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Chapter

Wideband Wearable Antennas for
5G, IoT, and Medical Applications
Albert Sabban

Abstract

Wearable compact antennas are a major part of every wearable 5G
communication system, IoT, and biomedical systems. Several types of printed
antennas are employed as wearable antennas. Printed dipole, microstrip antennas,
printed loops, slot antennas, and PIFA antennas are employed as wearable antennas.
Compact efficient antennas significantly affect the electrical performance of
wearable communication systems. In several communication and medical systems,
the polarization of the received signal is not known. The polarization of the received
signal may be vertical, horizontal, or circular polarized. In these systems, it is crucial
to use dual-polarized receiving antennas. The antennas presented in this chapter
may be linearly or dually polarized. Design trade-offs, simulation results, and
measured results on human body of small wideband printed antennas with high
efficiency are presented in this chapter. For example, the low-volume dually
polarized antenna dimensions are 50 � 50 � 0.5 mm. The antenna beamwidth is
around 100°. The antennas gain is around 0–4 dBi. Metamaterial technology is used
to improve the electrical performance of wearable antennas. The proposed antennas
may be used in wearable wireless communication and medical RF systems. The
antennas’ electrical performance on human body is presented in this chapter.

Keywords: wearable antennas, 5G communication system, IoT, biomedical
systems, metamaterial technology, metamaterial antennas, microstrip antennas

1. Introduction

Microstrip antennas are widely used in communication system and seekers.
Microstrip antennas possess attractive features that are crucial to 5G communica-
tion, IoT, and medical systems. These antennas are compact, flexible, lightweight,
and relatively cheap. In addition, we can integrate the RF modules with the anten-
nas on the same substrate. Printed antennas have been widely presented in the
literature in the last 20 years [1–9]. Electromagnetic fields’ transmission losses of
human tissues have been investigated in the papers [10, 11]. However, the effect of
human body on the impedance and efficiency of wearable antennas was not always
presented [12, 13]. Printed wearable antennas have been presented in the last 10
years [1–20]. A review of wearable antennas designed and developed for several
applications at different frequencies over the last 10 years is listed [15]. Wearable
meander line antennas are presented in [12]. These antennas function in the fre-
quency range between 750 and 2600 MHz. A textile antenna performance near
human body is presented at 2.4 GHz, see [13]. The effect of human body on
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portable RF antennas is studied in [16]. In this chapter, the authors determine that
the antennas’ length in free space is larger by 10–20% from the length of wearable
antennas. Measurement of the antenna gain in this paper shows that a wide dipole
(1.16 � 0.1 m) has �13 dBi gain. Wearable antennas for cellular applications are
presented in [12–16]. Electrical specifications of medical devices are different from
the electrical specifications for cellular devices. Medical wearable sensors are
presented in [21–48]. Wearable devices support the development of personal med-
ical sensors and systems with real-time response to help improve patient’s health.
Wearable medical sensors and devices can measure the sweat rate, body tempera-
ture, heartbeat, and blood pressure, perform gait analysis, and measure other body
health parameters of the patient wearing these sensors, see Refs. [21–49]. In this
chapter, novel wideband compact wearable antennas for 5G communication and
medical systems are presented. Numerical results in free space and near the human
body are presented.

2. Printed wearable antennas for 5G and medical applications

Wearable antennas should be compact, have lightweight, are low cost, and are
flexible. Microstrip antennas, printed loops, printed dipoles, slot antennas, and PIFA
antennas are compact, low cost, conformable, and have lightweight. These antennas are
a good choice to be employed as wearable antennas for IoT andmedical applications.

Applications of wearable antennas:

• 5G Communication Systems

• Medical

• Wireless Communication

• IoT

• WLAN

• HIPER LAN

• GPS

• Military Applications

2.1 Double-layer printed wearable dipole antennas

Single-layer printed dipole antennas have a narrow bandwidth less than 1% for
VSWR better than 2:1. The length of the dipole may be between quarter wavelength
to half wavelength. The antenna directivity is around 0 dBi and the beam width is
around 90°–100°. The antenna bandwidth may be improved by printing the
antenna feed network on a dielectric substrate and by printing the radiating dipole
on a second layer. The electromagnetic fields are coupled to the radiating dipole.
The bandwidth of the double-layer printed dipole may be between 1 and 5% for
VSWR better than 2:1 as a function of the dipole configuration and the layers
thickness. The printed dipole antenna consists of two layers. The first layer consists
of a 0.8-mm substrate with 3.5 as dielectric constant. The second layer consists of a
0.8-mm substrate with 2.2 as dielectric constant. The substrate thickness
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determines the antenna bandwidth. However, thinner antennas are flexible. The
antenna dimensions are designed to operate on the patient’s body by using electro-
magnetic software [50]. The double-layer antenna is shown in Figure 1. The direc-
tivity of the antenna at 420 MHz is around 4 dBi as shown in Figure 2.

A double-layer 460 MHz dipole antenna is shown in Figure 3. The antenna
dimensions are 20 � 4 cm. The directivity of the antenna at 460 MHz is around 5
dBi as presented in Figure 4. The antenna beamwidth is around 120°.

Figure 1.
Wearable double-layer 420 MHz printed dipole antenna.

Figure 2.
Radiation pattern of a wearable double-layer printed dipole antenna.

Figure 3.
Wearable double-layer 460 MHz printed dipole antenna.
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3. Printed wearable dual-polarized dipole antennas

In several communication and medical systems, the polarization of the received
signal is not known. The polarization of the received signal may be vertical, hori-
zontal, or circular polarized. In these systems, it is crucial to use dual-polarized
receiving antennas. Two wearable antennas are presented in this section; the first is
a dual-polarized printed dipole. The second antenna is a dual-polarized, folded,
printed microstrip dipole. The compact, printed, loaded dipole antenna is horizon-
tally polarized. The antenna dimensions have been designed to operate on the
patient’s body by employing electromagnetic software [50]. The antenna consists of
two layers. The first layer consists of a 0.08-cm dielectric substrate with 3.5 as
relative dielectric constant. On this layer, the antenna feed network is printed. The
radiating elements are printed on the second layer which consists of a 0.08-cm
dielectric substrate with 2.2 as relative dielectric constant. Thicker antennas have a
wider bandwidth. However, thinner antennas are more flexible with a narrower
bandwidth. The printed slot antenna is vertically polarized. The printed dipole and
the slot antenna provide dual orthogonal polarizations. The wearable antenna cur-
rent distribution and dimensions are shown in Figure 5.

The radiating dipole dimensions are 21 � 4 � 0.16 cm. The wearable antenna
may be employed in medical and IoT systems. The antenna may be attached to the
patient clothes, in the front or in the back zone. The antenna has been analyzed by
using Key-sight momentum software [50]. The antenna bandwidth is around 15%
for VSWR better than 3:1. The antenna �3 dB beamwidth is 100°. The antenna gain

Figure 4.
Radiation pattern of a wearable double-layer printed dipole at 460 MHz.
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is around 2 dBi. The simulated S11 and S22 parameters are shown in Figure 6.
Figure 7 presents the antenna’s measured S11 parameters. The simulated radiation
patterns are shown in Figure 8. There is a good agreement between the measured
and computed results. The co-polar radiation is in the yz plane. The cross-polar
radiation is in the xz plane. The antenna cross-polarization value may be adjusted
by varying the feed lines and matching stubs’ locations. The dimensions and current
distribution of the folded antenna are shown in Figure 9. The radiating element

Figure 5.
Current distribution of the dual-polarized wearable antenna.

Figure 6.
Computed S11 and S22 results of the dual-polarized dipole on human body.

Figure 7.
Measured S11 of the wearable dual-polarized dipole antenna on human body.
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Figure 8.
Radiation pattern of the dual-polarized wearable antenna.

Figure 9.
Current distribution of the folded wearable dipole antenna, 6 � 5 � 0.16 cm.

Figure 10.
Folded antenna’s computed S11 and S22 results on human body.
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dimensions are 55 � 40 � 1.6 mm. Figure 10 presents the antenna’s simulated S11
and S22 parameters. The folded dipole radiation pattern is shown in Figure 11. The
antennas’ radiation characteristics on human body were measured by using a phan-
tom. The phantom liquid presents the body tissue’s electrical characteristics. The
phantom diameter is 40 cm and has 1.5 m length. The phantom liquid is a mix of
55% water, 44% sugar, and 1% salt. The wearable antenna was placed on the
phantom during the measurements of the antenna’s electrical characteristics. S11
and S12 parameters were measured on the patient’s body by using a network
analyzer. Photo of wearable antennas is shown in Figure 12.

4. Wearable microstrip antennas for 5G, medical, and IoT applications

Printed antennas are usually low profile, compact, flexible, light weight, and
low-cost relative to wired antennas. Microstrip antennas may be used as wearable
antennas. Printed antennas have been widely presented in the literature in the last
20 years, [1–19]. The most popular type of printed antennas is the microstrip

Figure 11.
Radiation pattern of the folded dual-polarized antenna.

Figure 12.
Photo of wearable antennas.
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antennas. However, loop, PIFA, slot, and dipole-printed are widely used in RF
systems. Printed antennas may be employed in communication mobile phones, IoT,
seekers, and in medical systems.

4.1 Wearable microstrip antennas for 5G and medical systems

Microstrip antennas are etched on a low loss dielectric substrate. A cross-
sectional view of the microstrip antenna electric fields is presented in Figure 13.
Microstrip antennas are thin conducting patches etched on a substrate with dielec-
tric constant εr and thickness H. Usually, H is less than 0.1 λ. Microstrip antennas
are presented in [1–7]. The wearable antenna may be attached to the human body or
inserted inside a belt.

Advantages of microstrip antennas:

• Light weight and low volume.

• Flexible, Conformal structures are possible.

• Low cost relative to conventional wired antennas.

• Easy to fabricate a large uniform arrays and phased arrays.

These features are very important for wearable communication systems.
Disadvantages of microstrip antennas:

• Limited bandwidth (usually 1–5%). However, wider bandwidth is possible
with increased antenna structure complexity.

• Low power handling less than 50 W depends on substrate thickness.

• Limited gain up to 30 dBi, 16 � 16 arrays.

• High feed network losses at high frequencies, above 12 GHz.

The patch magnetic field is perpendicular to the E-field. There is no conductor to
carry the RF current so at the edge of the strip (X/L = 0 and X/L = 1), the H-field
drops to zero and is maximum in the center. The E-field is zero at the center and at
maximum value (and opposite polarity) at the edges (X/L = 0 and X/L = 1), see
Figure 14. The ratio of E- to H-field is proportional to the patch impedance.
Microstrip antennas may be fed by a coaxial probe feed or by a microstrip feed line.

Figure 13.
Microstrip antenna electric fields, a cross-sectional view.
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By adjusting the location of the antenna feed point, we can achieve any impedance
and match the antenna to the RF system, usually 50 Ω. The antenna shape may be
rectangular, square, triangle, circle, or any arbitrary shape as presented in Figure 15.

The antenna dimension, W, is given by Eq. (1) and is a function of the effective
dielectric constant and resonant frequency:

W ¼ c

2f
ffiffiffiffiffiffiffi

ϵeff
p (1)

The antenna bandwidth is given in Eq. (2):

BW ¼ H
ffiffiffiffiffiffiffi

ϵeff
p (2)

The gain of patch antenna is the function of the antenna effective area and can
be between 0 and 5 dBi. We may increase printed antenna gain by using antenna
array configuration. In low-cost microstrip antenna arrays, the RF feed network
may be integrated to the radiating elements on the same substrate. Microstrip arrays
feed networks are shown in Figure 16. A parallel feed network is illustrated in
Figure 16(a). A parallel series feed network is illustrated in Figure 16(b).

4.2 Transmission line model of patch antennas

In the transmission line model (TLM), the patch antenna functions as two
narrow slots connected by a microstrip line, as illustrated in Figure 17. TLM model
provides a good physical understanding of the electrical characteristics of patch
antennas. The electric field along and underneath the patch is given in Eq. (3) and is
a function of z. In the design of a wearable patch antenna, the body electrical
parameter should be considered to achieve an accurate design.

Figure 14.
Fields of rectangular microstrip antenna.

Figure 15.
Microstrip antenna popular configurations.
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Ex � cos
πz

Leff

 !

(3)

At the patch edges z = 0 and z=Leff , the electric field is maximum. At the patch

center z=
Leff

2 , the electric field is equal to zero. For H
λ0
<0:1, the electric field distri-

bution along the x-axis is uniform. The slot admittance is given in Eqs. (4) and (5):

G ¼ W

120λ0
1� 1

24

2πH

λ0

� �2
" #

for
H

λ0
<0:1 (4)

B ¼ W

120λ0
1� 0:636 ln

2πH

λ0

� �2
" #

for
H

λ0
<0:1 (5)

Here, R represents the radiation losses; G = 1/R; and B represents the capacitive
nature of the slot. At resonance, for any position of the feed point along the patch,
the susceptances of both slots cancel out at the feed point. However, the patch

Figure 16.
Configuration of integrated microstrip array and feed network. (a) Parallel feed network. (b) Parallel series
feed network.

Figure 17.
Patch transmission line model, two slots connected by a microstrip line.
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admittance is a function of the feed point position along the z-axis as given in
Eq. (6). At the feed point, the slot admittance is transformed by the equivalent
length of the transmission line. The width, W, of the microstrip antenna controls
the input impedance. For a square patch antenna fed by a microstrip line, the input
impedance is around 300 Ohms. By increasing the width, the impedance can be
reduced. Larger widths can increase the patch bandwidth.

Y l1ð Þ ¼ Z0

1þ j
ZL

Z0
tan βl1

ZL

Z0
þ j tan βl1

¼ Y1

Y in ¼ Y1 þ Y2

(6)

4.3 Excitation of higher order modes in microstrip antennas

To prevent excitation of higher-order modes, the thickness of the substrate
should be less than a tenth of the wavelength. We can calculate the cutoff frequency
of the higher-order mode by using Eq. (7):

f c ¼
c

4H
ffiffiffiffiffiffiffiffiffiffiffi

ε� 1
p (7)

4.4 Microstrip effective dielectric constant

As shown in Figures 13 and 14, the edges of microstrip line and antenna part
of the fields propagate in air and the other part of the fields propagates in the

dielectric substrate. The effective dielectric constant is usually higher than εrþ1
2

and is less than the substrate’s dielectric constant. The effective dielectric
constant of the microstrip line may be calculated by using Eqs. (8) and (9) as
function of W/H:

For W
H

� �

< 1,

εe ¼
εr þ 1

2
þ εr � 1

2
1þ 12

H

W

� �� ��0:5

þ 0:04 1� W

H

� �� �2
" #

(8)

For W
H

� �

≥ 1,

εe ¼
εr þ 1

2
þ εr � 1

2
1þ 12

H

W

� �� ��0:5
" #

(9)

This calculation ignores the strip thickness and frequency dispersion. If the
substrate thickness is less than tenth of a wavelength their effects are negligible.

4.5 Losses in microstrip antennas

A major part of losses in microstrip line are due to conductor loss. Radiation loss
and dielectric losses are lower. Losses in microstrip lines and antennas are the major
disadvantage of microstrip antennas and limit the gain and efficiency of microstrip
antennas at high frequencies. Losses in microstrip lines and antennas increase
significantly at high frequencies as presented in Eqs. (10) and (11).

11

Wideband Wearable Antennas for 5G, IoT, and Medical Applications
DOI: http://dx.doi.org/10.5772/intechopen.93492



4.5.1 Conductor loss

Conductor loss may be calculated by using Eq. (10):

αc ¼ 8:686 log RS= 2WZ0ð Þð Þ dB=Length

RS ¼
ffiffiffiffiffiffiffiffiffiffi

πfμρ
q

Skin Re sis tan ce
(10)

Conductor losses can be calculated by defining an equivalent loss tangent δc,
given by δc ¼ δs=h, and δs =

ffiffiffiffiffiffiffiffiffi

2=ωμσ
p

. The strip conductivity is σ, μ is the free space

permeability, and h is the substrate height.

4.5.2 Dielectric loss

The dielectric loss is given in Eq. (11):

αd ¼ 27:3
εr
ffiffiffiffiffiffiffi

εeff
p

εeff � 1

εr � 1

tgδ

λ0
dB=cm

tgδ ¼ dielectric loss coefficent

(11)

Losses in microstrip lines are presented in Tables 1 and 2. For example, total loss
of a microstrip line presented in Table 1 at 40 GHz is 0.5 dB/cm. For example, total
loss of a microstrip line presented in Table 2 at 40 GHz is 1.4 dB/cm. We may
conclude that losses in microstrip lines limit the applications of microstrip
technology at high frequencies.

Frequency (GHz) Loss tangent loss (dB/cm) Metal loss (dB/cm) Total loss (dB/cm)

10 �0.004 �0.23 �0.23

20 �0.009 �0.333 �0.34

30 �0.013 �0.415 �0.43

40 �0.018 �0.483 �0.5

*W = 0.12 mm,Tanδ = 0.0002, 3 um gold, and conductivity = 3.5E7 mhos/meter.

Table 1.
Microstrip line losses for a substrate of 0.127 mm thickness with εr =9.9*.

Frequency (GHz) Tangent loss (dB/cm) Metal loss (dB/cm) Total loss (dB/cm)

10 �0.010 �0.66 �0.67

20 �0.02 �0.96 �0.98

30 �0.03 �1.19 �1.22

40 �0.04 �1.38 �1.42

*W = 0.034 mm,Tanδ = 0.0004, 3 um gold, and conductivity = 3.5E7 mhos/meter.

Table 2.
Microstrip line losses for a GaAs substrate of 0.05 mm thickness with εr =12.88*.
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4.6 Patch radiation pattern

The patch radiation pattern is function of the patch width, W. The coordinate
system is presented in Figure 18. The normalized radiation pattern may be
simulated by using Eqs. (12) and (13):

Eθ ¼
sin kW

2
sin θ sinφ

� �

k0W

2
sin θ sinφ

cos
k0L

2
sin θ cosφ

� �

cosφ 411ð Þ

k0 ¼ 2π=λ

(12)

Eφ ¼
sin kW

2
sin θ sinφ

� �

k0W

2
sin θ sinφ

cos
k0L

2
sin θ cosφ

� �

cos θ sinφ 4:12ð Þ

k0 ¼ 2π=λ

(13)

The magnitude of the fields is given by Eq. (14):

f θ,φð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
θ þ E2

φ

q

(14)

5. Wearable stacked microstrip antennas for 5G, IoT, and medical
applications

Stacked patch antennas were presented first in [1–7]. Single-layer microstrip
antennas have a narrow bandwidth. This disadvantage limits the applications of
microstrip antennas. By designing a double-layer microstrip antenna, we may get a
wider bandwidth. Two-layer patch antennas may be the best antenna choice for
wideband communication systems. On the first layer, the antenna matching net-
work and a resonator are printed. On the second layer, the radiating element is
printed. The electromagnetic field is coupled from the resonator to the radiating
element. The resonator and the radiating element shapes may be rectangular,
square, triangle, circle, or any other shape. The distance between the layers is
optimized to get maximum bandwidth with the best antenna efficiency. The spac-
ing between the layers may be foam or a substrate with low dielectric losses. All the
antennas’ electrical parameters were calculated and optimized by.

Figure 18.
Cartesian coordinate system.
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using electromagnetic software. A 2.2 GHz square patch with circular polariza-
tion stacked antenna was designed. The resonator and the feed network were
printed on a substrate with a relative dielectric constant of 2.4 and with a thickness
of 0.16 cm. The dimensions of the square resonator are W = L = 4.5 cm. The
radiating element was printed on a substrate with a relative dielectric constant of 2.2
and with a thickness of 0.16 cm. The radiator is a square patch with dimensions
W = L = 4.8 cm. The antenna is circular polarized. A 3 dB, 90° branch coupler is
connected to the antenna feed lines, as shown in Figure 19. The antenna bandwidth
is 13% for VSWR better than 3:1. The measured antenna beamwidth is 73°. The
measured antenna gain is 7.5 dBi at 2.2 GHz. This antenna may be used in wideband
communication systems. Comparison of calculated and measured results of stacked
patch antennas is listed in Table 3. The antennas listed in Table 3 may be used in
wearable communication systems. Results in Table 3 indicate that the bandwidth of
stacked patch antennas may be around 9–15% for VSWR better than 2:1. There is a
good agreement between the measured and calculated results. In Figure 20, a
stacked microstrip antenna is shown. The antenna feed and matching network is
printed on FR4 with a dielectric constant of 4.2 and 1.6 mm thickness. The radiator
is printed on a dielectric substrate with a dielectric constant of 2.2 and 1.6 mm
thickness. The dimensions of the microstrip stacked patch antenna shown in
Figure 20 are 3.3 � 2 � 0.32 cm. The computed S11 parameters are presented in
Figure 21. Radiation pattern of the microstrip stacked patch is shown in Figure 22.

Figure 19.
Feed network of a circular polarized stacked patch antenna.

Antenna F (GHz) Bandwidth (%) Beamwidth Gain (dBi) Polarization

Calc. Meas. Calc. Meas. Calc. Meas.

Square 2.2 11 10 74 72 7.5 7.5 Circular

Circular 2.2 14 15 74 72 7.5 7.9 Linear

Annular disc 2.2 12 11.5 80 78 6.5 6.6 Linear

Rectangular 2.0 10 9 72 72 7.5 7.4 Linear

Circular 2.4 10 9 74 72 7.5 7 Linear

Circular 2.4 10 10 74 72 7.5 7.5 Circular

Table 3.
Comparison of calculated and measured results of stacked microstrip antennas.
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The antenna bandwidth is around 7% for VSWR better than 3:1. The antenna
bandwidth is improved to 10% for VSWR better than 2.0:1 by adding 8 mm air
spacing between the layers. The antenna beamwidth is around 72°.

The antenna gain is around 7 dBi.

5.1 Stacked microstrip 35 GHz antennas arrays

Two Ka-band, stacked patch microstrip antenna arrays, which consist of 256
radiating elements, have been designed on a substrate with εr = 2.2, 0.25 mm thick.
The first Type A array with a parallel feed network, is shown in Figure 16(a). The
second Type B array is shown in Figure 16(b) has more bend discontinuities in the

Figure 20.
A microstrip stacked patch antenna for 5G, IoT, and medical applications.

Figure 21.
Computed S11 of the microstrip stacked patch.
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feeding network than Type A array. In the Type C array, a 10-cm coaxial line was
used to replace the same length of microstrip line in the Type A array. Comparison
of measured results of the arrays, given in Table 4, shows that the gain of the

Figure 22.
Radiation pattern of the microstrip stacked patch.

Parameter Type A Type B Type C

Number of radiators 256 256 256

Beamwidth (°) 4.2 4.2 4.2

Computed gain(dBi) 32 32 32

Microstrip line loss(dB) 3.1 3.1 1.5

Radiation loss T-J. (dB) 0.72 0.72 0.72

Radiation loss bends(dB) 0.13 1.17 0.13

Radiation loss steps(dB) 0.12 — 0.12

Mismatch Loss (dB) 0.5 0.5 0.5

Expected Gain(dBi) 27.43 26.5 29.03

Measured Gain(dBi) 27.5 26.5 29.5

Efficiency (%) 34.9 28.2 51

Table 4.
Comparison of electrical performance of 256 stacked patch microstrip antenna arrays.
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modified array Type C was increased by 1.6 dB. The arrays’ measured bandwidth is
around 12% for VSWR better than 2:1.

6. Stacked mono-pulse Ku-band patch antenna

A mono-pulse double-layer circular patch antenna was designed at Ku band,
15 GHz. The mono-pulse antenna consists of four circular patch antennas and a feed
network as presented in Figure 23. The circular resonator and the branch coupler
were printed on a substrate with a relative dielectric constant of 2.45 and with a
thickness of 0.8 mm. The diameter of the circular microstrip resonator is 0.42 cm.
The circular radiator was printed on a substrate with a relative dielectric constant of
2.25 and with a thickness of 0.8 mm. The diameter of the circular patch is 0.45 cm.
The comparator consists of three 3 dB, 180° rat-race couplers that are connected to
four circular patches via the antenna feed lines, as presented in Figures 23 and 24.
The strip-line 3 dB, 180° rat-race couplers are printed on a substrate with a relative
dielectric constant of 2.2 and thickness of 0.8 mm. The comparator structure and
ports are shown in Figures 23 and 24. The comparator output ports are: a sum port
P

, difference port ∆, an azimuth difference port ∆Az, and an elevation difference
port ∆El. The antenna bandwidth is 11% for VSWR better than 2:1. The antenna
beam width is around 36°. The computed and measured antenna gain is around 10.5
dBi. The maximum comparator losses are 0.75 dB.

Figure 23.
A microstrip stacked mono-pulse antenna.
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6.1 Rat-race coupler

A rat-race coupler is shown in Figure 24. The rat-race circumference is 1.5 wave-
lengths. The distance from A to ∆ port is 3λ\4. The distance from A to

P

port is λ\4.
For an equal-split rat-race coupler, the impedance of the entire ring is fixed at

1.41 � Z0, or 70.7 Ω for Z0 = 50 Ω. For an input signal V, the outputs at ports 2 and
4 are equal in magnitude, but 180 degrees out of phase.

7. Wearable Metamaterial antennas for 5G, IoT, and medical
applications

Low profile efficient antennas are crucial in the development of commercial
compact 5G communication and IoT systems. Communication, IoT, and biomedical
industries are in rapid growth in the last years. It is important to develop efficient
high gain compact antennas for 5G communication and IoT systems. Metamaterials
and fractal structures may be used to improve the efficiency of compact printed
antennas. In this chapter metamaterial antennas will be presented.

7.1 Introduction

Small printed antennas suffer from low efficiency. Metamaterial technology is
used to design wearable compact antennas with high efficiency. The metamaterial
antennas may be used in 5G communication systems, IoT, and medical systems.
Design trade-offs, development, and computed and measured results of compact,
efficient metamaterial antennas are presented in this chapter. The gain and direc-
tivity of the patch antenna with split ring resonators (SRRs) are higher by 2.5 dB
than the patch antenna without SRR. The resonant frequency of the antenna with
SRR on human body is shifted by 3%. Printed antennas are used in communication
systems and are presented in journals and books, as referred in [1–5]. Microstrip
and printed antennas have several advantages such as being light weight, compact,
flexible, and having low production cost. The main disadvantages of these printed
antennas are narrow bandwidth and low efficiency. In Ref. [51], artificial media
with negative dielectric permittivity were presented. Materials with dielectric con-
stant and permeability less than 1 are developed by using periodic SRR and metallic
posts structures as presented in [51–59]. New wearable printed metamaterial
antennas with high efficiency are presented in this chapter.

Figure 24.
Rat-race coupler.
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7.2 Stacked microstrip antenna with SRR

Stacked microstrip patches antennas with and without SRR has been designed,
see Refs. [1–5]. The antennas was designed on the same substrate. The antennas are
stacked double-layer antennas. The first layer consists of a FR4 substrate with a
dielectric constant of 4.2 and 1.6 mm thickness. The second layer consists of a
dielectric substrate with a dielectric constant of 2.3 and 1.6 mm thickness. The
antenna has been analyzed and optimized by using full wave electromagnetic soft-
ware. The dimensions of the microstrip stacked patch antenna are 33� 20� 3.2 mm
as presented in Figure 25. The antenna bandwidth is around 6% for VSWR better
than 3:1. The antenna beam width is around 74°. The stacked antenna directivity
and gain are around 7 dBi. The computed S11 parameters are presented in
Figure 26. Radiation pattern of the microstrip stacked patch is shown in Figure 27.
The stacked patch antenna with SRR is presented in Figure 28. This antenna has the
same structure as the stacked antenna shown in Figure 25. The spacing between the
SRR rings is 0.25 mm and the ring width is 0.2 mm. Four rows of seven SRRs are
placed on the radiating patch. The measured S11 parameters of the antenna with
SRR are presented in Figure 29. The antenna bandwidth is around 13% for VSWR
better than 2.5:1. By adding an air space of 4 mm between the antenna layers, the
VSWR was improved to 2:1. The antenna gain is around 9–10 dBi. The antenna’s

Figure 25.
A microstrip stacked patch antenna.

Figure 26.
Computed S11 of the microstrip stacked patch.
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efficiency is around 95%. The antenna computed radiation pattern is shown in
Figure 30. There is a good agreement between the measured and computed results.
The effective area of a patch antenna without SRR is lower than the effective area of
a patch antenna with SRR. The resonant frequency of a patch antenna without SRR
is higher by 10% than the resonant frequency of a patch antenna with SRR. The
antenna beamwidth is around 70°. The directivity and gain of the stacked antenna
with SRR is higher by 2–3 dB than the patch antenna without SRR.

Figure 27.
Radiation pattern of the microstrip stacked patch.

Figure 28.
Printed antenna with split ring resonators.

20

Advanced Radio Frequency Antennas for Modern Communication and Medical Systems



7.3 Patch antenna with split ring resonators

A patch antenna with split ring resonators was developed. The antenna is
printed on the dielectric substrate with a dielectric constant of 2.2 and with a
1.6 mm thickness. The dimensions of the microstrip patch antenna shown in

Figure 29.
Patch with split ring resonators for medical and 5G applications, measured S11.

Figure 30.
Radiation pattern for patch with SRR for medical and 5G applications.
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Figure 31 are 36 � 20 � 1.6 mm. The metamaterial antenna bandwidth is around
6% for VSWR better than 2:1. The antenna bandwidth is around 9% for S11 lower
than �6 dB. The antenna directivity and gain are around 7.5 dBi. The computed and
measured antenna beam width is around 72°. The antenna efficiency is 77.25%. The
measured S11 parameters are presented in Figure 32. The gain and directivity of the

Figure 31.
Patch antenna with 15 Split ring resonators.

Figure 32.
Patch with 15 split ring resonators, computed S11.
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patch antenna with SRR is higher by 2.5 dB than the patch antenna without SRR. A
photo of printed metamaterial antennas for medical and IoT applications is shown
in Figure 33. Metamaterial patch antenna with SRR for 5G, IoT, and medical

Figure 33.
Photo of printed metamaterial antennas for medical applications.

Figure 34.
Photo of metamaterial patch antenna with SRR.

Figure 35.
Meta-material stacked patch antenna with SRR.
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applications is shown in Figure 34. Metamaterial stacked patch antenna with SRR
for 5G, IoT, and medical applications is shown in Figure 35.

8. Conclusions

This chapter presents several wideband wearable antennas with high efficiency
for medical, IoT and sport applications. Wearable technology provides a useful
novel tool to health-care centers and surgical rehabilitation services. Wireless
wearable body area network (wireless WBAN) is emerging as a significant option
for hospitals, medical centers, and patients. Wearable devices provide a useful
network that may improve the long-term context and physiological response of
patients and health-care customers. Wearable devices and technology will help to
develop personal treatment devices with online and real-time feedback to improve
patient’s health. Wearable medical devices and sensors can measure heartbeat,
blood pressure, body temperature, and sweat rate, perform gait analysis, and mea-
sure almost any medical parameters of the patient wearing the medical system.

Design considerations computed and measured results of several wearable
printed antennas are described in this chapter. The antenna’s electrical characteris-
tics and dimensions were designed to meet the medical system specification. The
dimensions of the compact antennas may vary from 260 � 60 � 1.6 mm to
50 � 50 � 0.5 mm to meet the medical system specification. The compact wearable
antennas bandwidth is between 9 and 12% for VSWR better than 2:1. The compact
wearable antenna beam width varies from 72° to 100° and the wearable antennas
gain varies from 0 to 5 dBi as a function of the antenna dimensions.

The length of the antennas without SRR is higher by 5–10% than the length of
the antennas with SRR. Moreover, the resonant frequency of the antennas without
SRR is higher by 5–10% than the antennas with SRR. The gain and directivity of the
patch antenna without SRR is lower by 2–3 dB than the patch antenna with SRR.
The resonant frequency of the wearable antennas with SRR on human body may be
shifted by 2–5%.
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