as fast and robust
algebraic algorithm for geometric calculation. Conformal geometry algebra was
introduced in this context. By establishing unified covariant algebra representation
of classical geometry, the efficient calculation of invariant algebra is realized
[13-15]. It provides a unified and concise homogeneous algebraic framework
for classical geometry and algorithms, which can thus be used for complicated
symbolic geometric calculations. This technology is currently widely applied in
high-tech fields such as computer graphics, vision calculation, geometric design,
and robots.

The algebraic representation of a geometric object is homogeneous, which
means that any two algebraic expressions representing this object differ by only one
nonzero factor and any such algebraic expressions with different nonzero multiple
represent the same geometric object. The embedding space provided by conformal
geometric algebra for » dimensional Euclidean space is # + 2 dimensional
Minkowski space. Since the orthonormal transformation group of the embedding
space is exactly double coverage of the conformal transformation group of the
Euclidean space, this model is also called the conformal model. The following is a
brief introduction to the basic concepts and representation for geometric objects of
conformal geometric algebra. The materials mainly come from literature [13].

In conformal geometry algebra, an additional Minkowski plane M™! is attached
to n dimensional Euclidean space R”, M™"! has an orthonormal basis {e;,e_}, which
has the following properties:

& =1, et = —1, e, Qe =0. (130)
In practical application, {e,e_} is replaced by null basis {eg, ¢}
(e —ey), e=e_+e,. (131)
They satisfy
2 _ 2 _
ey =¢ =0, e®ey = —1. (132)

A unit pseudo-scalar E for M"! is defined by:

E=eNeg=e Ne_ =eqe_. (133)

In conformal geometric algebra, we work with ML = R @ M,
Define the horosphere of R" by:

N ={xeM"™x*=0,x0e=—1}. (134)

N7 is a homogeneous model of R”. The powerful applications of conformal
geometry come from this model. By calculation, for Vx € R” we have:

1
x:x—f—ixze—i—eo, (135)
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which is a bijective mapping x e R" < x € \,, we have N, = R". x is referred to
as the homogeneous point of x. Clearly, 0 €R” < ¢ €N, and 0 €R" <> e €N,
are in homogeneous coordinate.

Now we examine how conformal geometric algebra represents geometric
objects. For a line passing through points a and b, we have

eAaAb =eaAnb+ (b—a)E. (136)

SinceaAb =aA (b — a) is the moment for a line through point a with tangent
a — b, e Aa Ab characterizes the line completely.
Again by using (135) and (136), we get

eNaAbAc=eanbAc+ (b—a)A(c—a)E. (137)

We recognize a Ab A ¢ as the moment of a plane with tangent (b —a) A (c — a).
Thus, e Aa Ab Ac represents a plane through points {a, b, c}, or, more specifically,
the triangle (2-simplex) with these points as vertices.

For a sphere with radius p and center p € R”, we have (x — p)2 = p*. By (135),
the equation in terms of homogeneous points becomes

XOp = —%pz. (138)
Using x ©e = —1, we get:
x@s =0, s:p—%pzezp—wo +%(p2—p2)e, (139)
where
s2 = p?, eOs = —1. (140)

From these properties, the form (139) and center p can be recovered. Therefore,
every sphere in R” is completely characterized by a unique vector s € M" 11,
According to (140), s lies outside the null cone. Analysis shows that every such
vector determines a sphere.

6. Discussion and conclusion

The examples given above are only applications of Clifford algebra in geometry,
but we have seen the power of Clifford algebra in solving geometrical problems. In
fact, Clifford algebra is more widely used in physics. Why does Clifford algebra
work so well? As have been seen from the above examples, the power of Clifford
algebra comes from the following features:

1.In the geometry of flat space, the basic concepts are only length, angle, area,
and volume, which are already implicitly included in the definition of Clifford
algebra. So, Clifford algebra summarizes these contents of classical geometry
and algebraize them all. By introducing the concepts of inner, exterior, and
direct products of vector, Clifford algebra summarizes the operations of
scalars, vectors, and tensors and then can represent all the physical variables in
classical physics, because only these variables are included in classical physics.
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2.By localizing the basis or frame of space-time, Clifford algebra is naturally

suitable for the tangent space in a manifold. If the differential d, and
connection operator 0,y, are introduced, Clifford algebra can be used for the
whole manifold, so it contains Riemann geometry. Furthermore, Clifford
algebra can express all contents of classical physics, including physical
variables, differential equations, and algebraic operations. Clifford algebra
transforms complicated theories and relations into a unified and standard
calculus with no more or less contents, and all representations are neat and
elegant [23, 36].

3.1f the above contents seem to be very natural, Clifford algebra still has another

unusual advantage, that is, it includes the theory of spinor. So, Clifford algebra
also contains quantum theory and spinor connection. These things are far
beyond the human intuition and have some surprising properties.

4.There are many reasons to make Clifford algebra become a unified and

efficient language and tool for mathematics, physics, and engineering, such as
Clifford algebra generalizes real number, complex number, quaternion, and
vector algebra; Clifford algebra is isomorphic to matrix algebra; the derivative
operator y*V, contains grad, div, curl, etc. However, the most important
feature of Clifford algebra should be taking the physical variable and the basis
as one entity, suchas g =g, 7" ®y” and 7 = 7 ,,y**”. In this representation,

the basis is an operator without ambiguity. Clifford algebra calculus is an
arithmetic-like operation which can be well understood by everyone.

“But, if geometric algebra is so good, why is it not more widely used?” As
Hestenes replied in [11]: “Its time will come!” The published geometric algebra
literature is more than sufficient to support instruction with geometric algebra
at intermediate and advanced levels in physics, mathematics, engineering, and
computer science. Though few faculty are conversant with geometric algebra
now, most could easily learn what they need while teaching. At the
introductory level, geometric algebra textbooks and teacher training will be
necessary before geometric algebra can be widely taught in the schools. There
is steady progress in this direction, but funding is needed to accelerate it.
Malcolm Gladwell has discussed social conditions for a “tipping point” when
the spread of an idea suddenly goes viral. Place your bets now on a Tipping
Point for Geometric Algebral!
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