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1. Introduction 

In the past, research in operations management focused on single-firm analysis. Its goal was 
to provide managers in practice with suitable tools to improve the performance of their firm 
by calculating optimal inventory quantities, among others. Nowadays, business decisions 
are dominated by the globalization of markets and increased competition among firms. 
Further, more and more products reach the customer through supply chains that are 
composed of independent firms. Following these trends, research in operations 
management has shifted its focus from single-firm analysis to multi-firm analysis, in 
particular to improving the efficiency and performance of supply chains under 
decentralized control. The main characteristics of such chains are that the firms in the chain 
are independent actors who try to optimize their individual objectives, and that the 
decisions taken by a firm do also affect the performance of the other parties in the supply 
chain. These interactions among firms’ decisions ask for alignment and coordination of 
actions. Therefore, game theory, the study of situations of cooperation or conflict among 
heterogenous actors, is very well suited to deal with these interactions. This has been 
recognized by researchers in the field, since there are an ever increasing number of papers 
that applies tools, methods and models from game theory to supply chain problems. 
The field of game theory may be divided roughly in two parts, namely non-cooperative 
game theory and cooperative game theory. Models in non-cooperative game theory assume 
that each player in the game (e.g. a firm in a supply chain) optimizes its own objective and 
does not care for the effect of its decisions on others. The focus is on finding optimal 
strategies for each player. Binding agreements among the players are not allowed. One of 
the main concerns when applying non-cooperative game theory to supply chains is whether 
some proposed coordination mechanism, or strategy, coordinates the supply chain, that is, 
maximizes the total joint profit of the firms in the supply chain. In contrast, cooperative 
game theory assumes that players can make binding agreements. Here the focus is on which 
coalition of players will form and which allocation of the joint worth will be used. One of the 
main questions when applying cooperative game theory to supply chains is whether 
cooperation is stable, that is, whether there exists an allocation of the joint profit among all 
the parties in the supply chain such that no group of them can do better on its own. Up to 
date, many researchers use non-cooperative game theory to analyse supply chain problems. 
Source: Supply Chain,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-22-6, pp. 558, February 2008, I-Tech Education and Publishing, Vienna, Austria
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This work surveys applications of cooperative game theory to supply chain management.  
The supply chains under consideration are so-called divergent distribution networks, which 
consist of a single supplier and a finite number of retailers. In particular, we focus on two 
important aspects of supply chain collaboration. First, we focus on inventory centralization, 
also called inventory pooling. 
Retailers may collaborate to benefit from the centralization of their inventories. Such 
collaboration may lead to reduced storage costs, larger ordering power, or lower risks, for 
example. Models from cooperative game theory may be used to find stable allocations of the 
joint costs. Such allocations are important to obtain and maintain the collaboration among 
the retailers. There is a steady stream of papers on this subject and these are reviewed here. 
Second, we consider retailer-supplier relationships. Besides collaboration among retailers only, 
a further gain in efficiency may be obtained by collaboration between the supplier and the 
retailers. Also here, the question is how to reduce the joint costs. Cooperative game theory 
may be used to find stable allocations of the joint costs. Although a natural field to research, 
these problems are hardly studied by means of cooperative game theory. We review the few 
papers in the literature and indicate possibilities for future research. 
We wish to point out that there are several other areas of cooperative games that lend 
themselves nicely to applications in supply chains, but that we do not review. One may 
think of bargaining models for negotiations among supply chain partners, network models 
to study multi-echelon supply chains, or coalition formation among supply chain partners, 
to name some themes. For bargaining models and coalition formation we refer to the review 
by Nagarajan & Sošić (2006), and for theoretical issues and a framework for more general 
supply chain networks we refer to Slikker & Van den Nouweland (2001). 
This work is organized as follows. In section 2 we introduce some basic concepts of 
cooperative game theory. This helps understand how the collaboration among several 
agents is modelled. With this understanding, some well known results from the literature on 
cooperative game theory are surveyed. Thereafter we review applications of cooperative 
game theory to inventory centralization (section 3). Section 4 reviews and discusses retailer-
supplier relationships. Finally, section 5 concludes and highlights areas for future research. 

2. Cooperative game theory 

Game theory provides tools, methods and models to investigate supply chain collaboration, 
coordination and competition. The game theory literature can roughly be divided into 
cooperative and non-cooperative game theory. There are some differences between analyses 
using non-cooperative game theory and those using cooperative game theory. When 
applying non-cooperative game theory, it is assumed that each player acts individually 
according to its objective, and usually the mechanisms to get it are investigated. One of the 
main points of concern is whether the proposed mechanism provides a solution that 
maximizes the total supply chain profit under Nash equilibrium. 
In contrast, cooperative game theory does not investigate the individual behaviour of the 
players explicitly and assume that once the players form a coalition, the coordination 
between them is achieved one way or another (i.e., either by making binding agreements 
and commitments or by a suitable coordination mechanism).  Although cooperative games 
abstract from the details of mechanism that lead to cooperation, they are very powerful to 
investigate the problem of allocation of worth in detail. Here, the main question is whether 
the cooperation is stable, i.e. there are stable allocations of the total worth or cost among the 
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players such that no group of them would like to leave the consortium. Cooperative game 
theory offers the concept of the core (Gillies, 1953) as a direct answer to that question. Non-
emptiness of the core means that there exists at least one stable allocation of the total worth 
such that no group of players has an incentive to leave. In this chapter, we concentrate 
ourselves mainly on the analysis of coordination induced by cooperation (collaboration). In 
this approach cooperative game theory will be instrumental. 
Roughly speaking, a transferable utility game (henceforth TU game) is a pair consisting of a 
finite set of players and a characteristic function, which measures the worth  (benefit or cost) 
of every coalition of players, i.e. subset of the finite initial set (grand coalition), through a 
real valued mapping.   The sub-game related to a particular coalition is the restriction of the 
mapping to the sub-coalitions of this coalition. A worth-sharing vector will be a real vector 
with as many components as the number of players in the game. The core of the TU game 
consists of those efficient  worth-sharing vectors which allocate the worth (cost) of the grand 
coalition in such a way that every other coalition receives at least (or pays at most) its worth, 
given by the characteristic function. In the following, worth-sharing vectors belonging to the 
core will be called core-allocations. A TU game has a non-empty core if and only if it is 
balanced (see Bondareva 1963 or Shapley 1967). It is a totally balanced game if the core of 
every subgame is non-empty. Totally balanced games were introduced by Shapley and 
Shubik in the study of market games (see Shapley & Shubik, 1969). 
A population monotonic allocation scheme (see Sprumont 1990), or pmas, for a TU game 
guarantees that once a coalition has decided upon an allocation of its worth, no player will 
ever be tempted to induce the formation of a smaller coalition by using his bargaining skills 
or by any others means. It is a collection of worth-sharing vectors for every sub-game 
satisfying efficiency property and requiring that the worth to every player increases (or 
decreases) as the coalition to which it belongs grows larger. Note that the set of worth-
sharing vectors that can be reached through a pmas can be seen as a refinement of the core. 
Every TU game with pmas is totally balanced. 
A game is said to be super-additive (or sub-additive) if it is always beneficial for two disjoint 
coalitions to cooperate and form a larger coalition. Balanced TU games might not be super-
additive (sub-additive), but they always satisfy super-additive (sub-additive) inequalities 
involving the grand coalition. However, totally balanced TU games are super-additive (sub-
additive). A well-known class of balanced and super-additive (sub-additive) games is the 
class of convex (concave) games. A TU game is said to be convex if the incentives for joining 
a coalition increase as the coalition grows, so that one might expect a “snowballing” effect 
when the game is played cooperatively (Shapley, 1971). 
Another class of balanced and super-additive (sub-additive) games is the class of 
permutationally convex (concave) games (Granot & Huberman, 1982). A game is 
permutationally convex (concave) if and only if there exists an ordering of the players for 
the grand coalition such that the game is permutationally convex (concave) with respect to 
this ordering. Granot & Huberman (1982) showed that every permutationally concave TU 
game is balanced. 
A worth allocation rule for TU games, is a map which assigns to every TU game a worth-
sharing vector. One example of such a worth allocation rule is the proportional rule. This 
proportional division mechanism allocates the worth of the grand coalition in a proportional 
way according to a fixed proportionality factor (e.g., the individual worth for each player). 
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3. Inventory centralization 

Generally speaking, shops or retailers trade various types of goods, and to keep their service 
to their customers at a high level they aim at meeting the demand for all goods on time. To 
attain this goal, retailers may keep inventories in a private warehouse. These inventories 
bring costs along with them. To keep these costs low, a good management of the inventories 
is needed. The management of inventory, or inventory management, started at the 
beginning of this century when manufacturing industries and engineering grew rapidly. To 
the best of our knowledge, a starting paper on mathematical models of inventory 
management was Harris (1913). Since then, many books on this subject have been published. 
For example, Hadley & Whitin (1963), Hax & Candea (1984), Tersine (1994), and Zipkin 
(2000). Most often, the objective of inventory management is to minimize the average cost 
per time unit (in the long run) incurred by the inventory system, while guaranteeing a pre-
specified minimal level of service. 
In this section, we review the literature and study the applications of cooperative game 
theory to inventory centralization in supply chains. The supply chains that we focus on 
along this work are divergent distribution networks that consist of a supplier and a finite 
number of retailers. The main motivation behind using a cooperative game is that it allows 
us to establish a framework to examine the effect of coordinated ordering/holding by the 
retailers, which generates some joint worth (benefit or cost), using cooperative game theory 
solutions across several structurally different inventory centralization models. The main 
focus of concern is how to allocate the worth among the retailers. In doing so, we try to find 
stable allocations of worth, which is important for the existence and stability of the 
cooperation. 
In this study, we primarily focus on coordination in continuous review inventory situations. 
In this framework, the class of inventory games arises when considering the possibility of 
joint ordering, and holding, in n-person Economic Order Quantity (or Economic Production 
Quantity) inventory situations in order to reduce the total inventory costs.  The underlying 
Operation Research problems are the well-known EOQ (EPQ) situations, which were 
already introduced by Harris (1915). In these continuous time models with infinite horizon 
it is assumed that a single retailer faces a constant demand rate with the objective of 
minimizing its inventory costs.  
A natural extension of this model is to consider now coordination in the classical Wagner-
Whitin problem (see Wagner & Whitin 1958). It can be seen as a periodic version of the 
above model with finite horizon and time varying demand. Here new types of production/ 
inventory games arise when a collection of retailers tries to minimize their total inventory 
costs by joint ordering/holding. All of them make up the class of dynamic inventory games.  
Finally, we pay attention to coordination in a multiple newsvendor setting. The newsvendor 
model is first introduced by Arrow et al. (1951) and it was originated by the story of a 
newsboy who faces random demand and has to decide everyday how many newspapers to 
buy to maximize his expected profit. The newsvendor models are often used to support 
decision making in several situations with highly perishable products or products with 
short life cycle. The focus of this study is the inventory centralization in newsvendor 
environments. Newsvendor games arise when a finite number of stores (newsvendors) 
respond to a periodic random demand (of newspapers) by ordering jointly at the start of 
every period. Their main objective is to minimize the resulting expected cost. 
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This section is organized as follows. We first provide an overview of inventory games in 
subsection 3.1. Thereafter the class of dynamic inventory games arises as a natural extension 
of the former (subsection 3.2). Finally, newsvendor games are analyzed and surveyed in 
subsection 3.3. 

3.1 Inventory games  

Inventory situations, introduced in Meca et al. (2004), study how a collective of retailers can 
reduce its joint inventory costs by means of cooperative behaviour. Depending on the 
information revealed by each individual retailer, the authors analyze two related 
cooperative games: inventory cost games and holding cost games.  For both classes of 
games, they focus on proportional division mechanisms to share the joint cost. 
In an inventory cost game, a group of retailers dealing with the ordering and holding of a 
certain commodity (every individual agent's problem being an EOQ problem), decide to 
cooperate and jointly make their orders. To coordinate the ordering policy of the retailers, 
some revelation of information is needed: the amount of revealed information between the 
retailers is kept as low as possible since they may be competitors on the consumer market. 
However, in a holding cost game coordination with regard to holding cost is considered. In 
this case full disclosure of information is needed. These kinds of cooperation are not 
unusual in the economic world: for instance, pharmacies usually form groups that order and 
share storage space. Meca et al. (2004) introduce and characterize the SOC-rule (Share the 
Ordering Costs) as a core-allocation for inventory cost games, and Meca et al. (2003) revisit 
inventory cost games and the SOC-rule. There it is shown that the wider class of n-person 
EPQ inventory situations with shortages leads to exactly the same class of cost games. 
Moreover, an alternative characterization of the SOC-rule is provided there. Mosquera et al. 
(2007) introduce the property of immunity to coalition manipulation and demonstrate that 
the SOC-rule is the unique solution for inventory cost games that satisfies this property. In 
addition, Meca et al. (2004) shows that holding cost games are permutationally concave. 
Moreover, the demand proportional rule leads to a core-allocation of the corresponding 
game that can even be sustained as a pmas. 
Later, Meca (2007) completes the study of holding cost games. A more general class of 
inventory games, inspired by the aforementioned ones, is presented in that paper, namely 
the so-called generalized holding cost games. It is shown that generalized holding cost 
games and all their subgames are permutationally concave; hence generalized holding cost 
games are totally balanced.  Thereafter the author focuses on the study of a core-allocation 
family which is called N-rational solution family. It is shown that a particular relation of 
inclusion exists between the above family and the core. Finally a new proportional rule 
called minimum square proportional rule is studied, which is an N-rational solution.  
On the other hand, Toledo (2002) analyzes the class of inventory games that arises from 
inventory problems with special sale prices. A collective of retailers trying to minimize its 
joint inventory cost by means of cooperation may receive a special discount on set-up cost 
just in ordering. Reasons for such a price reduction range from competitive price wars to 
attempted inventory reduction by the supplier. Each retailer has its own set-up cost which is 
invariant to the order size. Meca et al. (2007) assume that when an order is being placed, it is 
revealed that the supplier makes a special offer for the next order. Notice that the above 
condition makes sense from an economic point of view since if one retailer is a very good 
client then the supplier himself would benefit by giving the client preferential treatment. 
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Cooperation among retailers is given by sharing the order process and warehouse facilities: 
retailers in a coalition make their orders jointly and store their inventory in the cheapest 
warehouse. This cooperative situation generates the class of inventory games with non 
discriminatory temporary discounts. This new class of games motivates the study of a more 
general class of TU games, namely p-additive games. It contains the class of inventory 
games with non discriminatory temporary discounts as well as the class of inventory cost 
games (Meca et al. 2003). Meca et al. (2007) shows that p-additive games are totally 
balanced.  They also focus on studying the character concave or convex and monotone of p-
additive games. In addition, the modified SOC-rule is proposed as a solution for p-additive 
games. This solution is suitable for p-additive games since it is a core-allocation, which can 
be reached through a pmas. Moreover, two characterizations of the modified SOC-rule are 
provided. 
Tijs et al. (2005) study a situation where one agent has an amount of storage space available 
and the other agents have some goods, part of which can be stored generating benefits. The 
problem of sharing the benefits produced by full cooperation between agents is tackled in 
this paper, by introducing a related cooperative game. This game turns out to be a big boss 
game with interesting theoretical properties. A solution concept, relying on optimal storage 
plans and associated holding prices, is also introduced, and its relationship with the core of 
the above holding game is explored in detail. The family of monotonic decreasing bijective 
mappings, defined on the set of non-negative real numbers, plays an important role in their 
approach. 
An interesting addition to Inventory Games (as its authors claim) is the paper Hartman & 
Dror (2007). Its point of departure is the inventory cost game described in Meca et al. (2004).  
The former paper examines a collaborative procurement for the EOQ model with multiple 
items (items are considered as good types or types of commodities). The authors consider an 
inventory model with joint ordering in which the cost of ordering an item has two separable 
components- a fixed cost independent of the item type, and an item specific cost. They 
address two questions: what items should be ordered together, and how to share the 
ordering costs among the different items. Then they prove that consolidation of all the items 
is cheaper if there are fair cost allocations (the core of the game is non-empty). It happens 
when the portion of the ordering cost common to all items is not too small. They further 
show how sensitive the non-empty core is to adjustments in the cost parameters. 
Finally, another appealing contribution to Inventory Games is the joint replenishment 
games with a submodular joint setup cost function proposed by Zhang (2007).  The author 
shows that this game is balanced. He also shows that a special case of this game is concave, 
which generalizes one of the main results of Anily & Haviv (2006).  

3.2 Dynamic inventory games 

As mentioned before, one of the main objectives of the retailers is cost reduction. In order to 
achieve this goal, groups of retailers tend to form coalitions to decrease operation costs by 
making dynamic decisions throughout a finite planning horizon. In tactical planning of 
enterprises that produce indivisible goods, operation costs mainly consist of production, 
inventory-holding, and backlogging costs. These coalitions should induce individual and 
collective cost reductions; thus, stability is achieved in the process of enterprise cooperation. 
In our framework a coalition allows each of its members to have access to the technologies 
owned by the other members of the coalition. Thus, members of a coalition can use the 
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lowest-cost technology of the retailers in the coalition. Planning is done throughout a finite 
time horizon; at the beginning of each period, the costs to the members of a coalition, which 
depend on the best technology at that point, may change. 
The model that represents such a situation is the dynamic, discrete, finite planning horizon 
production-inventory problem with backlogging. The objective of any group of retailers is to 
satisfy the demand for indivisible goods in each period at a minimum cost. This is a well-
known combinatorial optimization problem for which the algorithm by Wagner & Whitin 
provides optimal solutions by dynamic programming techniques. The optimal solutions of 
this problem lead to the best production-inventory policy for the group of retailers. These 
policies generate an optimal operation cost for the entire group. The question is what 
portion of this cost is to be supported by each retailer. Cooperative game theory provides 
the natural tools for answering this question. 
The study of cooperative combinatorial optimization games, which are defined through 
characteristic functions given as optimal values of combinatorial optimization problems, is a 
fruitful topic (see for instance Shapley & Shubik, 1972, Dubey & Shapley, 1984, Granot, 1986, 
Tamir, 1992, Deng et al. 1999 and 2000, and Faigle & Kern, 2000). There are characterizations 
of the total balancedness of several classes of these games. Inventory games and 
combinatorial optimization games are, up to date, disjoint classes of games. While in the 
former class there is always an explicit form for the characteristic function of each game, the 
characteristic function of the games in the latter class it is defined implicitly as the optimal 
value of an optimization problem in integer variables. 
Guardiola et al. (2007a) introduce a class of production-inventory games that combines the 
characteristics of inventory and combinatorial optimization games: this class models 
cooperation on production and storage of indivisible goods and its characteristic function is 
defined implicitly as the optimal value of a combinatorial optimization problem. It turns out 
to be a new class of totally balanced combinatorial optimization games. 
Further, the authors consider a group of agents, each one facing a PI-problem, that decide to 
cooperate to reduce costs, and then a production-inventory situation (henceforth, PI-
situation) arises. Then, for each PI-situation, the corresponding cooperative game structure, 
namely production-inventory game (henceforth, PI-game), is defined. The main results are 
total balancedness and an explicit form for the characteristic function. The study of PI-games 
is completed by showing that the Owen set of a PI-situation (the set of allocations that are 
achievable through dual solutions, see Owen 1975 and Gellekom et al. 2000) shrinks to a 
singleton: the Owen point. This fact motivates the name Owen point rather than Owen set 
within this class of games. Guardiola et al. (2007a) propose the Owen point as a core-
allocation for a PI-game which is easy to calculate and satisfies good properties. Its explicit 
form is also provided, and moreover, it is proved that the Owen point can be reached 
through a pmas. Hence, every PI-game is a non-negative cost game allowing for pmases 
(henceforth, PMAS-game). In addition, a necessary and sufficient condition for the core of a 
PI-game to be a singleton: the Owen point is presented. Finally, the authors point out the 
relationship of the Owen point with some well-known worth allocation rules in cooperative 
game theory. 
Later, Guardiola et al. (2007b) prove that the class of PI-games coincides with the class of 
PMAS-games, and they provide an interesting relationship between PI-games and concave 
games. In addition, they present three different axiomatic characterizations of the Owen 
point. To achieve the two first characterizations they have kept in mind the work by 
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Gellekom et al. (2000) in which the Owen set of linear production games is characterized. 
The third one, which is based on a population monotonic property, is very natural due to 
the fact that the class of PI-games coincides with the class of non-negative cost games with a 
pmas. 
The study of coordination in periodic review inventory situations is completed by Guardiola 
et al. (2006). They consider systems composed by several retailers where each of them has 
four types of costs: ordering, purchasing, inventory holding and backlogging costs. It is 
assumed that each single component in the system is the backlogging extension of the well-
known Wagner & Whitin model, which Zangwill (1969) solved by dynamic programming 
techniques. In their approach coordination means that retailers share their holding 
technologies and ordering channels. Therefore, when a coalition of retailers is to form (joint 
venture) each retailer works with the best holding technology and ordering channels among 
the members of the coalition. This means that the members of that coalition purchase, hold 
inventory, pay backlogged demand and make orders at the minimum cost of the coalition 
members. Cooperation in holding and purchasing is usual and has appeared already in 
literature. Their mode of cooperation in backlogging is also standard although new: once a 
coalition is formed, all its members pay compensation to customers for delayed delivering 
(backlogging cost) of their demands according to the cheapest cost among the members in 
the coalition. In some regard, larger coalitions are stronger and can "squeeze" their clients a 
bit more. It is obvious that the above coordination process induces savings and therefore, 
studying the problem of how to allocate the overall saving among the retailers is a 
meaningful problem. Once again this allocation problem can be modelled by a transferable 
utility cooperative game. In this game the characteristic value of each coalition of retailers is 
obtained solving the combinatorial optimization problem that results from Zangwill's model 
induced by the members of the coalition. 
Closer to Guardiola et al. (2006, 2007a) are papers that focus on cooperation in periodic 
review inventory situations by means of cooperative game theory. One of the papers to do 
so is Van den Heuvel et al. (2007), which studies coordination in economic lot sizing 
situations (henceforth, ELS-situations). In that finite horizon model, players should satisfy 
the demand in each period by producing in that period or carrying inventory from previous 
periods; backlogging is not allowed. The main difference between that model and the one 
given by Guardiola et al. (2007a) is that the former considers setup costs but assumes that 
costs are the same for all players in every period. Therefore, ELS- and PI-situations are 
pairwise distinct, in general. The main result in Van den Heuvel et al. (2007) is that ELS-
games (games induced by ELS-situations) have a nonempty core. In another paper, Chen & 
Zhang (2007a) propose an integer programming formulation for the concave minimization 
problem that results from an ELS-situation and show that its linear programming (LP) 
relaxation admits zero integral gaps, which makes it possible to analyze the game by using 
LP duality. Here the dual variables are interpreted as the price of the demand per unit. 
Guardiola et al. (2006) study a new model of coordination in inventory problems where a 
group of retailers place periodical orders of indivisible goods considering setup, purchasing, 
holding and backlogging costs. It leads to a new class of totally balanced combinatorial 
optimization games called setup-inventory games (henceforth, SI-games). SI-games extend 
PI-games since the latter do not include setup costs. Notice that if setup cost were zero in all 
periods, then a PI-situation would arise. SI-games also extend ELS-games since all costs 
considered can be different for several players in every period and backorders are allowed. 
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However, ELS-games with concave ordering cost function (see Chen & Zhang, 2007a) do not 
extend SI-games since, as the former consider a more general ordering cost function, the 
latter assume that all costs can be different. 
All of these characteristics make the model in this paper richer than the previous ones 
although it is harder to analyze. Guardiola et al. (2006) prove that cooperation in periodic 
review inventory situations is always stable, i.e. every SI-game has a nonempty core. In 
addition, they introduce a new family of cost allocations on the class of SI-games: the 
parametric extended Owen points. It is proven that, under certain conditions, a particular 
core-allocation can be found (within the parametric family of extended Owen points) for the 
corresponding SI-game. This point also introduces an important difference with Van den 
Heuvel et al. (2007), and Chen & Zhang (2007a), who show that ELS-games have a 
nonempty core, but do not provide any core-allocation.  

3.3 Newsvendor games 

In a newsvendor setting, the retailers might benefit from cooperation through coordinated 
ordering and inventory centralization. The cooperation here can be described as follows: the 
retailers place joint orders for goods to satisfy the total demand they are faced with. In this 
way, they could get some benefit from coordination of the others and perfect allocation of 
the ordered amount to the demands realize. 
There are several papers that focus on cooperation in inventory centralization in 
newsvendor settings. One of the pioneers to do so is Eppen (1979), which studies the effects 
of centralization for inventory models with random demand for each store. He assumes 
identical storage and penalty costs for each store and in the centralized location, and shows 
that in this case savings always occur. However, for general demand distributions and store 
specific holding and penalty costs there might not be any savings from centralization. 
Conditions on demand distributions are discussed in Chen & Lin (1989) and on holding and 
penalty costs in Hartman & Dror (2005).    
Gerchak & Gupta (1991) investigate a newsvendor game in which each retailer is a 
newsvendor with identical cost structures and the transportation cost associated with re-
allocating inventory after observing the demand is ignored. Hartman et al. (2000) study 
models with identical newsvendors, focusing especially on the core of newsvendor games. 
They prove the non-emptiness of the core of these games under some restrictive 
assumptions on demand distributions: symmetric and joint multivariate normal 
distribution. Müller et al. (2002) and Slikker et al. (2001) independently develop a more 
general result, showing that newsvendor games have a non-empty core regardless of the 
demand distribution. Müller et al. (2002) also provide conditions under which the core is a 
singleton. The above non-emptiness result is still valid even when there are infinitely many 
retailers, as proved by Montrucchio & Scarsini (2007). Slikker et al. (2005) enrich the finite 
model by allowing the retailers to use transhipment (at a positive cost) after demand 
realization is known. The authors show that newsvendor games with transhipments have a 
non-empty core even if the retailers have different retail and wholesale prices. Moreover, 
newsvendor games are not convex in general. Ozen et al (2005) study the convexity of 
newsvendor games under special assumptions about the demand distributions. Their 
analysis focus on the class of newsvendor games with independent symmetric unimodal 
demand distributions. Several interesting subclasses, which only contain convex games, are 
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identified. Additionally, the authors illustrate that these results cannot be extended to all 
games in this class.  
In several papers, Hartman and Dror analyze cooperation through inventory centralization 
in a newsvendor setting. Hartman & Dror (2003) study the cost game among the retailers 
with normally distributed and correlated individual demands. Hartman & Dror (2005) 
analyze a model of inventory centralization for a finite number of retailers facing random 
correlated demands. They consider two different games: one based on expected costs 
(benefits), and the other based on demand realizations. The authors show that, for the first 
game, the core is non empty when holding and shortage costs are identical for all coalitions 
of retailers, and demand is normally distributed.  However, the core might be empty when 
the retailers’ holding and penalty costs differ; they derive conditions under which such a 
game will be subadditive. For the second game, the core can be empty even when the 
retailers are identical. 
There are other papers which examine the existence of stable profit allocations among 
cooperative retailers by means of the so called stochastic cooperative decision situations (see 
Ozen, 2007). Ozen et al (2006) analyze the stability of cooperation among several outlets who 
come together to benefit from inventory centralization. The authors focus on newsvendor 
situations with delivery restrictions. In these situations, the retailers dispose some 
restrictions on the number of items that should be delivered to them if they join a coalition 
to benefit from joint ordering.  They show that the associated cooperative game has a non-
empty core. Afterwards, they concentrate on a dynamic situation where the retailers change 
their delivery restrictions. They then investigate how the profit allocation might be affected 
by these changes. Another example of newsvendor situations is considered in Ozen et al 
(2007). They study newsvendor situations with multiple warehouses, where the retailers can 
cooperate to benefit from inventory pooling. The warehouses offer alternative ways of 
supplying the goods to the retailers, which might become more useful when the retailers 
form coalitions. The authors study the corresponding cooperative game and they prove that 
the core of these games is nonempty.  In the previous papers, the cooperation among 
retailers through the coordination of their orders and allocation of these orders after 
demand realization has been considered. Sometimes, however, it may not be possible to 
allocate the orders after exact demand realizations. In such situations, the retailers can only 
satisfy their customers from the stock at their local facilities. However, if the retailers could 
obtain better information about future demand while their orders are on the way, they 
would still be able to benefit from inventory centralization by reallocating their orders when 
they arrive at the facility where the reallocation can take place after demand information 
update (e.g., port, warehouse, etc.). Ozen & Sosic (2006) consider newsvendor situations 
with updated demand distribution. They investigate the associated cooperatives games 
between the retailers and show that such games are balanced. 
A very recent paper by Chen & Zhang (2007b) presents a unified approach to analyze the 
newsvendor games using the duality theory of stochastic programming developed by 
Rockafellar & Wets (1976). The optimizations problems corresponding to the newsvendor 
games are formulated as stochastic programs. The authors observe that the strong duality of 
stochastic linear programming not only directly leads to the non-emptiness of the cores of 
such games, but also suggests a way to find a core-allocation. The proposed approach is also 
applied to newsvendor games with concave ordering cost. Additionally, they prove that it is 
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NP-hard to determine whether a given allocation is in the core of the newsvendor games 
even in a very simple setting.  
The newsvendor inventory centralization problem examined in the literature is geared 
mainly to the expected value cost analysis. However, minimizing expected centralized 
inventory cost might not be a very convincing argument for centralization. A build-in cost 
allocation mechanism should provide additional incentives for cooperation. That is, in each 
time period the stores reflect on the actual performance of the system in relation to the 
anticipated long-run expected performance. The analysis of an on-line system cost 
allocation(s) performance versus the performance in expectation is the main topic of Dror, et 
al (2007). They examine a related inventory centralization game based on demand 
realizations that has, in general, an empty core even with identical penalty and holding costs 
(Hartman & Dror, 2005). They then propose a repeated cost allocation scheme for dynamic 
realization games based on allocation processes introduced by Lehrer (2002). It is proven 
that the cost sub-sequences of the dynamic realization game process, based on Lehrer's 
rules, converge almost surely to either a least square value or the core of the expected game. 
To complete this study, they extend the above results to more general dynamic cost games 
and relax the independence hypothesis of the sequence of players' demands at different 
stages. 

4. Retailer-supplier relationships 

The previous section discussed cooperation among retailers only, or in other words, 
horizontal cooperation within a supply chain. This type of cooperation is concerned with 
collaboration among parties in a chain that are on the same level and perform similar tasks. 
This section concentrates on vertical cooperation, that is, collaboration among parties in a 
chain that are on adjacent levels, like a supplier and retailer. Hence, these parties perform 
different tasks, which ask for another type of cooperation than in case of horizontal 
cooperation. Important aspects of cooperation include the coordination of actions to 
maximize joint profits. 
Vertical cooperation within a supply chain may take different forms ranging from the 
coordination of actions to a full merger of the parties involved. In the first case, coordination 
of actions, the parties remain economically independent and act under decentralized 
control, that is, each party takes its own decision. Nevertheless, the coordination that the 
parties agreed upon makes sure that each of them improves upon its profits. Because of 
decentralized control and the conflicts of interests, these situations are often studied with 
non-cooperative game theory. We refer the reader to Cachon & Netessine (2004) for a review 
on this area of research. A merger of parties is another extreme with regard to vertical 
cooperation. In this case, all parties give up their independence and will be under 
centralized control. The new merger decides upon actions for all (former) parties. Such a 
merger will only be formed if there is a win-win situation for all of the parties. 
In all cases, parties or firms in a chain are only willing to cooperate if none of them can do 
better otherwise. A natural tool to study this is cooperative game theory. In particular TU-
games are useful to decide whether cooperation is stable and how to maintain it by means of 
some allocation of the joint profits among the parties involved. It is surprising to learn that 
only a few papers study vertical cooperation in a supply chain by means of cooperative 
game theory, and by TU-games in particular. Therefore, we believe that it is a new and 
exciting area of research on supply chains. 
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Within cooperative game theory, bargaining games are the most popular tools to study 
cooperation among supply chain partners. There are two recent reviews that pay attention 
to bargaining models. Sarmah et al. (2006) provide a review on supplier-retailer models in 
supply chain management. The authors focus on coordination models in supply chain 
management that use quantity discounts as a coordination tool in a deterministic 
environment. The only cooperative coordination models mentioned are the cooperative 
bargaining games. All other coordination models are studied with non-cooperative game 
theory. Another review by Nagarajan & Sošić (2006) also considers cooperation among 
supply chain partners. They focus on two important aspects of cooperative games, namely 
on profit allocation and stability. First, attention is payed to bargaining games for profit 
allocation. Thereafter, coalition formation among parties in a supply chain is surveyed. 
As far as we are aware, the only paper that uses TU-games to study vertical cooperation in a 
supply chain is Guardiola, Meca and Timmer (2007). In this paper, distribution supply 
chains with one supplier and multiple retailers under decentralized control are studied. 
Cooperative TU-games are used to study the stability and the gains of cooperation. 
Cooperating retailers may gain from quantity discounts, while a supplier-retailer 
cooperation results in reduced costs. The authors show that the corresponding TU-games 
are balanced, that is, cooperation is stable. They also propose a specific allocation of the joint 
profit that always belongs to the core of the game. This does not hold for the Shapley value, 
a well-known solution for TU-games. Another property of the proposed allocation is that 
properly valuates the supplier since it is indispensable to obtain a maximal gain in profits. 

5. Conclusion and future research 

In this chaper, we have reviewed and surveyed the literature on supply chain collaboration. 
As mentioned above, the game theory models that include cooperative behaviour among 
retailers seem to be a natural framework to model cooperation (collaboration) in supply 
chains that consist of a supplier and a finite number of retailers. Various researchers in this 
area have already adopted several cooperative models dealing with supply chain 
coordination, and it is expected to see many more in the near future since, as you may 
notice, this is a rather new area of research in supply chain management. 
One level of supply chain collaboration is the inventory centralization. The main focus of 
concern here is to examine the effects of horizontal cooperation (cooperation among the 
retailers only). The first step is to study cooperation in continuous review inventory 
situations through out the class of inventory games. We can conclude that any collective of 
retailers can reduce its joint inventory costs by means of cooperative behaviour. 
Additionally, they can always find stable (core-allocations) and consistent (sustained as 
pmases) allocation rules, which therefore encourages them not to form sub-coalitions during 
the cooperative process. This wide class of games arises when considering joint ordeing and 
holding in the basic inventory situations (EOQ and EPQ). Some nice additons to this 
umbrella of games are the holding games introduced by Tijs et al (2005), and the 
collaborative procurement for the EOQ model with multiple items proposed by Hartmand 
& Dror (2007). There are numerous oportunities to create new inventory centralization 
models that extend the ones already studied and can be included in the class of inventory 
games. We hope to see and, why not, do many more in the future. 
The second step is to consider the dynamic extension of inventory games. It is the periodic 
version of the above model with finite horizon and time varying demand. Several papers in 
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the field have analyzed cooperation in finite horizon periodic review inventory situations 
(see Guardiola et al. 2007a,b, Van Den Heuvel et al. 2007, and Chen & Zhang, 2007a). 
Nevertheless, those papers only consider partial aspects of the general problem. In 
Guardiola et al. (2006) a new model is introduced that incorporates all relevant costs and 
that, in some sense, includes the models in the above references as particular instances. In 
their model agents share ordering channels and holding and backlogging technologies so 
that the resulting coordination inventory model induces savings. These savings can be 
distributed among any group of agents in a stable way since the corresponding cooperative 
game is totally balanced. Moreover, for this class of games (SI-games), the authors define a 
parametric family of allocations that extends the rationale behind the Owen point (see 
Guardiola et al. 2007a,b) and identify an important subclass of SI-games where an extended 
Owen point can be attained by means of a pmas.  
In some respects Guardiola et al. (2006) unifies the treatment of coordination in periodic 
review inventory situations (all relevant costs are included). In addition, it proves that this 
type of coordination makes sense since induces savings that can be allocated without being 
blocked by any member of the group (the cooperative game induced by the model is totally 
balanced). This stability is rather appealing and invites to pursue new investigations that 
increase efficiency in coordinated models of inventory operation. Some of these additional 
topics for further research are: (1) investigating coordination in dynamic inventory 
situations with concave cost functions; and (2) exploring new models of periodic review 
inventory problems with shipping costs.  
The third step we centre our attention on presenting cooperation in multiple newsvendor 
settings. In such frameworks, newsvendor games arise and are studied. The main result here 
is that the retailers can always get some benefit from cooperation through coordinated 
ordering and inventory centralization. In addition, there always exist stable profit 
allocations among cooperative retailers. However, the problem of determining whether a 
given allocation is stable or not is sometimes an NP-hard optimization problem even in a 
very simple newsvendor setting. 
A different type of collaboration is vertical cooperation in supply chains. Most of the 
literature up-to-date studies a supplier-retailer with non-cooperative game theory. For a 
proper analysis of all cooperation possibilities, the application of cooperative game theory is 
necessary. This is a rather new area of research with a limited number of papers. Most of 
these use bargaining games to study negotiations and profit allocation between the supplier 
and the retailer. As far as we are aware, only Guardiola et al., (2007) use TU-games to study 
collaboration in a distribution chain with a single supplier and multiple retailers. This new 
area of research has lots to explore yet. TU-games can be used to analyse stability of 
collaboration within all sorts of supplier-retailer relationships. Further, aspects like nonzero 
leadtime, stochastic demand, and incomplete availability of information on costs should be 
included. Other interesting research includes situations in which the retailers provided by 
the supplier are competitors on the same market, or situations of collaboration within a 
supply chain that involves three or more levels, like a manufacturer, supplier and a retailer. 
Other than the ones already mentioned, some other ongoing and future research topics in 
supply chain collaboration are presented below. 
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5.1 Cooperation in multi-supplier supply chains with bounded demand 

In this section, we propose to exted the study of retailer-supplier relationships in supply 
chains with a finite number of suppliers and retailers, and random demands. The main 
focus of concern is to analyze the impact of such cooperation on the suppliers, retailers, and 
supplier-retailer interactions.  
The starting point is the paper Guardiola et al., (2007) that, as we already announced, 
studies the coordination of actions and the allocation of profit in supply chains under 
decentralized control in which a single supplier supplies several retailers with goods for 
replenishment of stocks. In our multi-supplier and bounded demand framework, the main 
goal of the suppliers and the retailers is also to maximize their individual profits. Since the 
outcome under decentralized control is inefficient, cooperation among firms by means of 
coordination of actions may improve the individual profits. Cooperation is studied by 
means of cooperative game theory. First, we examine whether or not the cooperative game 
corresponding to this multi-supplier and bounded demand situation is balanced. Then we 
will look for an (stable) allocation rule that satisfies good properties for these games. 

5.2 Cooperation in assembly systems: the role of knowledge sharing 

In this section, we analyze a production system similar to that of Toyota. Based on this 
model, we investigate the costs, benefits, and challenges associated with establishing a 
Knowledge Sharing Network (see Dyer & Hatch 2004). 
We consider an assembly system with one assembler (for example, Toyota) purchasing 
components from several suppliers. Demand is deterministic and each supplier faces 
holding and fixed ordering costs (i.e., a stationary model, not necessarily time-dependent). 
For a given set of costs and demand rates, there is no exact solution, but one can construct a 
solution that is very close to optimal (see Zipkin, 2000). This model has some similarities 
both with Guardiola et al. (2007a) and Meca et al. (2004).  
We model process improvement by considering reductions in the fixed costs. In a 
knowledge sharing network, suppliers are placed in groups to share knowledge about best 
practices. In our setting, suppliers within each group achieve, through knowledge transfer, a 
fixed cost equal to that of the supplier with the lowest fixed cost in the group. This idea is 
similar to that proposed in Guardiola et al. (2007a), in which all firms incur the fixed cost of 
the most efficient company. 
We model knowledge transfer through a cooperative game and focus on reductions in fixed 
costs. In this setting, we explore the feasibility of knowledge sharing, by investigating the 
existence of payment transfers that make all firms better off with cooperation (i.e., the core 
of the corresponding game is non-empty). In addition, if the core is non-empty, we study 
properties of the core and compute core-allocations. 
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