
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Brain-Inspired Spiking Neural
Networks
Khadeer Ahmed

Abstract

Brain is a very efficient computing system. It performs very complex tasks while
occupying about 2 liters of volume and consuming very little energy. The compu-
tation tasks are performed by special cells in the brain called neurons. They com-
pute using electrical pulses and exchange information between them through
chemicals called neurotransmitters. With this as inspiration, there are several com-
pute models which exist today trying to exploit the inherent efficiencies demon-
strated by nature. The compute models representing spiking neural networks
(SNNs) are biologically plausible, hence are used to study and understand the
workings of brain and nervous system. More importantly, they are used to solve a
wide variety of problems in the field of artificial intelligence (AI). They are
uniquely suited to model temporal and spatio-temporal data paradigms. This chap-
ter explores the fundamental concepts of SNNs, few of the popular neuron models,
how the information is represented, learning methodologies, and state of the art
platforms for implementing and evaluating SNNs along with a discussion on their
applications and broader role in the field of AI and data networks.

Keywords: spiking neural networks, spike timing dependent plasticity,
neuomorphic computing, artificial intelligence, low power, supervised learning,
unsupervised learning, spatio-temporal learning, neuron models, spike encoding,
winner take all, stigmergy

1. Introduction

Nature has provided innumerable examples of very efficient solutions to
complex problems with seemingly simple rules. With these as inspiration, many
engineering problems are tackled using bioinspired techniques. A few of bioinspired
techniques are evolutionary and genetic algorithms, stigmergy, hidden Markov
models, belief networks, neural networks, etc. These are applicable in a wide variety
of domains from robotics [1], communication systems, routing [2], building
construction [3], scheduling, optimization, machine intelligence, etc. The brain is a
very efficient computing element capable of performing complex tasks. This is
possible due to massively parallel computation being performed by the vast number
of cells called neurons in the brain while consuming very little energy. This has
inspired a domain of algorithms and techniques called artificial intelligence (AI)
where machines are programmed to learn and then solve complex tasks. The recent
advances in high performance computing and theoretical advances into statistical
learning methodologies have enabled a widespread use of AI techniques for tasks

1

such as pattern recognition, natural language understanding, speech recognition,
computer vision, odor recognition, machine translation, medical diagnosis, gaming,
autonomous driving, path planning, autonomous robots, financial market modeling
and the list goes on. Solving these kinds of problems with efficiency is not possible
with the traditional computing paradigms. These algorithms are mimicking biology
or are inspired from biology to tackle the above problems. For example, it is not
humanly possible to have traditional software program coded to classify an image of
a simple object such as a cup with reasonable accuracy, considering the innumerable
variations available in terms of shape, size, color, etc. However, this is a trivial task
for a human being as our brains learn to identify the salient features of an object.
The inner working of the brains, especially the way it processes information is the
inspiration behind a class of AI techniques called neural networks.

AI requires a large amount of compute power while churning through massive
amounts of data. Today’s real-world tasks require different sets of AI models with
different modalities to interact with each other, hence needing a large pipeline with
complex data dependencies. Training is time-consuming, while needing efficient
multi-accelerator parallelization. Even with such advances we are nowhere close to
the compute power or the efficiency of a human brain. Human brain is still a
mystery and is a very actively researched topic. Several neuron models are proposed
to mimic various aspects of how the brain works with the limited understand we
have up till now.

Spiking neural networks (SNNs) are networks made up of interconnected com-
puting elements called neurons. SNNs try to mimic biology to incorporate the
efficiencies found in nature. These neurons use spikes to communicate with each
other. SNNs are third generation of neural networks [4] and are gaining popularity
due to its potential for very low energy dissipation due to their event-driven and
asynchronous operation. SNNs are also interesting because of their ability learn in a
distributed way using a technique called Spike Timing Dependent Plasticity (STDP)
learning [5]. STDP relies on sparsely encoded spiking information among local
neurons. SNNs are capable of learning rich spatio-temporal information [6]. In
principle, SNNs can be fault tolerant due to its ability to re-learn and adapt the
connections with other neurons, akin to how the brains learn. Also SNNs can
natively interface with specialized hardware sensors which mimic biological vision
(Dynamic Vision Sensor) and hearing (Dynamic Audio Sensor) [7] as they directly
transduce sensory information to spikes.

In the rest of the chapter, a brief introduction on neuron biology and artificial
neuron models is presented, followed by discussion on information representation
as spikes, different learning methodologies, tools, and platforms available for sim-
ulating and implementing SNNs and finally few case studies as examples of SNN
usage.

2. Neuron models

In this section, a brief overview of the biological neuron processes is provided to
understand the inference and learning dynamics of SNNs. A few popular neuron
models are discussed at a high level to make the reader aware of the diversity of
such research and its use in SNNs.

2.1 Biological neuron

Complex living organisms have specialized cells called neurons, which are the
fundamental unit of central nervous system. Neurons can transmit and receive

2

Biomimetics

signals in the form of electrical impulses. In a human brain, there are an estimated
200 billion neurons. Also, there are several different types of neurons in the body.
In general, a neuron consists of a cell body or soma consisting of cell machinery,
nucleus, dendrites, and an axon as shown in Figure 1.

The dendrites receive information from other neurons, and this causes a voltage
buildup on the cell body. When this membrane potential reaches a certain thresh-
old, an electrical impulse is generated, and the axon transmits this spike away from
the cell body to other neurons. After a spike is generated, the neuron returns to a
lower potential called resting potential. Also, immediately after a spike is generated,
the neuron cannot generate another spike for a short duration called the refractory
period. The axon terminates at axon terminals which interface with dendrites of
other neurons; this is called as a synapse. A synapse is connection between a pre
synaptic neuron (which generates electrical impulse) and a postsynaptic neuron
(receives the spike information) as shown in Figure 1. The synapse is not a direct
connection, instead it consists of a gap called synaptic cleft as shown in Figure 2.
Discussion about astrocyte cells is presented later in Section 4.5.

When an electrical impulse reaches the synapse, the presynaptic neuron releases
certain chemicals called neurotransmitters into the synaptic cleft. The postsynaptic
neuron picks up these neurotransmitters eventually causing the postsynaptic neurons
membrane potential to either increase or decrease. The brain learns by strengthening
or weakening the existing synaptic connections or by making new synaptic connec-
tions or dissolving those which are no longer needed. In this way, the synapses make
the brain plastic and provide the ability to learn. Also, the strength of the synapse also
matters for learning as it can modulate the amount of neurotransmitters released in
the synaptic cleft resulting in a stronger or weaker synapse and depending on the type

Figure 1.
Neurons (by unknown author, licensed under CC BY-SA https://creativecommons.Org/licenses/by-sa/3.0/).

Figure 2.
Neuronal synapse along with astrocyte cells (author created).

3

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

of neurotransmitters released, the synapse can be excitatory or inhibitory. An excit-
atory synapse is one which would increase the membrane potential of the post
synaptic neuron; conversely, an inhibitory synapse would decrease the membrane
potential. Based on these fundamental concepts, several researchers have proposed
various neuron models over the decades. We do not yet fully understand the inner
workings of brains and is still an active field of research. New neuron models are
being proposed frequently as our understanding of biology increases. A few neuron
models are listed below, followed by an overview of select models.

2.2 Artificial neuron models

Some of the models proposed try to mimic biology for the purpose of under-
standing and modeling neuro-physiological processes and some models more ori-
ented toward computing purposes. A few of neuron models to consider are
McCulloch and Pitts [8], Hodgkin-Huxley [9], Perceptron [10], Izhikevich [11]
Integrate and fire [12], Leaky integrate-and-fire [13], Quadratic integrate-and-fire
[14], Exponential integrate-and-fire [15], Generalized integrate-and-fire [16],
Time-varying integrate-and-fire model [17], Integrate-and-fire or burst [18],
Resonate-and-fire [19], and Bayesian neuron model [20].

2.3 Hodgkin and Huxley neuron model

Hodgkin and Huxley [9] studied the giant axon of the squid and found currents
induced by different types of ions namely sodium ions, potassium ions, and leakage
current due to calcium ions. The cell consists of voltage-dependent ion channels
which regulate the concentration of these ions across the cell membrane. For the
sake of simplicity, at a high level, the total membrane current is the sum of current
induced by membrane capacitance and the ion channel currents as shown in Eq. (1),
where Ii is the ionic current density, V is the membrane potential, CM is the
membrane capacitence per unit area, t is time, and INa, IK, Il are the sodium,
potasium, and leakage current induced by calcium and other ions.

I ¼ Ic þ Ii (1)

Ic ¼ CM
dV
dt

(2)

Ii ¼ INa þ IK þ Il (3)

They also describe gating variables to control the ion channels and the resting
potential of the cell. When the membrane potential increases significantly above the
resting potential, the gating variable activates and then deactivates the channels
resulting in a spike. This is a very simplified model and has several limitations [21].

2.4 Izhikevich neuron model

Izhikevich neuron model [11] is more biologically plausible as shown in
equations below.

v0 ¼ 0:04v2 þ 5vþ 140� uþ I

u0 ¼ a bv� uð Þ

If v≥ 30mV, then
v ¼ c

u ¼ uþ d

((4)

4

Biomimetics

Where v is the membrane potential, u is the recovery variable, I is the current,
and a, b, c and d are neuron parameters. Various biologically plausible firing pat-
terns can be modeled using this model as shown in Figure 3.

Over time, if a biological neuron does not spike, then any potential builtup
would dissipate. This phenomenon is modeled by several variations of Leaky
Integrate and Fire (LIF) models. LIF neuron model is very popular due to its ease
of implementation as a software model and for developing dedicated hardware
models. Digital hardware implementation is more popular than the analog variants,
again due to its simplicity of design, fabrication, and scalability.

2.5 Discrete leaky integrate and fire

A typical generic LIF model adapted for discrete implementation [22] is
represented as:

Synaptic integration

V tð Þ ¼ V t� 1ð Þ þ
X

N�1

i¼0

xi tð Þsi (5)

Leak integration

V tð Þ ¼ V tð Þ � λ (6)

Threshold, fire and reset

If V tð Þ≥ α then Spike and V tð Þ ¼ R (7)

Figure 3.
Izhikevich neuron model [11].

5

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

Where V tð Þ is the membrane potential, t is discrete time step, N is the number of
synapses, xi tð Þ is the i

th synapse, si synaptic weight of ith synapse, λ is leak, α is
spiking threshold, and R is the resting potential. A spike value is 1, otherwise 0.
Whenever, a spike occurs on a synapse x tð Þ then the synaptic weight gets accumu-
lated increasing the membrane potential. Every time step a leak is applied and
finally when the membrane potential reaches a threshold α, the neuron spikes and
the membrane potential is reset to a resting value R.

2.6 Bayesian neuron model

Bayesian neuron (BN) model is proposed in [20]. BN model is a stochastic
neuron model. When the membrane potential reaches the threshold a BN model
fires a spike stochastically. It generates a spike based on a Poisson process where
neuron Z fires at time t with a probability proportional to its membrane potential at
time t. The membrane potential u tð Þ is computed as:

u tð Þ ¼ w0 þ
Xn

i¼1
wiyi tð Þ (8)

Where the weight of the synapse between ith presynaptic neuron yi and Z is wi.
If yi fires a spike at time t, then yi tð Þ is 1. The intrinsic excitability is w0. The firing
probability of this stochastic neuron model depends exponentially on the
membrane potential u tð Þ as:

probability Z fires at time tð Þ∝ exp u tð Þð Þ (9)

To generate a Poisson process with time-varying rate λ tð Þ, the Time-Rescaling
Theorem is used. According to this theorem, when spike arrival times vk follow a
Poisson process of instantaneous rate λ tð Þ, the time-scaled random variable Λk ¼
Ð vk
0 λ vð Þdv follows a homogeneous Poisson process with unit rate. Then the
interarrival time τk satisfies exponential distribution with unit rate.

τk ¼ Λk � Λk�1 ¼

ðvk

vk�1

λ vð Þdv (10)

τk represents a generated random variable satisfying an exponential distribution
with unit rate. vk is the next time to spike. As shown in Eq. (10), the instantaneous
rates from Eq. (8) is cumulated until the integral values is greater than or equal to
τk: At this point of time, a spike is generated as it implies that the interspike interval
has passed. Poisson spiking behavior is achieved in this way reflecting the state of
the neuron. Other stochastic neuron behaviors can be easily constructed by
stochastically varying different parameters of the model.

3. Information representation

SNNs understand the language of spikes, and it is necessary to decide what is the
best possible way to represent real-world data to achieve best possible training of
the network and efficient inference. Different coding techniques model different
aspects of input spectrum. Some of the spike coding techniques are described below
to get an intuition of signal representation using spikes.

6

Biomimetics

3.1 Rate coding

With rate coded spike trains, the information is encoded in the number of spikes
over a specified temporal window. The firing rate νk, over k trials is shown in
Eq. (11), where nspk is the number of spikes over k trials over a temporal window T

and is the number of trials [23].

νk ¼
n
sp
k

T
(11)

Evidence of rate coding is experimentally shown in sensory and motor systems
[24]. The number of spikes emitted by the receptor neuron increases with the force
applied to the muscle.

If the rate ν is defined via a spike count over a temporal window of duration T,
the exact firing time of a spike does not matter [23]. We can define it as a Poisson
process where spikes events are stochastic and independent of each other with an
instantaneous firing rate ν: In a homogeneous Poisson process, the probability to
find a spike in a short interval Δt is

PF t; tþ Δtð Þ ¼ νΔt (12)

Therefore, the instantaneous firing rate is

ν ¼ lim
Δt!0

PF t; tþ Δtð Þ

Δt
(13)

The expected number of spikes for the temporal window T is

⟨nsp⟩ ¼ νT (14)

To summarize, the experimental procedure of counting spikes over a time T and
dividing by T gives an empirical estimate of the rate ν of the Poisson process. When
recording an experiment over several trials, the spike response can be represented
via a Peri-Stimulus-Time Histogram (PSTH) with bin width Δt as shown in
Figure 4. The number of spikes nk t; tþ Δtð Þ summed over all repetitions K of the
experiment is a measure of the typical activity of the neuron between time t and
tþ Δt. Therefore, the spike density can be represented as shown in Eq. (15).

ρ ¼
1
Δt

nk t; tþ Δtð Þ

K
(15)

Figure 4.
The Peri-stimulus-time histogram and the average time-dependent firing rate [23].

7

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

A spike train S tð Þ is a sum of δ functions with a spike occurring at ts.

S tð Þ ¼
X

s

δ t� tsð Þ (16)

The instantaneous firing rate is the expectation over trials.

v tð Þ ¼ ⟨s tð Þ⟩ (17)

An empirical estimate of the instantaneous firing rate can be deduced as shown
in Eq. (18). It implies that the PSTH as described above represents the instanta-
neous firing rate.

ν tð Þ ¼
1

KΔt

X

K

k¼1

n
sp
k tð Þ (18)

The average firing rate can be computed for a single neuron, or for a population
of neurons representing a class over a single run or over several trials. Rate coding
over a time window is suitable for representing the strength of stimulation. On the
other hand, population-based rate coding could convey the same information by
employing several neurons in a shorter temporal window. The latter trades quick
response over a number of neurons. There is evidence of Purkinje neurons demon-
strating information coding which is not just firing rate but also the timing and
duration of nonfiring, quiescent periods [25, 26].

3.2 Temporal coding

If the time of spike occurrence in a temporal window carries information, then
such coding is referred to as temporal coding. In such coding schemes the quiescent
periods and the spiking time both carry information. There are several evidences in
biology demonstrating this behavior [27, 28]. A typical temporal code is shown in
Figure 5A, where the time interval of spike to start of stimulus caries information.
These are sometimes referred to as pulse codes. Another variation is Rank Order
Coding, which uses the relative timing of spikes across a population of cells. Rank
order codes look at time to spike across the neuron population and a rank order can

Figure 5.
Different strategies for information coding with spikes (refer to [29] for details). (A) Time to first spike coding
(B) rank order coding (C) latency coding (D) resonant burst coding (E) synchrony coding (F) phase coding.

8

Biomimetics

be implied from the firing order among the neurons in the population as described
in Figure 5B.

There is evidence suggesting that simple temporal averaging of firing rate is too
simplistic to model neuronal circuits in the brain [30]. To address some of the
shortcomings, several derivations of coding schemes based on different combina-
tions of above concepts are widely used. Few of the common schemes and some task
specific coding schemes are Rate code, Time to spike code, Time-to-first-spike:
Latency code [31], Reverse time to spike code, Weighted spike code [32], Burst
code [33], Population code, Population rate, Rank order code [34], Phase-of-firing
code [35, 36], Place code [37], etc. Figure 5 summarizes a few coding strategies.
These coding schemes require appropriate algorithms for converting real-world
data to spikes and vice versa. A few common conversion techniques are discussed in
the next section.

3.3 Spike transduction

SNNs understand the language of spikes; therefore, we must transform the real-
world data to appropriate spike representation and subsequently transform the out-
put spikes to real-world formats for human consumption. There are several encoding
and decoding algorithms available to achieve this goal. Several heuristics are also
employed. Some of the coding techniques mentioned above infer a specific coding/
decoding scheme. Based on the nature of application (such as images, audio, video,
financial data, user activity data), one must choose which is the best approach.

Image pixel values are binned and proportional firing rates are assigned to
different neurons in the receptive fields for each pixel neuron, hence generating
random process with rate coding [38]. Since spikes have no polarity positive and
negative spike, subchannels can be used to represent richer encoding of data. In
threshold-based schemes, a spike is generated when the input signal intensity
crosses a threshold. Real numbers are compared against different thresholds, and
positive and negative spikes are produced accordingly which are rate coded [39].
BSA algorithm for encoding and decoding [40] is used for modeling brain-machine
interfaces and neurological processes in the brain. The work presented by the
authors of [41] provides details on step-forward (SF), and moving-window (MW)
encoding schemes. In SF scheme, a baseline B tð Þ intensity for the input signal is set
and a positive spike is generated if the intensity is above the baseline by the
threshold B tð Þ þ Th amount and the baseline is updated to this new value B tð Þ ¼
B t� 1ð Þ þ Th. Conversely a negative spike is generated if the signal intensity is
below B tð Þ � Th and the new baseline is adjusted as B tð Þ ¼ B t� 1ð Þ � Th. MW
scheme is like SF scheme except that the baseline is set based on the mean of signal
intensities. These schemes are suitable for encoding continuous value signals. The
above examples are only a limited set of algorithms out of a vast majority of
methods to convert diverse signal formats to spikes.

4. Learning principles for SNN

Hebb postulated that synaptic efficacy increases from a presynaptic neuron if it
repeatedly assists the post synaptic neuron [42]. This forms the fundamentals of
STDP rule for learning. STDPmimics biology where a synapse is strengthened when
a presynaptic spike occurs before a post synaptic spike in close intervals, this is
called Long-Term Potentiation (LTP). On the other hand, the synapse is weakened
if the post synaptic neuron fires before the presynaptic neuron in close intervals.
This is called as Long-Term Depression (LTD). In biology neurons are highly

9

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

selective due to lateral inhibition. This allows for them to learn discriminatory and
unique features in an unsupervised manner leading to an emergent Winner Take All
(WTA) behavior. Apart from this the biological system demonstrates homeostasis
to maintain overall stability. These are key principles in SNN modeling. There are
several ways to achieve WTA and homeostasis behavior, some directly modify the
neuron state, others use neural circuits. One such example with a scalable neural
circuit [43] is shown in Figure 6. A WTA network consists of inhibitor neurons
suppressing the activation of other lateral symbol neurons as shown in Figure 6(a).
To assist in homeostasis a normalization of the excitations of one neural circuit
compared to others can be achieved using a Normalized Winner Take All (NWTA)
network as shown in Figure 6(b). Where an upper limit (UL) neuron uniformly
inhibits all symbol neurons if they are firing beyond a desirable high threshold. On
the contrary if the symbol neurons are firing below a desired low threshold, then the
lower limit (LL) neuron triggers an excitor (Ex) neuron to uniformly boost the
firing rate of all symbol neurons. In this manner all independent neural circuits
within an SNN fire in the dynamic range of excitations of the overall network. Both
hard and soft WTA behavior can be achieved based on the amount of inhibition
generated. In Hard WTA only one symbol neuron is active whereas in soft WTA
more than one symbol neuron is active providing richer context.

SNNs can learn in both unsupervised and supervised modes. WTA concepts are
essential part of unsupervised learning as the neuron with highest excitation inhibits
the lateral neurons the strongest hence enabling it to preferentially pick up unique
features. Unsupervised learning is possible by employing a teacher signal which excites
the specific neurons to fire thereby allowing it to learn the features represented by the
input signal. STDP based learning has its advantages of being able to model spatio-
tempotal dynamics. Where the spatial component refers to localized activity/learning
and temporal component refers to additional information representation by the spike
intervals along the time axis. With the constant advances in SNN research, native
STDP based rules are catching up to themore popular backpropagation-based learning
methods used in Artificial Neural Networks (ANN). STDP lends itself for efficient
localized and distributed learning, which is a huge advantage over other learning
methods. Also SNNs can be adapted to model memories in the form of Long Short-
Term Memory networks [39] which shows that recurrent learning behavior is also
possible. The following sub-sections discus few learning rules used in training SNNs
along with a brief introduced to backpropagation-based learning.

4.1 Classic STDP rule

A classic STDP rule [44] is shown in Figure 7. The STDP curve tries to approx-
imate experimentally observed behavior.

Figure 6.
(a) Winner take all network (b) normalized winner take all network [43].

10

Biomimetics

Here ∆W is the weight update plotted against ∆t ¼ tpre � tpost representing the
interval between the presynaptic and post synaptic spike. This approximation is
represented in Eq. (19)

∆W ¼

aþ exp
tpre � tpost

τþ

� �

if tpre ≤ tpost LTPð Þ

�a� exp �
tpre � tpost

τ�

� �

if tpre > tpost LTDð Þ

8

>

>

>

>

<

>

>

>

>

:

(19)

Where aþ, a� are the learning rates and τþ, τ� are the time constants for LTP
and LTD, respectively. There are several variations of the STDP curves available in
the literature and the reader is encouraged to explore this topic further.

4.2 Simplified stable STDP rule with efficient hardware model

There are two broad categorizations of STDP rules, additive and multiplicative
STDP [38]. Multiplicative rule tends to be more stable than additive rule. In
additive rules the weight changes are independent of current weight and requires
additional constraints to keep the values in operating bounds. These weight
changes however produce bimodal distribution resulting in strong competition.
In multiplicative rule presented in [38], the weight change is inversely proportional
to the current weight making it inherently stable and resulting in a unimodal
distribution. This distribution lacks synaptic competition which is desirable for
learning discriminative features. For such rules, competition must be introduced in
a different method. The stable multiplicative rule is further explored below and
simplified for efficient implementation. Here the STDP rule is modeled such that
weight change of a synapse has an exponential dependence on its current weight as
shown in Figure 8 (a). Update for the weight wi of i

th synapse of the neuron is
calculated as below.

If

tpost � tpre < τLTP (20)

then,

∆wi ¼ ηLTPe
�wi ,wi ¼ wi þ ∆wi

Figure 7.
Classic STDP curve [44].

11

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

If

tpost � tpre > τLTP or tpre � tpost < τLTD

then,

∆wi ¼ ηLTDe
wi , wi ¼ wi � ∆wi (21)

Where tpost and tpre are the pre and post-synaptic neuron spiking time steps,
τLTP and τLTD are the LTP and LTD window and ηLTP and ηLTD are the LTP and LTD
learning rates respectively. Plasticity is implemented with LTP and LTD windows as
shown in Figure 8 (b). This rule is called as Exp rule.

The Exp STDP rule requires an exponential and a multiplication operation for
both LTP and LTD for each synapse. From the perspective of efficient digital
hardware implementation these are expensive operations in terms of circuit area
and computation time. Quantized 2-power shift rule (Q2PS), which approximates
the Exp rule in Eq. (20) and Eq. (21) by removing both multiplication and
exponential. The approximation is summarized in Eq. (22) and Eq. (23).

If

tpost � tpre < τLTP

∆wi ¼ ηLTP2
�wi ¼ 2η0LTP�wi (22)

If

tpost � tpre > τLTP or tpre � tpost < τLTD

∆wi ¼ ηLTD2
wi ¼ 2η0LTDþwi (23)

where η0LTP ¼ log 2ηLTP and η0LTD ¼ log 2ηLTD. LetQ ¼ η0LTP �wi for LTP and
Q ¼ η0LTD þwi for LTD. LetQ be the quantization ofQ through priority encoding.
Priority encoding compresses a binary representation of a number to valuewith only the
most significant bit being active as rest of the active bits have no priority. For example,
the binary representation ofQ ¼ 13 is 1101 and the priority encoded value is 1000,
henceQ ¼ 8. Based on this quantizationmethod, the synaptic weight change can be
easily computed by left shifting 1 byQ or right shifting if negative as shown in Eq. (24).

∆wi ¼
1≪ Q

�

�

�

�, if Q >0

1≫ Q
�

�

�

�, if Q <0

(

(24)

Figure 8.
(a) Current weight vs weight change for learning rates (b) STDP windows (c) Comparison of Exp, 2P and
Q2PS STDP rules [38].

12

Biomimetics

where ≪ and≫ represent binary shift left and shift right operations, respec-
tively. This approximation allows implementation of the STDP rule presented in
Eq. (20) and Eq. (21) on digital hardware by using a priority encoder, negligibly
small lookup to determine Q

�

�

�

� from the encoded value, barrel shifter and an adder
circuit. Please note that, based on Eq. (22) and Eq. (23), ∆wi should be calculated as

2Q , which can be obtained by shifting value 1 by Q . Figure 8 (c) compares the ∆wi

calculated using the Exp, 2P and Q2PS rules, with a learning rate of 0.08 for all the
cases. Here 2P rule is same as Q2PS rule except that 2 is raised to the power of Q. As
we can see, the Q2PS rule provides multi-level quantization, which enables similar
quality of trained weights even with approximations when compared to Exp rule.

4.3 Overview of learning in artificial neural networks

With the tremendous advances in the field of ANNs, a growing body of research is
available on various statistical learning algorithms. ANNs are inspired by biology but
they do not mimic it. ANNs are made up of artificial neuron models specifically tuned
for compute purposes and model a biological neuron at a very abstract level. An
artificial neuron computes weighted sum of input signals and then an activation
function computes the neuron output. In these networks’ neurons transmit signals as
real numbers. ANNs compute inference by transmitting the neuron signals in the
forward direction. The learning happens usually via a method called Backpropagation.
This algorithm computes the gradients based on the error signal produced by a cost
function and propagates it back for each layer of neurons in the neural network. The
weight updates are usually made using gradient descent algorithms. There are many
flavors of gradient descent algorithms available in the literature. For back propagation
to work the activation function must be differentiable. Unlike SNNs, where a spike is
not differentiable. In general, ANNs have proven to be very effective in tackling a wide
variety of problems. Using these algorithms as inspiration several modified STDP rules
have been researched, one among them is discussed below. This overview is a very
high-level introduction to some of the terminology required to understand the follow-
ing section. The reader is encouraged to explore further on this topic.

4.4 Backpropagation-STDP

The Backpropagation-STDP (BP STDP) [45] algorithm uses the number of
spikes in a spike trains as an approximation for the real value of an artificial neurons
excitation. They also divide the time interval into sub-intervals such that each sub-
interval contains zero or one spike.

In supervised training, the weight adjustment is governed by the STDP model
shown in Eq. (25) and Eq. (26), in conjunction with a teacher signal. The teacher signal
when applied to target neurons undergo weight change based on STDP and non-target
neurons undergo weight changes based on anti-STDP. Anti-STDP is the opposite of
STDP where LTP and LTD equations are swapped. Target neurons are identified by
spike trains with maximum spike frequency (β) and non-target neurons are silent. The
expected output spike trains z, are tagged with their input labels. Eq. (25) represents
the weight change for a desired spike pattern zi tð Þ for the output layer neurons.

∆wih tð Þ ¼ μξi tð Þ
X

t

t0¼t�ϵ

sh t0ð Þ (25)

ξi tð Þ ¼

1, zi tð Þ ¼ 1, ri 6¼ 1 t� ϵ, t½ �

�1, zi tð Þ ¼ 0, ri ¼ 1 t� ϵ, t½ �

0, otherwise

8

>

<

>

:

(26)

13

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

A target neuron would generate a spike zi tð Þ ¼ 1 and non-target neurons would
remain silent zi tð Þ ¼ 0. Based on the expected output spike train target neuron
should fire within the short STDP window t� ϵ, t½ �. Based on the presynaptic
activity usually zero or one spike in the STDP window, the synaptic weights are
increased proportionally. The presynaptic activity is the count of spikes in the
t� ϵ, t½ � interval denoted as

Pt
t0¼t�ϵsh t0ð Þ. On the other hand, the non-target neurons

upon firing undergo weight depression in the same way. The difference between
the desired spike pattern and output spike pattern is used as the guide for identify-
ing target neurons and non-target neurons as the backpropagation rule. Same
methodology is used for each layer while back propagating. Among the several
learning methods inspired by ANN algorithms a few use strategies where the ANN
is trained in its native form and tuned based on a shadow SNN and finally use those
adapted weights on SNN for inference.

4.5 Stigmergy assisted learning

Stigmergy is a methodology where several independent agents produce an
emergent behavior through indirect interaction among themselves. This is facili-
tated with the help of asynchronous communication through traces left in the
environment by individual agents. Stigmergy has been observed in nature and
widely researched upon especially in insect colonies, these principles have been
applied towards solving various engineering problems. Recent advances in neuro-
science have shown evidence of another type of cells called astrocytes working in
tandem with neurons to regulate the behavior of the central nervous system [46].
Astrocytes are star shaped cells with several branches called as processes. The end of
these branches called as end feet interface with a synapse by wrapping around it
creating a region around the synaptic cleft called as microdomain as shown in
Figure 2. Astrocytes also interface the neurons apart from the synapse providing a
closed loop feedback mechanism. They also interface with other astrocytes like a
synapse, instead this is called as a gap junction. Gap junction facilitates communi-
cation between astrocyte cells only through chemical means. Astrocytes are func-
tionally very diverse and play a very important role, only a high-level concept with
limited detail is introduced for understanding of relevant discussion. With the help
of calcium ions as a signaling mechanism along with the help of neurotransmitters
the astrocytes help regulate the efficiency of synaptic transmission. These cells play
a critical role in maintaining homeostasis, modulating LTP, LTD and structural
plasticity in the brain.

Spiking activity results in release of neurotransmitters and change in concentra-
tion among different ions in the microdomain and extra cellular space. These

Figure 9.
Stigmergic interactions between astrocytes and neurons (modified from [47]).

14

Biomimetics

changes are monitored as traces for indirect communication by astrocytes. Astro-
cytes themselves behaving like an environment with calcium ion concentration
gradients within the cell acting as a medium for other neuron agents to indirectly
infer these changes. This interaction creates a feedback mechanism in an asynchro-
nous and distributed manner [47]. Figure 9 shows the emergent stigmergy pattern
in the brain. Short term activity and long-term activity gets communicated over a
distance to other synapses over a spatial domain. Greater the distance, lower would
be the influence. The details about the stigmergy based brain plasticity is presented
in [47], interested readers are encouraged to explore further. This is a relatively new
discovery and extensive research is underway to understand the role of astrocytes in
overall brain mechanics.

5. SNN simulation tools and hardware accelerators

There are several spiking neural network simulation tools available which sup-
port biologically realistic neuron models for large scale networks. Some of the
popular ones are:

Brian [48], is a free, open source simulator for spiking neural networks. This
simulator is capable of running on several different platforms and is implemented
in python making it extendable and easy to use.

NEST [49] is another simulator focusing on the dynamics, size and structure of
neural systems both large and small. This tool is not intended for modeling the
intricate biological details of a neuron.

NEURON [50] is simulation environment best suited for modeling individual
neurons and their networks. This is popular among neuroscientists for its ability to
handle complex models in a computationally efficient manner. Unlike above simu-
lator, NEURON can handle morphological details of a neuron and is used to validate
theoretical models with experimental data.

The above tools are commonly used in modeling biologically realistic neuron
modes. They have their own unique interfaces and low-level semantics. An effort is
made to smooth things out with a tool independent API package developed on
Python programming language called PyNN [51]. The PyNN framework provides
API support to model SNNs at a high level of abstraction of all aspects of neuron
modeling and SNN representation, including populations of neurons, connections,
layers etc. Though this provides high level abstraction, it also provides the ability to
program at a low level such as adjusting individual parameters at the neuron and
synapse level. To make things easy PyNN provides a set of library implementation
for neurons, synapses, STDP models etc. They also provide easy interfaces to model
various connectivity patterns among neurons like; all-to-all, small-world, random
distance-dependent etc. These APIs are simulator independent making the code
portable across different supported simulation tools and neuromorphic hardware
platforms. It is relatively straightforward to add support to any custom simulation
tool. PyNN officially supports BRIAN, NEST and NEURON SNN simulation tools. It
is also supported on SpiNNaker [52] and BrainScaleS-2 [53] neuromorphic hard-
ware systems. There are several more simulation tools which work with PyNN.

Cypress [54] is a C++ based SNN Simulation tool. This provides a C++ wrapper
around PyNN APIs. Hence, extending the multi-platform reach of Cypress using C++
interface. It is also capable of executing networks remotely on neuromorphic com-
pute platforms.

The BrainScaleS-2 [53] is a mixed-signal accelerated neuromorphic system with
analog neural core, digital connectivity along with embedded SIMDmicroprocessor.
It is efficient for emulations of neurons, synapses, plasticity models etc. This

15

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

hardware based system is capable of evaluating models up to ten thousand times
faster than real time.

The SpiNNaker [52] is another neuromorphic system custom built with digital
multicore ARM processors. The SpiNNaker system (NM-MC-1) consists of custom
chips each with eighteen cores sharing a local 128 MB RAM. The overall system
scales to more than a million cores.

Apart from the above tools and platforms the are many custom SNN tools
available to model SNNs easily for machine learning purposes. ANNarchy (Artificial
Neural Networks architect) [55] is a custom simulator for evaluating SNNs. This is
implemented in C++ language, along with acceleration support provided using
OpenMP/CUDA. The network definitions are provided using python interface.

NeuCube [6] is a development environment for creation of Brain-Like Artificial
Intelligence. The computational architecture is suited for modeling SNN applica-
tions across several domain areas. This tool supports the latest neural network
models for AI purpose. It supports PyNN interface, hence extending its versatility.
This tool can run on CPU, GPU and SpiNNaker platforms, also a cloud version of
the tool is available.

TrueNorth [56] is another neuromorphic platform capable of evaluating SNNs at
faster than real time and at very low power. They demonstrate running state of the
art neural networks on the hardware platform scaling up to 64 million neurons and
16 billion synapses while the system consumes only 70 W of power out of which
only 15 W is consumed by the neuromorphic hardware components. The hardware
supports inference only, with learning performed off chip.

Loihi [57] is the latest offering in the neuromorphic SNN hardware. This hard-
ware approach gets rid of crossbar architecture, which is prevalent in most previous
neuromorphic implementations, lending itself to greater amount of flexibility. Loihi
is also capable of on-chip learning which is a huge advantage in terms of online
learning of synapses.

Other simulators capable of modeling software based models and models for
custom neuromorphic hardware are presented in [20, 58–60]. This is still an
ongoing field of research and there are several more accelerator-based simulators
available hence the reader is encouraged to explore further. Neuromorphic
hardware using more exotic hardware devices like memristors and phase change
memories are also an active area of research, they are yet to make it to mainstream
consumption hence they are only mentioned here.

6. Case studies

In this section few case studies are presented to bolster the concepts discussed in
this chapter. The topics covered here include STDP learning dynamics, probabilistic
graphical models as SNNs, SNN with BP-STDP based learning and SNNs on
Neuromorphic Hardware.

6.1 STDP learning dynamics

A SNN is trained [38] to classify handwritten digits from the MNIST dataset
using the STDP based learning rules Exp, Q2PS and 2P presented in Section 4.2. The
authors build a three-layer SNN as shown in Figure 10. The MNIST images are of
28x28 pixel dimensions, hence the input layer contains 784 neurons, one per image
pixel. The second/hidden layer contains neurons for learning the features of the
input images. The number of neurons in this layer is varied over different trials to
evaluate the effectiveness of the learning rule. Finally, the third layer consists of 10

16

Biomimetics

neurons for classifying the input with one neuron per class. The input layer encodes
the pixel intensities with varying firing rate in the range of 0 Hz – 300 Hz. Each
input neuron is fully connected to the hidden layer neurons similarly each hidden
layer neuron is fully connected to the output/classification layer neurons. In this
network all synapses are plastic with soft WTA connectivity implemented between
input layer and hidden layer neurons to facilitate different neurons to pick up
shared features. On the other hand, a hardWTA connectivity exists between hidden
layer and the classification layer.

A qualitative analysis of the learning rule is depicted by the t-distributed sto-
chastic neighbor embedding (t-SNE) [61] visualizations in Figure 10. The t-SNE
algorithm maps high dimensional data points lying on different but related low-
dimensional manifolds to lower dimensions by capturing local structure present in
high dimensional data. The input layer firing rate visualizations show the clustering
of digit classes in 2 dimensions based on raw pixel data which has 784 dimensions.
Similarly, the second visualization is made using the firing rate based on the learnt
features of hidden layer as input to the t-SNE algorithm with 100 dimensions. It can
be clearly seen that the STDP rule produces tight clustering of input space which is
projected on to the feature space. The classification layer further groups these
features to its respective classes. Networks with different number of hidden layer
neurons are experimented with and the results are shown in the bottom right side of
Figure 10. The robustness of the learning method is also demonstrated with exper-
iments yielding similar accuracies with additive Gaussian white noise along with the
use of NWTA network.

6.2 Probabilistic graphical models as SNNs

An inference network based on a probabilistic graphical model for sentence
construction is created using Bayesian neurons. It consists of lexicons representing
words and phrases. Here each lexicon is a WTA sub network.

The network consists of two functional sections: word sub network and phrase
sub network. Each symbol neuron in word sub network represents a possible word
occurrence and each symbol neuron in phrase sub network represents a possible

Figure 10.
MNIST SNN architecture showing connectivity, input, learnt features, labels and t-SNE visualizations, along
with accuracy results [38].

17

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

pair of words co-occurring. The synapses between the symbol neurons represent
the log conditional probabilities of words and phrases co-occurring. This network is
initialized to have same intrinsic potential across all symbol neurons resulting in
same initial firing rate. Based on the synaptic weights the strongly connected neu-
rons resonate and enhance each other while laterally inhibiting other symbol neu-
rons within the lexicon WTA network. These winning neurons proportionally
excite other symbol neurons across different lexicons. In this manner the network
settles on a steady state firing rate which represents a contextually correct behavior.
From each lexicon of the word sub network a symbol neuron is picked with highest
firing rate representing a grammatically correct semantically meaningful sentence.
The WTA connections in this network perform soft WTA action there by the
facilitating the retention of contextual information. Figure 11 (a) shows the net-
work topology. For the experiments, random documents images are picked, and
fuzzy character recognition is performed. Due to the fuzzy nature, each character
position will result in several possible matches hence, multiple possible matches for
each word position is possible as described in [62]. An example of lexicon set is
[{we, wo, fe, fo, ne, no, ns, us} {must, musk, oust, onst, ahab, bust, chat} {now,
noa, non, new, how, hew, hen, heu} {find, rind, tina} {the, fac, fro, kho} {other,
ether}]. The SNN after evaluating the lexicons settles on a grammatically correct
sentence as [we must now find the other] as seen in Figure 11 (b).

6.3 SNN with Backpropagation-STDP based learning

Using the learning rule presented in Section 4.4, the authors of [45] train SNNs
to evaluate BP-STDP rule on the XOR problem, the iris dataset and the MNIST
dataset. They show that the network can model the linearly inseparable XOR prob-
lem using an SNN with 2 input, 20 hidden and 2 output neurons. For the iris dataset
they create a SNN with 4 input, 30 hidden and 3 output neurons. With this network
they were able to achieve 96% accuracy which is comparable to ANN trained with
traditional backpropagation with an accuracy of 96.7%. The SNN for MNIST dataset

Figure 11.
(a) Sentence confabulation network, (b) confabulation results spike plot [62].

18

Biomimetics

consists of 784 input neurons, 100 through 1500 hidden neurons and 10 output
neurons. With this network they were able to achieve 97.2% classification accuracy.

6.4 SNNs on Neuromorphic hardware

Deep networks achieve higher accuracy in recognition tasks and in some cases
outperform humans. Eedn framework is proposed in [63], which enables SNNs to
be trained using backpropagation with batch normalization [64] and implement
them on TrueNorth neuromorphic hardware. The Eedn trained networks are capa-
ble of achieving state-of-the-art accuracy across eight standard datasets of vision
and speech. In this implementation the inference on hardware can be run at up to
2600 frames/s which is faster than real time while consuming very low power of at
most 275 mW across their experiments. The network uses low precision ternary
weights +1, 0 and � 1 for its synapses. A binary activation function with an
approximate derivative is modeled to enable backpropagation. A hysteresis param-
eter is introduced in the weight update rule to avoid rapid oscillations of weights
during learning. The input images are transduced by applying 12 different
convolutional filter operators with binary outputs to get 12 channel input to the
network as shown in Figure 12.

Experiments were performed on eight datasets using five different network sizes
spanning across several TrueNorth chips. The results of the experiments are sum-
marized in Figure 13.

Figure 12.
Example image from CIFAR10 (column 1) and the corresponding output of 12 typical transduction filters
(columns 2–13) [63].

Figure 13.
Accuracy of different sized networks on eight datasets. For comparison, accuracy of state-of-the-art
unconstrained approaches are shown as bold horizontal lines [63].

19

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

7. Conclusion

This chapter discussed several concepts and techniques, all of which are bio
inspired. The case studies presented provide a strong basis to grasp the immense
potential these algorithms provide in tackling the very complex problems of today,
which were unimaginable without the advances in this field. This chapter specifically
provided a beginner’s guide to the field of spiking neural networks. It presented a
brief overview of neuron biology and notes on popular artificial neuron models.
Information representation as spikes and how to transduce real world data to spikes
and vice-versa was discussed which is similar to how brain represents information.
Several tools for spiking neural network modeling and evaluation were provided for
wholistic understanding and for experimental evaluation of one’s network models. A
few case study examples are presented to understand the presented concepts and the
scope of information presented in this chapter. This is an ongoing research and a very
hot topic with substantially new concepts and discoveries being published every
week. The motivation being the ability for machines to autonomously and efficiently
perform tasks which were previously delegated to humans only along every aspect of
our lives. This is a paradigm shift and research will continue to not only develop
machine intelligence but also to understand the inner workings of our brains, our
thoughts and advance the field of neuroscience.

Acknowledgements

This chapter represents fundamental knowledge for understanding spiking neu-
ral networks. Some of the text and images are adopted from the available research
literature. Rest of the work represents authors original contributions along with the
co-authors of the following research contributions [20, 38, 39, 43, 60, 62]. I am
thankful for the support of Dr. Qinru Qiu from Syracuse University and her
research group members specifically Amar Shrestha in contributing during the
original research.

List of Abbreviations

AI artificial intelligence
ANN artificial neural networks
BN Bayesian neuron
BP STDP backpropagation-STDP
Ex excitor neuron
LL lower limit neuron
LTD long-term depression
LTP long-term potentiation
MW moving-window
NWTA normalized winner take all
PSTH peri-stimulus-time histogram
SF step-forward
SNN spiking neural network
STDP spike timing dependent plasticity
t-SNE t-distributed stochastic neighbor embedding
UL upper limit neuron
WTA winner take all

20

Biomimetics

Author details

Khadeer Ahmed
Synopsys Inc, Mountain View, USA

*Address all correspondence to: khadeer.ah@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

References

[1] Guoqing Z, Tao L. Bio-inspired
autonomous navigation system for
logisticsmobile robotswith inertial AHRS.
In: 2017 IEEE 3rd InformationTechnology
andMechatronics Engineering
Conference (ITOEC). NewYork City,
NY, USA: IEEE; 2017. pp. 971-975

[2] Chengetanai G, O’Reilly GB. Review
of swarm intelligence routing
algorithms in wireless mobile ad hoc
networks. In: 2015 IEEE 9th
International Conference on Intelligent
Systems and Control (ISCO). New York
City, NY, USA: IEEE; 2015. pp. 1-7

[3] Bermejo-Busto J, Martin-Gomez C,
Zuazua-Ros A, Ibanez-Puy M, Miranda-
Ferreiro R, Baquero-Martin E.
Improvement of a Peltier HVAC System
Integrated into Building Envelopes
Implementing Beehive Strategies: A
Theory-Based Approach. Federacion
Asociaciones Ingenieros Industriales
Espana Alameda De Mazarredo. Bilbao
Spain: DYNA Publishing; 2016

[4]Maass W. Networks of spiking
neurons: The third generation of neural
network models. Neural Networks.
1997;10(9):1659-1671

[5]Markram H, Gerstner W,
Sjöström PJ. Spike-timing-dependent
plasticity: A comprehensive overview.
Frontiers in Synaptic Neuroscience.
2012;4:2. DOI: 10.3389/fnsyn.2012.
00002. ISSN: 1663-3563. Available from:
https://www.frontiersin.org/article/
10.3389/fnsyn.2012.00002

[6] Kasabov NK. NeuCube: A spiking
neural network architecture for
mapping, learning and understanding of
spatio-temporal brain data. Neural
Networks. 2014;52:62-76

[7] iniLabs [Online]. Available: https://
inilabs.com

[8]McCulloch WS, Pitts W. A logical
calculus of the ideas immanent in

nervous activity. Bulletin of
Mathematical Biology. 1990;52(1–2):
99-115

[9]Hodgkin AL, Huxley AF. A
quantitative description of membrane
current and its application to conduction
and excitation in nerve. The Journal of
Physiology. 1952;117(4):500-544

[10] Rosenblatt F. The perceptron: A
probabilistic model for information
storage and organization in the brain.
Psychological Review. 1958;65(6):386

[11] Izhikevich EM. Simple model of
spiking neurons. IEEE Transactions on
Neural Networks. 2003;14(6):1569-1572

[12] Abbott LF. Lapicque’s introduction
of the integrate-and-fire model neuron
(1907). Brain Research Bulletin. 1999;50
(5–6):303-304

[13] Stein RB. A theoretical analysis of
neuronal variability. Biophysical
Journal. 1965;5(2):173-194

[14] Ermentrout GB, Kopell N. Parabolic
bursting in an excitable system coupled
with a slow oscillation. SIAM Journal on
Applied Mathematics. 1986;46(2):
233-253

[15] Fourcaud-Trocmé N, Hansel D, Van
Vreeswijk C, Brunel N. How spike
generation mechanisms determine the
neuronal response to fluctuating inputs.
The Journal of Neuroscience. 2003;
23(37):11628-11640

[16] Jolivet R, Lewis TJ, Gerstner W.
Generalized integrate-and-fire models
of neuronal activity approximate spike
trains of a detailed model to a high
degree of accuracy. Journal of
Neurophysiology. 2004;92(2):959-976

[17] Stevens CF, Zador AM. Novel
Integrate-and-re-Like Model of
Repetitive Firing in Cortical Neurons.

22

Biomimetics

Rockville, MD, USA: American
Physiological Society; 1998

[18] Smith GD, Cox CL, Sherman SM,
Rinzel J. Fourier analysis of sinusoidally
driven thalamocortical relay neurons
and a minimal integrate-and-fire-
or-burst model. Journal of
Neurophysiology. 2000;83(1):588-610

[19] Izhikevich EM. Resonate-and-fire
neurons. Neural Networks. 2001;14
(6–7):883-894

[20] Ahmed K, Shrestha A, Qiu Q.
Simulation of bayesian learning and
inference on distributed stochastic
spiking neural networks. In: 2016
International Joint Conference on
Neural Networks (IJCNN). New York
City, NY, USA: IEEE; 2016.
pp. 1044-1051

[21]Meunier C, Segev I. Playing the
Devil’s advocate: Is the Hodgkin–Huxley
model useful? Trends in Neurosciences.
2002;25(11):558-563

[22] Cassidy AS et al. Cognitive
computing building block: A versatile
and efficient digital neuron model for
neurosynaptic cores. In: The 2013
International Joint Conference on
Neural Networks (IJCNN). New York
City, NY, USA: IEEE; 2013. pp. 1-10

[23] Gerstner W, Kistler WM, Naud R,
Paninski L. Neuronal Dynamics: From
Single Neurons to Networks and Models
of Cognition. Cambridge, England, UK:
Cambridge University Press; 2014

[24] Adrian ED, Zotterman Y. The
impulses produced by sensory nerve-
endings: Part II. The response of a single
end-organ. The Journal of Physiology.
1926;61(2):151-171

[25] Forrest MD. The sodium-potassium
pump is an information processing
element in brain computation. Frontiers
in Physiology. 2014;5:472. DOI: 10.3389/
fphys.2014.00472

[26] Forrest MD. Intracellular calcium
dynamics permit a Purkinje neuron
model to perform toggle and gain
computations upon its inputs.
Frontiers in Computational
Neuroscience. 2014;8:86. DOI: 10.3389/
fncom.2014.00086

[27] Lestienne R. Determination of the
precision of spike timing in the visual
cortex of anaesthetised cats. Biological
Cybernetics. 1996;74(1):55-61

[28]Mainen ZF, Sejnowski TJ. Reliability
of spike timing in neocortical neurons.
Science. 1995;268(5216):1503-1506

[29] Ponulak F, Kasinski A. Introduction
to spiking neural networks: Information
processing, learning and applications.
Acta Neurobiologiae Experimentalis
(Wars). 2011;71(4):409-433

[30] Stein RB, Gossen ER, Jones KE.
Neuronal variability: Noise or part of the
signal? Nature Reviews. Neuroscience.
2005;6(5):389-397

[31] Zohar O, Shamir M. A readout
mechanism for latency codes. Frontiers
in Computational Neuroscience. 2016;
10:107

[32] Kim J, Kim H, Huh S, Lee J, Choi K.
Deep neural networks with weighted
spikes. Neurocomputing. 2018;311:
373-386

[33] Zeldenrust F, Wadman WJ,
Englitz B. Neural coding with bursts—
Current state and future perspectives.
Frontiers in Computational
Neuroscience. 2018;12:48. DOI: 10.3389/
fncom.2018.00048

[34] Thorpe S, Gautrais J. Rank order
coding. In: Computational neuroscience.
Boston, MA, USA: Springer; 1998.
pp. 113-118

[35] Cattani A, Einevoll G, Panzeri S.
Phase-of-Firing Code. Ithaca, NY, USA:
arXiv.org, Cornell University; 2015

23

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

[36]Montemurro MA, Rasch MJ,
Murayama Y, Logothetis NK, Panzeri S.
Phase-of-firing coding of natural visual
stimuli in primary visual cortex. Current
Biology. 2008;18(5):375-380

[37]Danielson NB, Zaremba JD,
Kaifosh P, Bowler J, Ladow M,
Losonczy A. Sublayer-specific coding
dynamics during spatial navigation and
learning in hippocampal area CA1.
Neuron. 2016;91(3):652-665

[38] Shrestha A, Ahmed K,Wang Y,
Qiu Q. Stable spike-timing dependent
plasticity rule formultilayer unsupervised
and supervised learning. In: 2017
International Joint Conference on Neural
Networks (IJCNN). NewYork City, NY,
USA: IEEE; 2017. pp. 1999-2006

[39] Shrestha A et al. A spike-based long
short-termmemory on a neurosynaptic
processor. In: 2017 IEEE/ACM
International Conference on Computer-
Aided Design (ICCAD). NewYork City,
NY, USA: IEEE; 2017. pp. 631-637

[40] Schrauwen B, Campenhout J. BSA,
a fast and accurate spike train encoding
scheme. In: Proceedings of the
International Joint Conference on
Neural Networks. Vol. 4. New York
City, NY, USA: IEEE; 2003.
pp. 2825-2830. DOI: 10.1109/
IJCNN.2003.1224019

[41] Kasabov N et al. Design
methodology and selected applications
of evolving spatio-temporal data
machines in the NeuCube
neuromorphic framework. Neural
Networks. 2016;78:1-14

[42]Hebb DO. The Organization of
Behavior: A neuropsychological Theory.
Abingdon, England, UK: Taylor &
Francis; 1949

[43]Ahmed K, Shrestha A, Qiu Q,Wu Q.
Probabilistic inference using stochastic
spiking neural networks on a
neurosynaptic processor. In: 2016

International Joint Conference on Neural
Networks (IJCNN). New York City, NY,
USA: IEEE; 2016. pp. 4286-4293

[44]Masquelier T, Guyonneau R,
Thorpe SJ. Spike timing dependent
plasticity finds the start of repeating
patterns in continuous spike trains.
PLoS One. 2008;3(1)

[45] Tavanaei A, Maida A. BP-STDP:
Approximating backpropagation using
spike timing dependent plasticity.
Neurocomputing. 2019;330:39-47

[46]Haydon PG, Carmignoto G.
Astrocyte control of synaptic
transmission and neurovascular
coupling. Physiological Reviews. 2006;
86(3):1009-1031

[47]Xu X, Zhao Z, Li R, Zhang H. Brain-
inspired Stigmergy learning. IEEE
Access. 2019;7:54410-54424

[48] Stimberg M, Brette R,
Goodman DFM. Brian 2, an intuitive
and efficient neural simulator. eLife.
2019;8:e47314. DOI: 10.7554/
eLife.47314

[49] Gewaltig M-O, Diesmann M. Nest
(neural simulation tool). Scholarpedia.
2007;2(4):1430

[50]HinesML, Carnevale NT. The
NEURON simulation environment.
Neural Computation. 1997;9(6):1179-1209

[51]Davison AP et al. PyNN: A common
interface for neuronal network
simulators. Frontiers in
Neuroinformatics. 2009;2:11

[52] Furber SB et al. Overview of the
spinnaker system architecture. IEEE
Transactions on Computers. 2012;
62(12):2454-2467

[53]Grübl A, Billaudelle S, Cramer B,
Karasenko V, Schemmel J. Verification
and Design Methods for the BrainScaleS

24

Biomimetics

Neuromorphic Hardware System. arXiv
Prepr. arXiv2003.11455. 2020

[54] Stöckel A. Cypress: C++ Spiking
Neural Network Simulator Framework
[Online]. Available from: https://github.
com/hbp-unibi/cypress

[55] Vitay J, Dinkelbach HÜ,
Hamker FH. ANNarchy: A code
generation approach to neural
simulations on parallel hardware.
Frontiers in Neuroinformatics. 2015;9:19

[56]DeBole MV et al. TrueNorth:
Accelerating from zero to 64 million
neurons in 10 years. Computer (Long.
Beach. Calif). 2019;52(5):20-29

[57]Davies M et al. Loihi: A
neuromorphic manycore processor with
on-chip learning. IEEE Micro. 2018;
38(1):82-99

[58]Chou T-S et al. CARLsim 4: An open
source library for large scale,
biologically detailed spiking neural
network simulation using
heterogeneous clusters. In: 2018
International Joint Conference on
Neural Networks (IJCNN). New York
City, NY, USA: IEEE; 2018. pp. 1-8

[59] Catania V, Mineo A, Monteleone S,
Palesi M, Patti D. Noxim: An open,
extensible and cycle-accurate network on
chip simulator. In: 2015 IEEE 26th
International Conference on Application-
Specific Systems, Architectures and
Processors (ASAP). New York City, NY,
USA: IEEE; 2015. pp. 162-163

[60] Ahmed K, Shrestha A, Wang Y,
Qiu Q. System design for in-hardware
stdp learning and spiking based
probablistic inference. In: 2016 IEEE
Computer Society Annual Symposium
on VLSI (ISVLSI). New York City, NY,
USA: IEEE; 2016. pp. 272-277

[61] van der Maaten L, Hinton G.
Visualizing data using t-SNE. Journal of
Machine Learning Research. 2008;9
(Nov):2579-2605

[62]Qiu Q, Li Z, Ahmed K, Li HH,
Hu M. Neuromorphic acceleration for
context aware text image recognition.
In: 2014 IEEE Workshop on Signal
Processing Systems (SiPS). New York
City, NY, USA: IEEE; 2014. pp. 1-6

[63] Esser S, et al. Convolutional
Networks for Fast, Energy-Efficient
Neuromorphic Computing. arXiv. arXiv
Prepr. arXiv1603.08270. 2016

[64] Ioffe S, Szegedy C. Batch
Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift. arXiv Prepr.
arXiv1502.03167. 2015

25

Brain-Inspired Spiking Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93435

