We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Dynamic Decision-Making for
Stabilized Deep Learning Software
Platforms

Soohyun Park, Dohyun Kim and Joongheon Kim

Abstract

This chapter introduces a dynamic and low-complexity decision-making algo-
rithm which aims at time-average utility maximization in real-time deep learning
platforms, inspired by Lyapunov optimization. In deep learning computation, large
delays can happen due to the fact that it is computationally expensive. Thus, handling
the delays is an important issue for the commercialization of deep learning algo-
rithms. In this chapter, the proposed algorithm observes system delays at first for-
mulated by queue-backlog, and then it dynamically conducts sequential decision-
making under the tradeoff between utility (i.e., deep learning performance) and
system delays. In order to evaluate the proposed decision-making algorithm, the
performance evaluation results with real-world data are presented under the applica-
tions of super-resolution frameworks. Lastly, this chapter summarizes that the
Lyapunov optimization algorithm can be used in various emerging applications.

Keywords: Lyapunov optimization, stochastic optimization, real-time computing,
deep learning platforms, computer vision platforms

1. Introduction

Nowadays, many machine learning and deep learning algorithms have been
developed in various applications such as computer vision, natural language
processing, and so forth. Furthermore, the performances of the algorithms are
getting better. Thus, the developments of machine learning and deep learning
algorithms become mature. However, the research contributions which are focusing
on the real-world implementation of the algorithms are relatively less than the
developments of the algorithms themselves.

In order to operate the deep learning algorithms in real-world applications, it is
essential to think about the real-time computation. Thus, the consideration of delay
handling is desired because deep learning algorithm computation generally intro-
duces large delays [1].

In communications and networks research literature, there exists a well-known
stochastic optimization algorithm which is for utility function maximization while
maintaining system stability. Here, the stability is modeled with queue, and then
the algorithm aims at the optimization computation while stabilizing the queue
dynamics. In order to formulate the stability, the queue is mathematically modeled
with Lyapunov drift [2].

1 IntechOpen

Advances and Applications in Deep Learning

This algorithm is designed inspired by Lyapunov control theory, and thus, it is
named to Lyapunov optimization theory [2]. In this chapter, the basic theory,
examples, and discussions of the Lyapunov optimization theory are presented.
Then, the use of Lyapunov optimization theory for real-time computer vision and
deep learning platforms is discussed. Furthermore, the performance evaluation
results with real-world deep learning framework computation (e.g., real-world
image super-resolution computation results with various models) are presented in
various aspects. Finally, the emerging applications will be introduced.

2. Stabilized control for reliable deep learning platforms

In this section, Lyapunov optimization theory which is for time-average optimi-
zation subject to stability is introduced at first (refer to Section 2.1), and then
example-based explanation is presented (refer to Section 2.2). Finally, related dis-
cussions are organized (refer to Section 2.3).

2.1 Theory

In this section, we introduce the Lyapunov optimization theory which aims at
time-average penalty function minimization subject to queue stability. Notice that
the time-average penalty function minimization can be equivalently converted to
time-average utility function maximization. The Lyapunov optimization theory can
be used when the tradeoff exists between utility and stability. For example, it can be
obviously seen that the tradeoff exists when current decision-making is optimal in
terms of the minimization of penalty function, whereas the operation of the deci-
sion takes a lot of time, i.e., thus it introduces delays (i.e., queue-backlog increases
in the system). Then, the optimal decision can be dynamically time-varying because
focusing on utility maximization (i.e., penalty function minimization) is better
when the delay in the current system is not serious (i.e., queueing delay is small or
marginal). On the other hand, the optimal decision will be for the delay reduction
when the delay in the current system is large. In this case, the decision should be for
delay reduction while sacrificing certain amounts of utility maximization (or pen-
alty function minimization).

Suppose that our time-average penalty function is denoted by P(aft]) and it
should be minimized and our control action decision-making is denoted by aft|.
Then, the queue dynamics in the system, i.e., Q[t], can be formulated as follows:

Qlt + 1] = max {Qt] + a(alt]) — b(alt]), 0} (1)
Q0] =0 (2)

where a(alt]) is an arrival process at Q[t] at t when our control action decision-
making is at]. In (1), b(a[t]) is a departure/service process at Q [t] when our control
action decision-making is at] at z.

In this section, control action decision-making should be made in each unit time
for time-average penalty function minimization subject to queue stability. Then, the
mathematical program for minimizing time-average penalty function, P(a[t]) where
the control action decision-making at ¢ is aft], can be presented as follows:

1—1

min : }Ln; P(a[z]) (3)
=0

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms
DOI: http://dx.doi.org/10.5772/intechopen.92971

Subject to queue stability:

g
fim 3> Q] <o)
In (3), P(alt]) stands for the penalty function when a control action decision-

making is at] at .

As mentioned, the Lyapunov optimization theory can be used when tradeoff
between utility maximization (or penalty function minimization) and delays exists.
Based on this nature, drift-plus-penalty (DPP) algorithm [2-4] is designed for
maximizing the time-average utility subject to queue stability. Here, the Lyapunov

function is defined as L(Q[t]) = %(Q[t])z, and let A(.) be a conditional quadratic
Lyapunov function which is formulated as E[L(Q [t + 1]) — L(Q[¢])|Q][t]], which is

called as the drift on ¢. According to [2], this dynamic policy is designed to achieve
queue stability by minimizing an upper bound of our considering penalty function

on DPP which is given by
A(Q[) + VE[P(alt])], (5)

where V is a tradeoff coefficient. The upper bound on the drift of the Lyapunov
function at ¢ is derived as follows:

L@l +1) ~ LIQH) = 5 (@It + 17 - Qi) ®)
<2 (alaf)? + b(al)?) + Qil(a(ad) — b(al)) %

Therefore, the upper bound of the conditional Lyapunov drift can be derived as
follows:

A(Q)) = E[L(Q[+1]) — L(Q[)|QL]

(8)
<C+E[Q[t](a(alt]) — b(alt])IQ[t],
where C is a constant given by
“Ela(ald)? + b(ai)?Ql] <C,)

which supposes that the arrival and departure process rates are upper bounded.
Due to the fact that C is a constant, minimizing the upper bound on DPP is as
follows:

VE[P(alt])] + E[Q[] - (a(alt]) — b(alt]))). (10)

Algorithm 1. Stabilized Time-Average Penalty Function Minimization

Initialize:

1:t — O;

2: Qfr] < 05

3: Decision Action: Va[t] € A

Time-Average Penalty Function Minimization subject to Stability
4: whilet <T do // T: operation time

5: Observe Q[t];

Advances and Applications in Deep Learning

6! T* «— 00]

7: for ajt] € A do

8: T — V- P(alt]) + Q[t] - (a(alt]) — b(alt]));
9: if 7 <7T" then

10: T «—T;

11: a*[t+1] «— alt];

12: end if

13: end for

14: end while

Finally, the dynamic control action decision-making a[t| in each unit time ¢ for
time-average penalty function P(aft]) minimization subject to queue stability can be
formulated as follows based on the Lyapunov optimization theory:

a*ft+1] «— argar[{]lier;[V -P(alt]) + QJt] - (a(alt]) — b(alt]))] (11)

where A is the set of all possible control actions and a* [t + 1] is the optimal
control action decision-making for the next time slot.

In order to verify whether (11) works correctly or not, following two example
cases can be considerable:

* Cuse 1: Suppose Q[t] = co. Then

@[t +1] — arg min [V- Plaft]) + QI - (a(ald]) — b(afs]))] (12)
~ argar[g]lierh[a(a[t]) — b(alt])]. (13)

Then, (13) shows that control action decision-making should works as follows,
i.e., (i) the arrival process should be minimized, and (ii) the departure process
should be maximized. Both cases are for stabilizing the queue, i.e., it should be
beneficial when Q [t] ~ oo.

* Case 2: Suppose Q[t| = 0. Then

o't +1] —arg min [V - Plalt]) + Qlt] - (a(alt]) - blalt]))] (14)
= argar[tr}lier;‘V - P(alt]). (15)

Then, (15) shows that control action decision-making should work for minimiz-
ing the given penalty function. This is semantically reasonable because focusing on
our main objective is possible because stability does not need to be considered
because Q[t] = 0.

The pseudo-code of the proposed time-average penalty function minimization
algorithm is presented in Algorithm 1. From line 1 to line 3, all variables and
parameters are initialized. The algorithm works in each unit time as shown in line 4.
In line 5, current queue-backlog Q|t] is observed to be used in (11). From line 7 to
line 13, the main computation procedure for (11) is described.

Up to now, the time-average penalty function minimization is considered. Based
on the theory, the dynamic control action decision-making aft] in each unit time ¢
for time-average utility function U(a(t|) maximization subject to queue stability can
be formulated as follows:

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms
DOI: http://dx.doi.org/10.5772/intechopen.92971

@[+ 1] — argmax[V - U(af)) — QU] - (a(e]) ~ b(af])] (16)

where A is the set of all possible control actions and a* [t + 1] is the optimal
control action decision-making for the next time slot.

2.2 Example: multicore scheduling in mobile devices

In this section, the Lyapunov optimization-based stabilized time-average opti-
mization algorithm is introduced with one simple toy model. In this example,
dynamic core allocation decision-making algorithm is designed which is for time-
average energy consumption minimization subject to queue stability.

As illustrated in Figure 1, mobile smartphone is with the processor which is
equipped with multiple cores. For example, ARM big.LITTLE processors are with
multiple little and big heterogeneous cores.

In this system, the task events will be generated when users generate events,
which are denoted by a(t] in Figure 1. Then, the events will be located in the task
queue (i.e., Q[t] in Figure 1). Then, the events can be processed by the multicore
processor. In this case, if many/more cores are allocated in order to process the
events from the queue, the processing can be accelerated which is beneficial in
terms of queue stability. However, it is not good in terms of our main objective, i.e.,
energy consumption minimization. On the other hand, if less cores are allocated,
the processing becomes slow which is harmful in terms of queue stability but is
beneficial in terms of our main objective, i.e., energy consumption minimization.
Finally, the tradeoff can be observed between energy consumption minimization
(i.e., our main objective) and stability. Then, it can be confirmed that Lyapunov
optimization-based algorithm can be used.

In order to design the dynamic core allocation decision-making, a[t] in each unit
time ¢ for time-average energy consumption E(a[t|) minimization subject to queue
stability can be formulated as follows based on (11):

a*t+1] — argal[:}liea[V -E(alt]) + Q[t] - (a(alt]) — b(alt]))] (17)

where A is the set of all possible core allocation combinations and a* [t + 1] is the
optimal core allocation decision-making for the next time slot. Here, it is obvious

Processor

Tradeoff
E 1nin « More core allocation
= = » More energy consumption (-)
= — = More stability (+)
. =8 , O™ -
- m -+ Less core allocation
1nnni « Less energy consumption (+)

= More stability (-)
Smartphone

a[t]: random

b[t]: depends

on core Task Queue Q] D
allocation
e 11 /C)
Figure 1.

Mobile devices with multicore processors.

Advances and Applications in Deep Learning

that the arrival process is not controllable (i.i.d. random events); thus, it can be
ignored. Then, the final form of the dynamic decision-making algorithm can be
defined as follows:

a*t +1] « arg m11}4[V E(alt]) — Q[t] - b(at])]- (18)

In order to check whether the derived Eq. (18) is correct or not, two example
cases can be considered, i.e., (i) Q[t] & 0, and (ii) Q[t] = 0:

* Busy queue case (Q[t] ~ oo): in this case

a’[t+1] — arg rg]lglA[V E(alt]) — Q] - b(alt])], (19)
= argar[gner;t[—b(a[t])] = arg ar[g]lgb(a[t]), (20)

Thus, the departure process should be accelerated, i.e., more cores should be
allocated. This is semantically true because the fast processing events from the
queue is desired if overflow situations happen.

* Busy queue case (Q]t] = 0): In this case

a’t+1] %argarpg‘l[V E(alt]) — Qt] - b(alt])], (21)
= z:lrgar[tr]ner}4 V - E(alt]), (22)

Thus, less cores should be allocated for energy consumption minimization which
is our main objective. This is semantically true because the given main objective
should be desired if the system is stable, i.e., Q[t] =

As discussed with examples, the proposed Lyapunov optimization-based
dynamic core allocation decision-making algorithm works as desired.

2.3 Discussions in stabilized control

The proposed dynamic super-resolution model selection algorithm is beneficial
in various aspects, as follows.

2.3.1 Hardware/system-independent self-adaptation

Suppose that this proposed algorithm is implemented in supercomputer-like
high-performance computing machines. In this case, the processing should be fast;
thus, the queue-backlog is always low. Therefore, the system has more chances to
focus on our main objective, i.e., penalty function minimization or utility function
maximization. On the other hand, if the hardware itself is performance/resource
limited (e.g., mobile devices), then the processing speed is also limited due to the
low specifications in processors. Thus, the queue-backlog can be frequently busy
because it may not be able to process many data with the queue even though it
utilizes the fastest model. Therefore, it can be finally observed that the proposed
algorithm is self-adaptive which can adapt depending on the given hardware/
system specifications. It automatically adapts the models based on the given
hardware/system; thus, it does not require system engineer’s trial-and-error tuning.

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms
DOI: http://dx.doi.org/10.5772/intechopen.92971

Furthermore, the proposed algorithm is reliable according to the fact that the
self-adaptation is for maximizing its utility while maintaining szability.

2.3.2 Low-complexity operation

As shown in Algorithm 1, the computation procedure is iterative for solving
closed-form equation, i.e., (11) and (16). Thus, the computational complexity of the
proposed algorithm is polynomial time, i.e., O(N), where N is the number of the
given control actions. Thus, it guarantees low-complexity operations.

3. The use of Lyapunov optimization for deep learning platforms

As explained, the Lyapunov optimization theory is a scalable, self-configurable,
low-complexity algorithm which can be used in many applications. In this section,
the use of Lyapunov optimization for deep learning and computer platforms is
discussed in two different ways, i.e., departure process control (refer to Section 3.1)
and arrival process control (refer to Section 3.2). Finally, its related performance
evaluation results are presented (refer to Section 3.3).

3.1 Lyapunov control over departure processes

As illustrated in Figure 2, stabilized real-time computer vision platforms should
be equipped with queues in order to handle bursty traffics. If the queue is busy or
near-overflow, the departure process should be accelerated. Thus, the simplest
model should be used for reducing the corresponding computation. On the other
hand, if the queue is empty, deep learning computation accuracy can be improved
with more sophisticate models because we have enough time to conduct the com-
putation. Thus, multiple models are desired in order to select one depending on
queue backlog.

In Figure 2, multiple models exist, and it can be seen that the simplest model
(i.e., low-resolution model) is able to conduct fast computation, but it presents low
learning accuracy. On the other hand, the most sophisticate model (i.e., high-
resolution model) is good for accurate learning performance, but it introduces
computation delays. Thus, the tradeoff exists between performance and delays, i.e.,

- » Low Accuracy
Deep Learning Model [0] l e DT
Deep Learning Model [1] |
Q [f] Deep Learning Model [2]
LN =
Lyapunov-Control _| L
— (Model Selection)
Deep Learning Model [N]
= High Accuracy
= Slow Computation
Low-Resolution High-Resolution
» Low Accuracy [-] « High Accuracy [+]
» Fast Computation Tradeoff) ° Slow Computation
(High Queue Stability) radeo (Low Queue Stability) | | Objective Function
[+] [-] Time-Average Learning-Accuracy Maximization
subject to Queue Stability

Figure 2.
Lyapunov control over departure processes in real-time computer vision platforms for time-average learning
accuracy maximization subject to queue stability.

Advances and Applications in Deep Learning

Lyapunov-Control Arrival Process (a[t])
(Sampling Riite Selection) = Depends on Sampling Rate in CCTV Camera

l_T Q[t]
Computer Vision /

Stream Arrivals Deep Learning Model
Departure Process (b[t]))

= Qut of Control
Low Sampling Rate High Sampling Rate
« Low Identification + High Identification
Performance [-] Tradeoff Performance [+]
= Low Queueing Delay = High Queueing Delay
[+] [-]

Figure 3.
Lyapunov control over arrival processes in real-time computer vision platforms for time-average learning
accuracy maximizgation subject to queue stability.

Lyapunov optimization theory-based dynamic model selection decision-making
algorithm can be designed as follows:

a’ [t +1] — argalﬁg[V -A(alt]) — Qft] - (a(alt]) — b(alt]))] (23)

and this can be reformulated as follows due to the fact that the arrival process is
out of control:

aft+1] — argarﬁg[V -Aalt]) + Qt] - b(alt])] (24)

where A(at]) stands for the learning-accuracy when the model selection deci-
sion is a[t] at t. Here, A is the set of all possible deep learning models, and a* [t 4 1] is
the optimal control action decision-making for next time slot.

3.2 Lyapunov control over arrival processes

The stabilized real-time computer vision platform in Section 3.1 is novel and
scalable; however it has burden because multiple deep learning models should be
implemented in a single platform.

Thus, a new dynamic control algorithm with a single deep learning model is also
needed for resource-limited systems. As illustrated in Figure 3, our considering
system has a single computer vision and deep learning model in computing plat-
forms. In addition, the queue is in front of the system. Thus, the departure process
is not controllable anymore. In this case, the arrival process should be controllable
in order to control the queue dynamics for stability. Therefore, the arrival image/
video streams should be controlled by handling sample rates. If high-frequency
sampling is available, more signals will be generated, and then the results will be
enqueued. Thus, the arrival process increases. This is beneficial because it increases
computer vision performance due to the fact that more images/videos can be
obtained especially in surveillance applications. On the other hand, i.e., if low-
frequency sampling is conducted, the computer vision performance can be
degraded, whereas the number of arrival process data decreases which is beneficial
in terms of stability. Eventually, the tradeoff between computer vision performance
and delays can be observed. Finally, Lyapunov optimization theory-based sampling
rate selection decision-making algorithm can be designed as follows:

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms
DOI: http://dx.doi.org/10.5772/intechopen.92971

a’ft+1] < al‘galﬁg[V -A(alt]) — Qft] - (a(alt]) — b(alt]))] (25)

and this can be reformulated as follows due to the fact that the departure process
is out of control:

'l +1) —argmax [V~ Alalt]) - Q[- a(alf])] (26)

where A(alt]) stands for the learning accuracy when the sample rate selection
decision is aft| at t. Here, A is the set of all possible sample rates, and a* [t + 1] is the
optimal control action decision-making for next time slot.

3.3 Performance evaluation and discussions

In this section, the performance evaluation results of the proposed algorithm in
Section 3.1 are presented. The data-intensive simulation-based evaluation is
performed, and then the results are presented in Figure 4. In addition, Table 1
shows the performance of super-resolution depending on the number of hidden
layers. If the number of hidden layers is maximum (i.e., 20 in this research), the
PSNR and structural similarity (SSIM, one of the widely used performance metrics
in super-resolution) values are maximum. However, the computation times (for
CPU-only and CPU-GPU) become slow.

As illustrated in Figure 4, if the models are static (i.e., deep or shallow), the
curves show that the two models are not efficient. The deep model cannot handle
the overflow situations; thus, the queue diverges. On the other hand, the shallow

- 1ed
mmmm Proposed (Time-Average Optimization)
=== [eep (# Hidden Layers: 20)

0.8 + —— Shallow (# Hidden Layers: 0)

0.6

0.4

0.2 1

0.0 1

T T T T T T
0 20000 40000 E0000 80000 100000

Figure 4.
Performance evaluation: Queue-backlog (x-axis, unit time; x-axis, queue occupancy (unit: Bits)).

Depth (# of hidden layers) 0 4 6 8 1 14 17 20
PSNR (dB) 30.400 32560 33.010 33229 33.379 33.435 33.495 33.523
SSIM 0.8682 0.9100 0.9160 0.9180 0.9200 0.9200 0.9210 0.9220

Processing time (CPU — only) 0.0020 0.3210 0.5468 0.7725 0.9940 1.3170 1.6220 1.9600

Processing time (CPU + GPU) 0.0010 0.0100 0.0120 0.0152 0.0189 0.0224 0.0262 0.0305

Table 1.
Tradeoff between utility and delay obtained from super-resolution performance measurement results
(processing time have measured on 512 X 768 images).

Advances and Applications in Deep Learning

model is too fast; thus, the queue is always empty. This is obviously positive for
stability where the performance in terms of super-resolution performance is the
lowest. Thus, it might be better if the algorithm allows certain amounts of delays in
order to enhance the quality of super-resolution. The proposed algorithm is initially
follows deep model because the queue is idle during the initial phases. If the queue
becomes filled with certain amounts of images (i.e., near threshold), it starts the
control, i.e., self-adaptive, near the unit time of 5800. Thus, the proposed algorithm
starts to select super-resolution models which can handle delays. Thus, it is true that
the proposed algorithm is better than the other two static algorithms.

For the proposed self-adaptive stabilized algorithm, the evaluation with two
processing capabilities (CPU-only platform vs. CPU-GPU platform), it can be
observed that the CPU-GPU platform selects the maximum performance super-
resolution model (i.e., 20 hidden layers in Table 1) 4.36 times more than the CPU-

Figure 5.

Super-vesolution computation vesults. Note that the model for low-vesolution is bicubic which has no hidden
layers. (a) Image #1 (low-resolution), (b) image #1 (high-vesolution), (c) image #2 (low-vesolution), (d)
image #2 (high-vesolution), (e) image #3 (low-vesolution) and (f) image #3 (high-vesolution).

10

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms
DOI: http://dx.doi.org/10.5772/intechopen.92971

only platform. It means that the proposed algorithm is self-adaptive depending on
the hardware/platform requirements. This is obviously beneficial in terms of system
engineers because they do not need to conduct trial-and-error-based system
parameter tuning anymore.

In order to confirm the performance of super-resolution models, Figure 5 shows
the super-resolution computation results with real-world images. As can be seen in
the figures, the super-resolution models show better performances if they have
more hidden layers, as shown in Figure 5b, Figure 5d, and Figure 5f. For the super-
resolution computation without hidden layers, this paper uses bicubic interpolation,
as shown in Figure 5a, Figure 5c, and Figure 5e. Finally, these results show that our
considering Lyapunov control algorithms for adaptive deep learning platforms can
make different super-resolution performance depending on queue-backlog size
information.

4. Emerging applications

As presented, the Lyapunov optimization framework is for time-average utility
maximization while achieving queue stability; and this theory is scalable; thus it is
widely applicable [2]. Therefore, there exist many applications based on this algo-
rithm as follows.

4.1 Adaptive video streaming

Kim et al. [3, 5] design a dynamic control algorithm for time-average streaming
quality (i.e., peak-signal-to-noise ratio (PSNR)) maximization subject to transmit
buffer stability in wireless video networks. Koo et al. [6, 7] also propose a novel
dynamic adaptive streaming over HTTP (DASH)-based mechanism for video
streaming quality maximization under the consideration of battery status, LTE data
quota, and stability in hybrid LTE and WiFi networks.

4.2 Networks

Neely et al. [8] proposed a novel dynamic multi-hop routing algorithm which is
for energy-efficient data/packet forwarding in wireless ad hoc and sensor networks
subject to queue stability.

4.3 Security applications: surveillance monitoring

Mo et al. [9] design a deep learning framework for CCTV-based distributed
surveillance applications. In the system, multiple deep learning frameworks exist;
and each deep learning model is with its own configurations. In this situation, there
exists a tradeoff between complexity and performance. Therefore, the proposed
CCTV-based surveillance algorithm adaptively selects a deep learning model
depending on queue-backlog in the system for recognition performance maximiza-
tion subject to CCTV queue stability. Kim et al. [10] also design a novel face
identification deep learning frameworks for CCTV-based surveillance platforms.
Instead of having multiple deep learning models, this system has one learning
system (based on OpenFace open-source software library) and controls the sam-
pling rates of the CCTV camera. Finally, the proposed decision-making algorithm
dynamically selects CCTV sampling rates for recognition performance maximiza-
tion subject to CCTV queue stability.

11

Advances and Applications in Deep Learning

4.4 Others

The application of Lyapunov optimization-based dynamic control algorithm for
dynamic reinforcement learning policy design is illustrated in [11]. In addition, the
adaptive control algorithms using the Lyapunov optimization framework in stock
market pricing and smart grid are introduced in [12, 13].
5. Conclusions

This chapter introduces a dynamic control decision-making algorithm, inspired
by Lyapunov optimization theory under the situation where the tradeoff between
utility/performance and delays exists. Thus, the dynamic decision-making
algorithms aim at time-average utility maximization (or penalty minimization) in
real-time deep learning platforms. As discussed, the Lyapunov optimization-based
algorithms are scalable, hardware/system-independent, self-configurable, and low-
complexity. Thus, it can be used in various emerging applications such as video
streaming, wireless networks, security applications, and smart grid applications.
Acknowledgements

This work is supported by the National Research Foundation of Korea
(2019R1A2C4070663, 2019M3E4A1080391). J. Kim is a corresponding author
(e-mail: joongheon@korea.ac.kr).

Conflict of interest

The authors declare no conflict of interest.

Author details

Soohyun Park’, Dohyun Kim? and Joongheon Kim™

1 Korea University, Seoul, Republic of Korea

2 Naver Webtoon Corporation, Seongnam, Republic of Korea

*Address all correspondence to: joongheon@korea.ac.kr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

12

Dynamic Decision-Making for Stabilized Deep Learning Software Platforms

DOI: http://dx.doi.org/10.5772/intechopen.92971

References

[1] Kim D, Kwon], Kim J. Low-
complexity online model selection with
Lyapunov control for reward
maximization in stabilized real-time
deep learning platforms. In: Proceedings
of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC
‘18); 7-10 October, 2018; Miyazaki,
Japan: IEEE; 2018. pp. 4363-4368

[2] Neely M. Stochastic Network
Optimization with Application to
Communication and Queueing Systems.
Vermont, USA: Morgan & Claypool;
2010

[3] Kim], Caire G, Molisch A. Quality-
aware streaming and scheduling for
device-to-device video delivery. IEEE/
ACM Transactions on Networking.
2016;24:2319-2331. DOI: 10.1109/
TNET.2015.2452272

[4] Choi M, Kim], Moon J. Adaptive
detector selection for queue-stable word
error rate minimization in connected
vehicle receiver design. IEEE
Transactions on Vehicular Technology.
2018;67:3635-3639. DOI: 10.1109/
TVT.2017.2776327

[5] Kim J, Meng F, Chen P, Egilmez H,
Bethanabhotla D, Molisch A, et al. Demo:
Adaptive video streaming for device-to-
device mobile platforms. In: Proceedings
of the ACM International Conference on
Mobile Computing and Networking
(MobiCom ‘13), 30 September—4 October,
2013; Miami, FL, USA: IEEE; 2013

[6] Koo], Yi], Kim], Hoque M, Choi S.
REQUEST: Seamless dynamic adaptive
streaming over HTTP for multi-homed
smartphone under resource constraints.
In: Proceedings of the ACM
International Conference on Multimedia
(MM €17), 23-27 October, 2017;
Mountain View, CA, USA: IEEE; 2017

[7]1 Koo], Yi], Kim], Hoque M, Choi S.
Seamless dynamic adaptive streaming in

13

LTE/Wi-fi integrated network under
smartphone resource constraints. IEEE
Transactions on Mobile Computing.
2019;18:1647-1660. DOI: 10.1109/
TMC.2018.2863234

[8] Neely M. Energy optimal control for
time varying wireless networks. IEEE
Transactions on Information Theory.
2006;52:2915-2934. DOI: 10.1109/
TIT.2006.876219

[9] Kim], Mo Y], Lee W, Nyang D.
Dynamic security-level maximization
for stabilized parallel deep learning
architectures in surveillance
applications. In: Proceedings of the IEEE
Symposium on Privacy-Aware
Computing (PAC ‘07); 1-3 August,
2017; Washington DC, USA: IEEE; 2017.
pp- 192-193

[10] Kim D, Kim], Bang J. A reliable, self-
adaptive face identification framework via
Lyapunov optimization. In: Proceedings of
ACM Symposium on Operating Systems
Principles (SOSP) Al Systems Workshop
(AlSys ‘17), 28 October, 2017; Shanghai,
China: ACM; 2017

[11] Neely M, Supittayapornpong S.
Dynamic Markov decision policies for
delay constrained wireless scheduling.
IEEE Transactions on Automatic
Control. 2013;58:1948-1961. DOI:
10.1109/TAC.2013.2256682

[12] Neely M. Stock market trading via
stochastic network optimization. In:
Proceedings of IEEE Conference on
Decision and Control (CDC ‘10), 15-17
December, 2010; Atlanta, GA, USA:
IEEE; 2010

[13] Neely M, Tehrani A, Dimakis A.
Efficient algorithms for renewable
energy allocation to delay tolerant
consumers. In: Proceedings of IEEE
International Conference on Smart Grid
Communication (SmartGridComm
‘10), 4-6 October, 2010; Gaithersburg,
MD, USA: IEEE; 2010

