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Chapter

Graphene Oxide-Based 
Nanohybrids as Pesticide 
Biosensors: Latest Developments
Navin Kumar Mogha

Abstract

Graphene is the most significant two-dimensional nanomaterial with sp2 
hybridized carbon atoms in a honeycomb arrangement with an extremely high 
surface area, excellent electrical properties, high mechanical strength, and advan-
tageous optical properties and is relatively easy to functionalize and mass produce. 
Various inorganic nanoparticles incorporated with graphene, such as gold, silver, 
and palladium nanoparticles are brought into sharp focus due to their catalytic, 
optical, electronic, and quantized charging/discharging properties. Graphene 
oxide-based nanohybrids are particularly well suited for biosensing applications 
and catalysis. Consequently, this area of research has grown to represent one of 
the largest classes within the scope of materials science and is rapidly becoming a 
key area in nanoscience and nanotechnology offering significant potential in the 
development of advanced materials in multiple and diverse applications. Here 
in this present chapter, synthesis, characterization of graphene oxide, and their 
nanohybrids are discussed thoroughly with their application in the field of pesticide 
biosensors. This chapter will help in a further understanding of graphene-based 
nanohybrids as a biosensing platform for their future applications in a sustainable 
environment.

Keywords: graphene oxide, pesticides, biosensors, nanohybrids, nanoparticles, 
chemical reduction

1. Introduction

The prevalence of harmful and toxic chemical compounds in the environment 
has become a serious issue in recent decades [1]. Contamination of foodstuffs, drink-
ing water, and air with hazardous pollutants and other foreign substances are real 
and a direct threat to human health, whereas the accumulation of such contaminants 
in the human body and environment may lead to long-lasting, severe, and harmful 
effects after primary exposure [2]. Chemicals such as pesticides, plastic, lead, meth-
ylmercury, polychlorinated biphenyls, arsenic, toluene, rubber, and paper [3] play a 
key role in the economic growth of countries to fulfill their development objectives 
[4]. The term “pesticide” is defined as any chemical entity, which has the ability 
to kill the various kinds of pests including rodents, insects, fungi, weeds, etc. and 
henceforth categorized accordingly as rodenticides, insecticides, fungicides, and 
herbicides [5]. However, based on chemical composition, pesticides can be classi-
fied into five main groups as organochlorines, organophosphorus (OP), carbamates, 
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pyrethrin, and pyrethroids compound. The unnecessary consumption of those 
agrochemicals has undesirable effects on the ecosystem, including a decreased popu-
lation of beneficial insects as well as risks to vulnerable species and bird habitats. 
Pesticide pollution is becoming one of the most severe challenges of common public 
health around the globe because of their particular application in the agriculture 
sector to assure crop yield and productivity [6]. In some cases, acute poisoning 
may occur because of inappropriate handling that ultimately causes adverse health 
effects because of long-term and low-level exposures. The widespread diffusion of 
such toxic chemicals adversely affects a great part of the population. A large number 
of people, categorized by different patterns, ages, and degrees of exposure, are at 
increased risk to the adverse effects of these chemicals. Workers who are involved in 
the manufacturing and application of pesticides are at a considerable risk of expo-
sure, which typically occurs among specific users in public health. In the agricul-
tural sector, farmers may get direct exposure to pesticides during spraying across 
the agricultural fields [7, 8]. In the general population, individuals may be at a risk 
of pesticide exposure on a daily basis in food and drinking water or to pesticide 
drift in domestic areas adjacent to spraying areas [9]. Given their hazardous effect 
on human health and the environment, the prime concern should be of their rapid 
and reliable detection by a convenient method. Although various laboratory-based 
analytical methods such as colorimetry, capillary electrophoresis (CE), thin-layer 
chromatography (TLC), gas-liquid chromatography(GLC), high-performance 
liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, 
mass spectrometry (MS), and enzyme-linked immunosorbent assays (ELISA) have 
been employed so far, but these suffer from one and the other drawback such as 
the use of expensive instrumentation, time-consuming process, and requirement 
of trained personnel [5]. Therefore, there is a dire need to develop sensitive, rapid, 
economically feasible, and easy-to-use methods for the detection of these com-
pounds in the environment. Such efficient detection methods could be developed 
using biosensors that are used in a variety of applications for prompt and accurate 
detection of different analytes such as biomolecules and chemical compounds [10]. 
Various nanomaterials are generally categorized into nanoparticles, nanotubes, and 
nanocomposites, which can be generally employed for the diagnosis, degradation, 
and adsorption of chemical pesticides. Carbon nanomaterials or nanoparticles 
(NPs) have specific characteristics, including a high surface-to-volume ratio, good 
electrical conductivity, catalytic action, and beneficial biocompatibility and can 
be simply modified with functional groups, which has made them be often used in 
pesticide biosensors to boost analytical efficiency [11].

It is well known that graphite and diamond are its most common allotropic 
form of carbon found in nature. Graphite, which is found as a natural mineral, 
consists of sp2 hybridized carbon atomic layers that are stacked collectively 
through weak attraction forces such as van der Waals forces. Single-layer out of 
these carbon atomic layers are packed in a two-dimensional honeycomb struc-
ture called as “graphene” termed coined by Boehm et al. [12]. It remains almost 
impossible to isolate graphene monolayer for several decades before Geim and 
Novoselov [13] who reported a scotch tape method or micromechanical cleavage 
method for the isolation of graphene monolayer from silicon oxide substrate. 
Discovery of graphene monolayer awarded Geim and Novoselov the Nobel Prize 
in Physics “for groundbreaking experiments regarding the two-dimensional 
material graphene”.

Graphene, which consists of a one-atom-thick planar sheet comprising an 
sp2-bonded carbon structure with exceptionally high crystal and electronic quality, 
is a novel material that has emerged as a rapidly rising star in the field of material 
science [14, 15].
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Research-based on graphene oxide (GO) and graphene is an established inter-
disciplinary field associated with different disciplines such as physics, chemistry, 
material sciences, and nanotechnology with still a lot of emerging ideas to be 
developed. The result of working experience on other carbon allotropes leads to 
rapid discoveries of exceptional electronic, optical, and mechanical properties of 
graphene. In particular, its extraordinary charge carrier mobilities, thermal, and 
electrical conductivity, collective with high transparency and mechanical strength 
make graphene a suitable material for biosensing applications.

These exceptional physicochemical properties indicate its potential for delivering 
new tactics and critical developments in electrochemical sciences. For instance, a 
large number of analytic molecules can be attached to the large surface of electri-
cally conductive graphene sheets leading to the development of the highly sensitive 
miniaturized device. Direct electron transfer between graphene and redox species 
creates new prospects for sensing applications. Consequently, graphene has lately 
fascinated the attention of the scientific community worldwide.

1.1 Graphene and graphene oxide

GO is considered as a precursor for obtaining graphene via chemical or thermal 
reduction methods. It consists of single-layer graphite oxide, having various oxygen-
containing groups, whose structure has been proposed through several models over 
the years [16–20]. Oxygen functional groups have been identified as typically in the 
form of hydroxyl, epoxy groups and carboxy, carbonyl, phenol, lactone, quinone 
on the basal plane, and at the sheet edges, respectively [21–23]. However, due to 
ambiguity pertaining to the nature and distribution of the oxygen-containing 
functional groups (Figure 1) [24, 25], its nonstoichiometric atomic composition, 
and the absence of adequately sensitive analytical techniques for GO characteriza-
tion, its precise structure cannot be fully elucidated. The difference between GO 
and pristine graphene is as a result oxygenated groups present in GO which affect its 
electronic, mechanical, and electrochemical properties. Hence, they account for the 
differences between GO and pristine graphene [26]. The covalent oxygenated func-
tional groups in GO give rise to remarkable structure defects, which are associated 

Figure 1. 
A schematic illustration of methods for the preparation of graphene, GO, and rGO by means of mechanical 
cleavage, exfoliation, CVD, and reduction methods including chemical, thermal, and electrochemical methods 
from graphite. Reprinted with permission from Ref. [25], Published by Elsevier.
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with some loss in its electrical conductivity [27], limiting the direct application of 
GO in electrically active materials and devices. In contrast, these functional groups 
can also be proved advantageous for exploiting GO in numerous other applications. 
The presence of polar oxygen-containing moieties gives GO a hydrophilic character 
making it dispersible in many solvents particularly in water [24, 28, 29]. Subsequent 
stable GO suspension can be used for preparing thin conducting films using spin 
coating, drop-casting, or spraying methods [23] for further to be used as electrodes.

Furthermore, well-known chemistry strategies can be used for the functional-
ization of GO using oxygen-containing groups as a site for chemical modification, 
which subsequently can be exploited for immobilization of various electroactive 
species via covalent or noncovalent bonds different application in sensing or 
catalysis. Thus, the physicochemical properties of GO can be tuned very easily by 
engineering its chemical composition [21, 30, 31].

Hydroxyl, epoxy, and carboxyl groups present in GO are covalently bonded to 
the carbon atom with sp3 hybridization are termed as oxidized region, disrupting 
the extended sp2 conjugated network of honeycomb lattice in graphene, which can 
be viewed as an unoxidized region [32, 33]. sp3 hybridized carbon clusters with 
oxygen-containing groups are uniformly but randomly distributed either above or 
below the GO plane [34]. Various microscopic and spectroscopic techniques have 
been employed for an in-depth analysis of the structure of GO. For instance, atomic 
force microscopy (AFM) provides the apparent thickness of the single-layer GO 
sheet beside the number of layers present [33, 35–37].

In contrast, conductive AFM demonstrates electrical defects found in GO [38]. 
Lately, one of the significant breakthroughs in determining the structure of GO, 
high-resolution transmission electron microscopy (HRTEM) has been employed 
for direct imaging of lattice atoms and topological defects present in single layer of 
GO [39–41]. Erickson et al. [39] identified specific atomic scale topographies of the 
GO monolayers, consisting of three major portions viz. holes, graphitic regions, and 
high-contrast disordered regions having approximate area percentages of 2, 16, and 
82%, respectively.

According to the author, excessive oxidation and sheet exfoliation lead to the 
release of CO and CO2 consequently forming holes in GO. They also proposed that 
graphitic regions are a result of incomplete oxidation of basal plane having the 
preserved honeycomb structure of graphene, whereas the disordered region is rich 
in oxygen functionalities, such as hydroxyl, epoxides, and carbonyls with no order 
between them.

The chemical composition of GO and its oxygenated functionalities have been 
recognized through various spectroscopic techniques, which include solid-state 
nuclear magnetic resonance (SSNMR) [42–44], X-ray absorption near-edge 
spectroscopy (XANES) [45–49], Raman spectroscopy [45–49], X-ray photoelectron 
spectroscopy (XPS) [49] and Fourier transform infrared spectroscopy (FT-IR) 
[47, 50, 51]. Three main peaks around 60, 70, and 130 ppm are assigned to carbon 
atoms bonding to the epoxy group, hydroxyl group, and graphitic sp2 carbon, 
respectively [44], can be seen in a typical solid-state 13C magic-angle spinning NMR 
spectra of GO. Furthermore, three small additional peaks were also found at about 
101, 167, and 191 ppm tentatively attributed to lactol, the ester carbonyl, and the 
ketone groups, correspondingly. XANES is another powerful tool for GO charac-
terization, which provides information related to the degree of bond hybridization 
in mixed sp2/sp3-bonded carbon, the specific bonding arrangements of functional 
atoms, and graphitic crystal structure’s degree of alignment inside GO [49].

Besides, Raman and FTIR spectroscopy data support the presence of oxygenated 
species in GO and its degree of oxidation. Raman spectrum of a GO displays two 
characteristic bands namely a D-band at ∼1340 cm−1 and G-band at ∼1580 cm−1 [52]. 
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The G-band is a distinctive peak of all sp2-hybridized carbon networks and due to first-
order scattering from the doubly degenerate E2g phonon modes of graphite whereas 
the D peak originates from structural imperfections and disorders produced by the 
addition of oxygenated groups on the carbon basal plane [52–54]. Hence, the intensity 
ratio of the D- and G-bands (Id/Ig) points to the oxidation degree, disorders, and the 
size of sp2 ring clusters in a matrix of sp3- and sp2-bonded carbon [53]. A significant 
decrease in Id/Ig ratio was observed after thermal reduction, indicating a considerable 
regaining of conjugation in the graphitic structure after the defunctionalization of GO 
[45]. Functional groups can be recognized by the use of FT-IR spectroscopy and in the 
case of GO, it has reinforced the presence of hydroxyl (broad peak at 3050–3800 cm−1), 
carbonyl (1750–1850 cm−1), carboxyl (1650–1750 cm−1), C═C (1500–1600 cm−1), and 
ether or epoxide (1000–1280 cm−1) groups [43, 47, 50].

Specific 2D structure and the presence of oxygenated functionalities are respon-
sible for excellent properties of GO, which include electronic, optical, thermal, 
mechanical, and electrochemical properties along with chemical reactivity. 
Electronic properties like conductivity of GO sheets are dependent on its chemical 
and atomic structure; in particular, the degree of oxidation arises from disorders 
due to substantial sp3 carbon. Generally, pristine GO films are insulating in nature 
with an energy gap in electron density of states, [55] as well as sheet resistance 
(Rs) about 1012 Ω sq.−1 or higher [56]. This inherent insulating nature of GO is 
strongly associated with the amount of sp3 C▬O bonding, which acts as transport 
barriers, leading to the lack or interruption of penetrating pathways among the sp2 
carbon clusters. However, reduction of GO, whether chemical or thermal assists 
the transport of carriers, [57] helps to bring Rs down to several orders of magni-
tude and transforming the material into a semiconductor or finally into graphene-
like material [58–60]. Reduced GO has conductivity up to ∼1000 S/m, [61] and 
activation energy as 32 ± 5 kcal/mol, estimated by the use of resistivity and 
temperature-programmed desorption (TPD) measurements [62]. Additionally, 
GO exhibits unique optical properties photoluminescence (PL) [63] occurring 
near-UV-to-blue visible (vis) to near-infrared (IR) wavelength range. Applications 
of this property have been sought in biosensing, fluorescence tags, and optoelec-
tronic applications [64, 65].

GO also demonstrates excellent electrocatalytic properties [66–68], such as the 
electrocatalytic activity of GO toward oxygen reduction and certain biomolecules 
[66], oxidation of hydrazine by reduced GO [67]. In addition to this, GO is capable of 
showing high electrochemical capacitance for application in ultracapacitors [68, 69]. 
As compared to carbon nanotubes, reduced GO exhibit higher electrochemical capaci-
tance and cycling durability, wherever specific capacitance for reduced GO and carbon 
nanotubes was found to be ∼165 and ∼86 F/g, respectively [68].

The chemical reactivity of GO can be attributed to the presence of oxygenated 
functionalities and its disordered structure with defects. The reduction is the most 
important chemical reaction of GO, and it has been reduced by employing various 
approaches such as hydrazine, [70] sodium borohydride, [71] or hydroquinone, [72] 
in the liquid phase and the vapor phase using hydrazine/hydrogen [33, 52] or just 
by thermal annealing [52] or by using electrochemical techniques [73]. Chemical 
functionalization is another important chemical reaction involving GO, which 
includes the addition of other chemical groups to GO employing different chemical 
reactions. Oxygenated functionalities over GO surface play a very important role in 
its chemical reactions. Hence, it becomes an ideal approach to selectively chemical 
functionalize GO by utilizing reactions on these functionalities. Typically, covalent 
functionalization of GO can be realized using small molecules and polymers via 
activation, amidation, or esterification of either hydroxyls or carboxyl groups 
through coupling reactions [74–76]. For example, GO was made soluble in organic 
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solvents by rendering a coupling reaction with octadecylamine via amide forma-
tion, where carboxyl functionalities of GO were first activated by SOCl2 [74]. Ring-
opening reactions can be used to functionalize epoxy groups by nucleophilic attack 
at α-carbon by the amine [77]. For example, octadecylamine attachment to GO 
surface [57], attachment of an amine group-containing ionic liquid through ring-
opening reaction with epoxy groups on GO [77] making chemically functionalized 
GO more soluble in water as well as other organic solvents.

Noncovalent functionalization of GO is also known in addition to covalent 
modifications. Noncovalent modification of GO can be accomplished by various 
forces and interactions including hydrogen bonding, van der Walls interaction, 
π-π stacking, cation-π interaction [78, 79]. Doxorubicin hydrochloride (Dox)/GO 
hybrid was synthesized through noncovalent interactions using π-π stacking and 
hydrophobic interactions between the sp2 carbon matrix and quinone functionality 
of Dox as primary noncovalent interactions. Additionally, strong hydrogen bonding 
between hydroxyl and amine groups of Dox with hydroxyl and carboxyl groups of 
GO also helps in covalent modification [78].

The usefulness of GO can be estimated from this fact that along with its 
applications in electronics and displays, it can also act as a carbocatalyst for assist-
ing hydration and oxidation reactions [80–82]. GO can be used as a catalyst for 
oxidation of alcohols and alkenes besides hydration of alkynes into aldehydes 
and ketones [80]. Furthermore, GO has a broad range of oxidation reaction, for 
example, it can oxidize olefins to diones, methylbenzene to aldehydes as well as 
other dehydrogenations [83].

2. Graphene oxide-based nanohybrids

GO and reduced GO (rGO) themselves have many advantageous properties, 
but a substantial amount of work is being done to utilize these materials in combi-
nation with other nanomaterials such as nanoparticles or polymers. Based on their 
morphologies, graphene oxide/nanoparticle nanohybrids can be roughly divided 
into two classes: first where nanoparticles are grown or decorated upon sheets 
of GO and second, nanoparticles are wrapped in GO sheets. Particularly in the 
first type, graphene/nanoparticle nanohybrid can be synthesized by combining 
GO or rGO with different nanoparticles such as metal nanoparticles, metal oxide 
nanoparticles, quantum dots, or silica nanoparticles depending upon the applica-
tion desired. A unique combination of the nanoparticles and GO/rGO makes a 
novel synergistic nanomaterial with enhanced and diverse properties. For exam-
ple, decorated metal or metal oxide nanoparticles over GO surface modify the 
local electronic structure and hence the charge transfer behavior of graphene [84] 
resulting in improved catalytic behavior of this nanocomposite. Alternatively, 
enhancement in sensitivity and selectivity has been observed in sensors derived 
from the combination of graphene material and nanoparticles having good 
conductivity and catalytic behavior [85, 86].

Similarly, in graphene oxide/polymer nanohybrids, surface functionalities 
present on GO surface groups can assist the combination of GO with polymers 
or synthesis of the polymer by different polymerization techniques [87, 88]. A 
typical modification strategy includes covalent bonding, that is, “Grafting to” 
and “Grafting from” approaches, whereas noncovalent modification includes π-π 
stacking, electrostatic interaction, and hydrogen bonding [89–91]. Similarly, fabri-
cation strategies of graphene oxide/polymer nanohybrids synthesis include in situ 
polymerization, melt compounding, latex blending, solution mixing, and electro 
polymerization [92, 93].
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3.  Synthetic methodologies for graphene oxide/nanoparticle 
nanohybrids

Graphene oxide/nanoparticle nanohybrids in which GO/rGO sheets are deco-
rated with nanoparticles having dimensions ranging from few nanometers to a 
couple of hundred nanometers [94] can be attained by attaching different types 
of nanoparticles to the surface of GO sheets either by in situ method or by ex situ 
method. In situ method comprises growing nanoparticles on the surface of GO; 
however, in the case of ex situ method, pre-synthesized nanoparticles are immo-
bilized over the surface of GO. The presence of defects and oxygenated function-
alities makes GO an encouraging templates for the attachment, nucleation, and 
growth numerous metal (e.g., Au [87, 95], Ag [96], Pt [97], etc.) and metal oxide 
nanoparticles (e.g., Fe3O4 [98], TiO2 [99], ZnO [100], SnO2 [101], Cu2O [102, 103], 
MnO2 [104], NiO [105, 106], La2O3, [107, 108], etc.). Subsequent graphene oxide/
nanoparticle nanohybrid offers several unique and beneficial properties for various 
applications depending on individual characteristics showed by nanoparticles 
immobilized upon GO.

The following section includes the different methods for the preparation of 
graphene oxide/nanoparticles nanocomposites, for example, chemical reduc-
tion, hydrothermal route, and electrochemical method or ex situ synthesis, 
while primarily focusing on individual characteristics and advantages of each 
technique correlated to the properties of resulting graphene oxide/nanoparticle 
nanohybrids.

3.1 Chemical reduction method

Graphene oxide/metal nanoparticle nanohybrids are mostly synthesized by 
chemical reduction of their metal salt precursors such as HAuCl4, AgNO3, and 
K2PtCl4 utilizing reducing agents such as sodium citrate, ethylene glycol or poly-
ethylene glycol, and sodium borohydride [96, 109], positively charged metallic 
salts get nucleated on negatively charged functional groups of GO which results 
in the growth of metal nanoparticles on its surface, while reducing GO to rGO, 
preserving the excellent electrical properties of rGO. Moreover, the density of 
metal nanoparticles can also be controlled by tuning the density of oxygenated 
functionalities on GO.

Chemical reduction technique is the most basic method for the preparation of 
Graphene oxide/noble metal nanoparticle nanohybrids. In particular, gold (AuNP) 
and silver nanoparticles (AgNPs) are among the most comprehensively studied 
nanomaterials with a wide range of biomedical applications such as diagnostics, 
imaging, drug delivery [110]. High biocompatibility and surface plasmon resonance 
are some of the very unique properties of noble nanoparticles making them of 
particular interest. These properties can be tuned to desired values according to the 
shape and size of the nanoparticles [111]. Furthermore, graphene oxide/noble metal 
nanoparticle nanohybrids are able to show SERS in addition to enhanced catalytic 
activity [112]. Reduced graphene oxide/AuNPs are the most common and utilized 
nanocomposites, which can be prepared by mixing HAuCl4 with GO and sodium 
citrate, followed by reduction using NaBH4 to form AuNPs while reducing GO 
to rGO [113, 114]. Similarly, instead of using HAuCl4, AgNO3 is used for reduced 
graphene oxide/AgNPs composite synthesis [112, 114]. In a similar way, reduced 
graphene oxide/platinum nanoparticle or reduced graphene oxide/palladium 
nanoparticle nanohybrids are formed by mixing graphene oxide with chloroplatinic 
acid (H2PtCl6) or tetrachloropalladic acid (H2PdCl4), followed by reduction with 
ethylene glycol or any other reducing agent.
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3.2 Hydrothermal methods

Another very common method for synthesizing inorganic nanoparticles is the 
hydrothermal method. This method gives nanoparticles with high crystallinity and 
narrow size distribution over graphene oxide. Moreover, there is no need for postan-
nealing or calcination for reduced graphene oxide/metal nanoparticle nanohybrids. 
In general, the growth of nanocrystals is induced by high temperature and pres-
sure, which is also responsible for the conversion of GO to rGO during the process. 
However, in most cases reducing agents are also added to make sure a complete 
reduction of GO [115].

The most common nanohybrids synthesized by the hydrothermal method are 
reduced graphene oxide/ metal oxide nanoparticle nanohybrids which include ZnO 
[116], TiO2 [117], Fe3O4 [118], SnO2 [119], etc.

Reduced graphene oxide/metal oxide nanoparticle hybrids illustrate their 
specific properties such as higher capacitance, which depends upon nanoparticle 
size, shape, and crystallinity; also, it helps in the suppression of restacking and 
agglomeration in graphene oxide sheets. Furthermore, these nanocomposites also 
exhibit enhancement in electron conductivity, high surface area as compared to GO 
or graphene, also shortened route for ion transfer, which in all responsible for their 
higher electrochemical activity. For instance, reduced graphene oxide/SnO2 nano-
sphere nanohybrid exhibited significantly enhanced formaldehyde sensing per-
formance compared to the pristine SnO2 nanospheres [119]. Alternatively, reduced 
graphene oxide/magnetic nanoparticle nanohybrid has been prepared using FeCl3 
as an iron source and ethylene glycol as a reducing agent [120]. Resulting nanohy-
brid displayed outstanding electrical conductivity as well as magnetic properties. 
Similarly, chalcogenide quantum dots, for example, CdS [121], ZnS [122], Cu2S 
[123], and MoS2 [124], etc. have been successfully immobilized on graphene oxide 
exploiting hydrothermal methods.

3.3 Electrochemical deposition method

The electrochemical deposition method is a very simple, low cost, fast, easy to 
miniaturize, highly stable, reproducible, and green technique for preparation of gra-
phene oxide/nanoparticle composite [125]. The advantage of this technique is that the 
size and shape of the nanoparticles to be deposited can be precisely controlled using 
varying the conditions of electrochemical deposition. Electrochemical deposition 
methods have been established for the fabrication of a vast variety of graphene oxide/
metal nanoparticle composites for noble metals like Au, [126] using cyclic voltam-
metry (CV), which helped in fabricating an electrode for the determination of trace 
amount As(III) employing square wave anodic stripping voltammetry, Ag, [127] for 
carrying out the oxidation of different amino acids such as glycine, alanine, leucine, 
aspartic and glutamic acids using cyclic voltammetry and amperometric techniques. 
Similarly for Pt [128], Pt nanoparticles embedded rGO on glassy carbon electrode 
are utilized to carry out electrooxidation of formic acid. Generally, a typical electro-
chemical deposition experiment is consisting of three basic steps, that is, assembly of 
graphene oxide sheets on the electrode, graphene oxide-coated electrode immersion 
in an electrolytic solution of selected metal precursors, and potential applied across 
electrodes. A majority of research has concentrated on using electrochemical deposi-
tion methods for synthesizing graphene oxide/metal nanoparticle composite, but 
there are some reports for preparation of graphene oxide/metal oxide nanoparticle 
composite synthesis by the same technique. For instance, Cl-doped n-type Cu2O 
nanoparticles with a direct band gap of ca. 2.0 eV [128] have been deposited on rGO 
electrodes with a subsequent carrier concentration of up to 1 × 1020 cm−3 [129].
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3.4 Graphene oxide/encapsulated nanoparticles

Flexible and 2D sheet-like structure of graphene oxide and its derivatives 
help in wrapping or encapsulating nanoparticles in the range from 100 nm to few 
micrometers.

GO and rGO sheets are most commonly used for nanoparticle encapsulation due 
to their hydrophilic nature and ease of fabrication. Noncovalent bonds are respon-
sible for this type of encapsulation; for instance, modification of nanoparticle 
surface with a positive charge is used for electrostatic interaction with negatively 
charged GO [130, 131]. Encapsulation of a variety of nanomaterials, for example, 
polymer, inorganic nanoparticles, metal, and metal oxide nanoparticles, can be 
achieved by controlling the cracked size of GO and rGO, thus obtained composite 
offer enhanced properties and additional advantages. For example, enhancement 
in electrical, optical, and electrochemical properties has been observed for gra-
phene oxide encapsulated nanoparticles, also suppression of aggregation of small 
nanoparticles [132, 133]. Moreover, leaching of nanoparticles is reduced in gra-
phene oxide encapsulated nanoparticles due to the high amount of contact between 
GO and nanoparticles, making them more stable. Several reports have revealed the 
encapsulation of metal oxide nanoparticles with graphene oxide. For example, rGO 
encapsulated cobalt oxide nanoparticles have shown a very high reversible capacity 
(1000 mAh g−1) over 130 cycles, much more than the normal cobalt oxide nanopar-
ticles used for capacitors [131]. Moreover, rGO encapsulated Co3O4 nanofibers-
based sensor exhibited an excellent sensitivity with a fast response and recovery to 
different concentrations of ammonia from 5 to 100 ppm at room temperature [134]. 
Furthermore, a nonenzymatic electrochemical sensor based on 3D porous phase 
graphene oxide sheets encapsulated chalcopyrite (GOS@CuFeS2) nanocomposite is 
reported for the detection of methyl paraoxon [135]. Encapsulation of nonconduct-
ing silicon oxide nanoparticles within conducting rGO can be used as the “bridging-
material” in a field-effect transistor-based biosensor [130, 136]. Similarly, Si 
nanoparticles encapsulated with rGO via electrostatic interaction using APTES has 
also been reported [137, 138], resulting in less destruction and aggregation of SiNPs 
as compared to pristine nanoparticles. It also exhibited a high reversible capacity of 
902 mAh g−1 after 100 cycles at 300 mA g−1 when used as the electrode.

4. Graphene oxide-based nanohybrids as pesticide biosensors

An analytical device that utilizes a biological sensing element to detect a 
specific analyte molecule or family of the analytical molecule is called as biosensor. 
Biosensors can seek applications in diverse fields such as food safety, environ-
mental monitoring, and biomedical field. Generally, biosensors are consisting 
of two basic parts: first receptor, any organic or inorganic material that interacts 
with analytes. The second part, a transducer, which converts a recognition event, 
happened between analyte and receptor, into a measurable signal. Evaluation of 
biosensor ‘s performance is measured by its sensitivity to target, linear range, the 
limit of detection, dynamic ranges, reproducibility, precision in response, and 
selectivity [139]. Other parameters that are also important include the sensor’s 
response time, ease of use, portability, storage, and operational stability. Graphene 
oxide/nanoparticle nanohybrids are known to be well suited for application in 
biosensing because of the rise of new advantageous properties due to the combina-
tion of graphene oxide and nanoparticles. Here, in this section, a detailed aspect of 
graphene oxide nanohybrid-based biosensors, specifically electrochemical biosen-
sors are discussed.
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Electrochemical sensors are the largest group of sensors for detecting or ana-
lyzing various molecules by directly converting biological recognition event into 
an electrical signal. A typical electrochemical biosensor is composed of a three-
electrode system with a working electrode consisting of a biological recognition 
element, counter electrode, and reference electrode separated by suitable electro-
lytes. Based on their biological recognition process, electrochemical biosensors can 
be divided into two main groups: first, affinity-based sensors, and second, catalytic 
sensors. The basic principle of working in affinity biosensors is the measurable 
electric signal that arises due to the interaction of the biological component like 
an antibody, enzyme, nucleic acid, or a receptor and target molecules. Whereas 
in catalytic sensors, incorporated nanoparticles or enzymes recognize the analyte 
molecules and produce an electroactive species by catalysis. The electrical signal 
produced by the electroactive species is then correlated to the concentration of the 
target analyte molecule. Commonly used techniques in electrochemical biosens-
ing include different forms of voltammetry (e.g., cyclic, linear sweep, differential, 
square wave, etc.) and amperometry [139].

The large surface area of graphene oxide nanohybrids is beneficial for the 
immobilization of biomolecules to use it as a platform for biosensing material. 
Furthermore, the synergistic effect of graphene oxide also enhances achievable 
sensitivities and measurable ranges. Most commonly biomolecule immobilized 
biosensors utilize enzymes, antibodies, and DNA as biomolecules.

Lately, enzyme immobilized GO nanohybrids-based biosensors have fascinated 
a lot for the detection of various kinds of analytes. The most common example is the 
determination of glucose, which has an important role in the diagnosis and therapy 
of diabetes. Apart from glucose oxidase based biosensors, other enzyme-based 
biosensors are also known with high sensitivity and selectivity, which includes 
biosensors based on alcohol dehydrogenase [140], microperoxidase [141], horse-
radish peroxidase [142], tyrosinase [143], urease [144], and acetylcholinesterase 
[145]. Acetylcholinesterase (AChE) is a catalytic enzyme present in the central 
nervous system, which catalyzes the hydrolysis of acetylcholine and choline esters. 
Its catalytic ability is severely affected by the presence of different types of organo-
phosphorus and carbamate pesticides even in trace amounts. AChE can be easily 
immobilized on the surface of graphene oxide-based nanohybrids which offer a 
large surface area and abundant active sites so that they can be used for developing 
AChE inhibition-based biosensors [146].

Although a lot of work has already been reported on graphene-based biosensors; 
however, due to novel microbes and diseases associated with them, excess use of 
toxicants in food and feed products, nonjudicial use of pesticide and day by day 
disintegrating environmental conditions urgently need tools for detection of such 
chemicals and biologicals, and hence, more rapid and urgent requirement for the 
development of biosensors arises In the past 2 years, countless new graphene oxide 
nanohybrids-based biosensors are reported. For example, Yao et al. [147] reported 
an electrochemical biosensor based on the inhibition of AChE, using a gold nano-
cage/graphene oxide-chitosan nanocomposite-modified screen-printed carbon 
electrode for detection of chlorpyrifos (Figure 2). Where the biosensor showed 
good electrocatalytic activity for the oxidation of enzymatically produced thiocho-
line and detected chlorpyrifos concentrations as low as 3 ng L−1.

Similarly, Bao et al. [148] developed a biosensor for malathion detection based 
on three-dimensional graphene-copper oxide nanoflowers nanocomposites elec-
trode, and the group was able to obtain a wide linear relationship to malathion 
concentration ranging from 3 pM to 46.665 nM with a theoretical limit of detection 
at 0.92 pM. Moreover, Cui et al. reported a very stable electrochemical AChE bio-
sensor for detection of dichlorvos by adsorption of AChE on chitosan, TiO2 sol-gel, 
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and rGO-based many fold matrix, with the linear range varying from 0.036 μM 
to 22.6 μM, limit of detection of 29 nM and total time for detection about 25 min. 
Furthermore, electrochemical acetylcholinesterase biosensor based on the silver 
nanowire, graphene, TiO2 sol-gel, chitosan, and acetylcholinesterase is fabricated 
by Zhang et al. [149] (Figure 3).

On a similar note, Zhang et al. [150] developed a highly sensitive AChE ampero-
metric biosensor based on conjugated polymer and Ag-rGO-NH2 nanocomposite. 
Group used a slightly different method for electrode fabrication where authors first 
electrochemically polymerized 4, 7-di (furan-2-yl) benzothiadiazole on electrode 
surface followed by deposition of Ag-rGO-NH2 nanocomposite. The biosensor is 
found to be biocompatible with high efficiency having the linear range from 0.099 
to 9.9 μg L−1 0.032 μg L−1 for malathion and 0.001 μg L−1 for trichlorfon. Moreover, 
Mogha et al. [151] developed a biosensor for the detection of Chlorpyrifos using 
rGO supported Zirconium Oxide immobilized AChE (Figure 4). The group is able 
to detect the Chlorpyrifos in two linear ranges first from 10−13 to 10−9 M, whereas 
the second linear range was observed between 10−9 and 10−4 M.

Aghaie et al. [152] developed a nonenzymatic biosensor for the detection of 
paraoxon ethyl. A graphene-based NiFe bimetallic phosphosulfide nanocomposite 
biosensor is fabricated, where square wave voltammetric is used as a detection 
technique. The linear range for the detection of paraoxon methyl is found to be 
12.3–10,000 nmol L−1 and limit of detection as 3.7 nmol L−1.

Furthermore, a group of Hondred et al. [153] (Figure 5) utilized salt impreg-
nated inkjet maskless lithography for preparation of 3D porous architectured 
graphene for application in biosensing of paraoxon and supercapacitor. The as 
developed biosensor showed a wide linear range from 10 to 500 nM, low limit of 

Figure 2. 
(a) A schematic diagram of the construction process of AChE biosensor based on screen-printed electrodes, 
(b) and (c) DPV behavior, and percent inhibition obtained by biosensor in the presence of chlorpyrifos. 
Reprinted with permission from ref. [147], published by the Royal Society of Chemistry (RSC) on behalf of 
the Centre National de la Recherche Scientifique (CNRS) and the RSC.
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detection of 0.6 nM with high sensitivity of 12.4 nA nM−1; moreover as a super-
capacitor, it demonstrates a high energy density of 0.25 mW h cm−3 at a power 
density of 0.3 W cm−3. Similarly, another AChE biosensor is developed based on 
a film of gold nanoparticles/three-dimensional graphene, by Dong et al. [154], 
for methyl parathion and malathion detection in a linear range from 1.0 × 10−10 to 
1.0 × 10−6 g L−1, having limits of detection as 2.78 × 10−11 g L−1 and 2.17 × 10−11 g L−1.

Some more examples of biosensors based on graphene oxide nanohybrids for 
the detection of different types of pesticides such as methyl parathion [155–158], 
carbofuran [155, 157, 159], chlorpyrifos [156], imidacloprid [160], phoxim with 
graphene/GCE [161], poly(3-methylthiophene)/nitrogen-doped graphene [162], 
and carboxylic chitosan /silver nanoclusters-rGO [163], paraoxon and chlorpyrifos 
with TiO2-GO/UiO-66 composite [164], carbaryl with MWCNTs/GO nanorib-
bons [165], carbaryl and chlorpyrifos with AgNPs-CGR/NF composite [166], 

Figure 3. 
(a) Schematic illustration of the AChE based biosensor and its working mechanism to ATCl.(b) and (c) SEM 
images of Gra/AgNWs/SiO2 nanohybrids, where large graphene sheet is enhancing the connection with AgNWs 
in (b) with small graphene pieces further improving the performance of biosensor (in red rectangle shown in 
(c)), while (d) and (e) represent the inhibition of AChE in presence of DDVP using the biosensors. Reprinted 
with permission from ref [149], Published by The Royal Society of Chemistry.

Figure 4. 
An illustration of rGO supported Zirconium Oxide immobilized AChE nanohybrid as a biosensing platform 
for chlorpyrifos detection. Reprinted with permission from Ref. [151], published by Elsevier.
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chlorpyrifos and carbofuran with ZnONPs-CGR/NF composite [167], carbaryl 
and monocrotophos with ionic liquid-functionalized graphene /gelatin [168], 
monocrotophos with Prussian blue nanocubes [169], malathion and carbaryl with 
rGO-AuNP/β-cyclodextrin/Prussian blue-CS nanocomposites [170], fenitrothion 
with cerium oxide nanoparticle-decorated rGO [171], diuron with rGO-AuNPs 
[172], paraoxon-ethyl with rGO-AuNPs/polypyrrole [173], carbaryl with Graphene/
polyaniline nanohybrid [174], carbaryl with an electrochemically induced porous 
GO network [175], and methyl parathion and malathion with plant esterase—Chit/
AuNPs-graphene nanosheets [176].

5. Conclusion and future aspects

Graphene oxide is an attractive material that has gathered ever accumulative 
interest from the scientific community over the past several years. Owing to its 

Figure 5. 
(a) Schematic diagram of AChE biosensor portraying the functionalization approach for pesticide detection 
using EDC/NHS. (b) AChE pesticides biosensor characterization with photograph, activity, sensitivity, and 
comparison between salt impregnated inkjet maskless lithography (SIIML) and inkjet maskless lithography 
(IML)-based biosensors. Reprinted with permission from Ref. [153], published by The Royal Society of 
Chemistry.
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extraordinary properties, graphene oxide and its derivatives are already being 
exploited in a wide variety of applications comprising electronics, energy, biosen-
sors, catalysis, green chemistry, etc. Though, in the last decade, the relentless search 
for new opportunities benefiting from graphene oxide has led to the introduction 
and evolution of graphene oxide-based nanohybrids, which combine matchless 
and beneficial properties of nanomaterials/nanotechnology with those of graphene 
oxide to yield valuable and synergistic effects.

In this chapter, we have discussed the brief history of graphene oxide and gra-
phene, emphasizing the structural details of graphene oxide and excellent properties 
associated with it. Graphene oxide-based nanohybrids show the synergistic effect 
of having properties of both graphene oxide as well as other constituting material 
whether nanoparticle or polymer. Synthetic mythologies of graphene oxide-based 
nanohybrids have also been discussed here in this chapter, in particular, graphene 
oxide/nanoparticle nanohybrids. Finally, applications of graphene oxide-based 
nanohybrids were presented in the field of biosensors and catalysis. In the case of 
biosensors, the main emphasis was given to the largest class of biosensors, that is, 
electrochemical biosensors, which consist of mainly enzyme biosensors and elec-
trochemical DNA sensors, but some cases of other electrochemical sensors were also 
demonstrate. Applications of these graphene oxide-based hybrids in catalysis were 
also discussed emphasizing their use as an organic reaction catalyst, photocatalysts 
for the degradation of environmentally harmful molecules.

In conclusion, we have highlighted the properties of graphene oxide-based 
nanohybrids wherein these nanostructures can bring excellent synergistic advan-
tages to a wide variety of biosensing applications. While promising, the field of 
graphene oxide-based nanohybrids is still not completely exhausted and several 
intriguing issues must be resolved before its maximum potential can be achieved. 
Besides, we envision that the evolution of this technology will result in the use 
of graphene oxide-based nanohybrids in a much wider range of applications by 
employing high quality and large-scale fabrication of these materials to minimize 
the cost leading to their commercialization. We also hope that this chapter has moti-
vated attention from various disciplines that will gain benefits from the expansion 
of graphene oxide-based nanohybrids development for applications in numerous 
other fields of interest.
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