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Chapter

Endogenous Retroelements in 
Cancer: Molecular Roles and 
Clinical Approach
Kang-Hoon Lee and Je-Yoel Cho

Abstract

Retroelements have been considered as “Junk” DNA although the encyclopedia 
of DNA elements (ENCODE) project has demonstrated that most of the genome is 
functional. Since the contribution of LINE1 (L1) and human endogenous retrovirus 
(HERV) has been suspected to cause human cancers, their regulations and puta-
tive molecular functions have been investigated in diverse types of cancer. Their 
diagnostic, prognostic, and therapeutic potentials have been incessantly proposed 
using cancer associated or specific properties, such as hypomethylation, increased 
transcripts, and reverse transcriptase, as well as cancer-associated antigens. This 
chapter presents the current knowledge on retroelements in various aspects during 
tumorigenesis and their clinical usage in many cancer studies.

Keywords: retrotransposons, repetitive elements, tumorigenesis, cancer, LINE, 
HERV, retroelement

1. Introduction

In recent decades, the development of genomic analysis technology has played 
an important role in the study and treatment of various diseases [1, 2]. However, 
these studies have been focused on genes that form proteins that account for about 
1–2% of the entire genome, and the understanding of other parts remains relatively 
insufficient. A retroelement (RE), also called a retrotransposon, is a type I trans-
posable element that replicates itself via RNA and reverse transcription and can 
be largely classified into two types based on the genome structure, including long 
terminal repeat sequences (LTRs). The intact endogenous retrovirus (ERVs) retains 
two LTRs at both ends of the genome, instead of long and short interspersed nuclear 
elements (LINE and SINE), which are non-LTR groups. LTRs compose ~8% of the 
human genome and most are known to be inactive due to accumulated mutations. 
Yet, interestingly, many are transcriptionally active [3]. The non-LTR groups can be 
divided again into autonomous LINEs and nonautonomous SINEs that need LINE’s 
proteins [4]. The LINE1s (L1s), known as the only active REs, makes up ~17% of the 
human genome. Intact L1s retain ~6 kb of the genome, which encodes two proteins, 
ORF1 and ORF2, which are essential for replication and reverse transcription [5]. 
There are about 145 full-length, functional L1 elements in the human genome. On 
the other hand, SINEs, which are nonautonomous retroelements, have ~300 bp 
genomes without coding potential. Most SINEs are of the Alu type of which there 
are over one million copies in the human genome [6].
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The association between REs and cancer has been suggested since 1950. As 
the presence of a viral-oncogene was unveiled and mouse mammary tumor virus 
(MMTV) became the accepted etiological agent of mammary tumors in mice, 
the possible carcinogenesis mechanism of ERV was also revealed, raising hope 
for overcoming cancer [7, 8]. Many studies have reported the association of RE 
expression with various cancer types, including breast cancer, melanoma, and 
kidney cancer [9]. However, the function of RE expression in cancer as a driver or 
passenger remains controversial [10, 11]. It is a chicken and egg situation, since 
the cancer-associated RE expression can cause malignant cell transformation and 
malignant cell transformation leads to global DNA hypomethylation, which in turn 
contributes to oncogenic RE expression [12–15]. In addition, the fact that most 
REs have lost their transposition activity due to accumulated mutations makes it 
difficult to evaluate the role of REs [16]. The RE sequences that occupies about half 
of the mammalian genome is known as “junk DNA,” and, as the name suggests, 
little research has been done it [17]. However, in certain areas such as in the early 
embryogenesis process, degenerative disease, and cancer, the expression of REs 
have been studied relatively well [18, 19]. In particular, several studies have been 
conducted to reveal the relationship among the environmental stress, RE responses, 
and associated diseases [20, 21]. Although no direct relationship has been revealed 
yet, genome instability by activated RE is known to be the main mechanism linking 
RE with disease [22]. However, the transposition ratio of all the REs is about 0.02 
germline events per generation [23], so it is too rare to explain their various roles.

In this chapter, we focus on the functional mechanisms of REs in various cancers 
from development to metastasis and from diagnosis to cancer therapy.

2.  RE regulation in normal cells and abnormal reactivation and 
expansion in cancer

Fortunately, except for during the reprogramming process in early stage germ 
cells, most REs are strongly silenced by diverse epigenomic controls and their 
reactivation is molecularly inhibited [24, 25].

DNA methylation is a major epigenetic mechanism that contributes to ret-
rotransposon silencing in both normal and cancer cells [26]. In early embryogen-
esis, a genome-wide DNA methylation is established by the DNA methyltransferase 
3 (Dnmt3) and maintained by the methyltransferase1 (Dnmt1) [27]. Parental 
methylation pattern is genome-wide demethylated and methylated again at 
imprinted loci and REs by the Dnmt3, and these patterns are maintained by Dnmt1 
in somatic cells [28–30]. Association between demethylation and RE expression 
was demonstrated in that the inactivation of DNMT3L, which is a non-catalytic 
homolog of DNMT3A/3B, causes the reactivation of L1 and IAP and leads to meiotic 
arrest as well as male sterility in male germ cells [31–33].

In cancer cells, a genome-wide DNA hypomethylation and the reactivation of 
REs that may result in the loss of chromosomal stability and imprinting patterns are 
well known [34]. Alteration of L1 methylation has been investigated in many types of 
cancers, including breast, colon, lung, ovarian, and prostate cancers [35–37]. Mostly, 
hypomethylation of the L1 promoter is associated with genome instability, aggressive 
histology, poor prognosis, and some metastasis [38]. Interestingly, some abnormal 
features, such as chromosome 8 abnormalities, are also associated with L1 hypometh-
ylation [39]. In addition, due to their prevalent unmethylation in cancer samples, a 
moderate increase of Alu was also observed in cancer samples with a hypomethylated 
L1 promoter [40]. Similarly, hypomethylation of HERV has also been reported in 
various cancer cells [9, 12, 41–44]. Hypomethylation of its long terminal repeat (LTR) 
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where the promoter is located is associated with its overexpression in cancer [45]. 
Numerous HERV family members were expressed in cancer cell lines and primary 
tumor tissues. In a head and neck cancer study, tumor-specific methylation changes 
were found in HERV-H, HERV-W, and HERV-K families [24, 46]. Similarly, the hypo-
methylated CpGs resulting in high expression of HERV-K, -W, and L1 was reported 
in ovarian cancer [47]. Moreover, the hypomethylation of REs has been observed in 
specific stages or subtypes of cancer, such as during ovarian cancer progression and 
in the basal subtype of invasive ductal carcinoma breast cancer [48, 49]. Remarkably, 
individual RE expressions associated with cancer such as HERV-K at 22q11.23 (H22q), 
HERV-H5, HERV-H48–1, and HERV-E4 are highlighted in various cancers [46, 50, 51]. 
Their transcripts or viral proteins have been detected in sera from bladder, breast, 
liver, lung, ovarian, and prostate cancer patients [11].

The last cellular epigenomic regulation mechanism for silencing RE expression 
is histone modification [52]. In normal spermatogonia, one of the repressive histone 
modification marks, histone 3 lysine 9 dimethylation (H3K9me2), causes tran-
scriptional repression and is sufficient to maintain L1 silencing in the absence of 
DNA methylation. Thus, the loss of H3K9me2 combined with the absence of DNA 
methylation may be the cause of LINE1 activation [53]. On the other hand, in the 
study of the association of histone modification with RE expression in cancer, two 
repressive histone modifications, H3K9me3 and H3K27me3, were more enriched 
at H22q, HERVK17, and L1 sequences in PC3 than in LNCaP prostate cell lines, of 
which RE expression levels are high and low, respectively. By contrast, the active 
modification H3K4me3 was the most enriched in LNCaP at the H22q LTR [54].

The expressed RE transcripts can eventually be knocked down by the PIWI 
system [55]. Piwi-interacting RNA (piRNA) is a well-studied mechanism that con-
tributes to the silencing of REs in many animal germline cells [56, 57]. The piRNA 
system is a ribonucleoprotein complex consisting of a piRNA, and a P-element-
induced wimpy testis (PIWI) subfamily of Argonaut nucleases protein [58]. The 
piRNA recognizes RE sequences and the PIWI protein destroys the RE transcripts 
[58, 59]. The piRNA system silences RE expression both at the transcriptional and 
posttranscriptional levels by modifying repressive chromatin modifications and by 
cleaving RE transcripts, respectively [57, 60]. However, the role of piRNA in post-
transcriptional regulation is not similar to that of miRNA via providing sequence 
specificity because most piRNA sequences are found not to be complementary 
to target gene transcripts, suggesting that piRNAs may be involved in epigenetic 
regulation rather than posttranscriptional regulation of mRNA [61]. The deficient 
of the piRNA pathway causes overexpression of REs, significantly compromised 
genome structure and, invariably, germ cell death and sterility [58]. The aberrant 
expression of piRNAs has been reported in the development of cancer including the 
proliferation, apoptosis, metastasis, and invasion of cancer cells [62]. Moreover, 
the high expression of PIWI proteins has been documented in many cancer types, 
including gastric cancer, liver cancer, intestinal cancer, breast cancer, nonsmall 
cell lung cancer, bladder cancer, ovarian cancer, and melanoma and is furthermore 
associated with the aggressiveness of sarcomas, gliomas, and leukemia [61, 63]. The 
roles of PIWI proteins have been investigated separately in cancer invasion, migra-
tion, proliferation, division, and survival [64]. PIWIL1 has been known to induce 
epithelial-mesenchymal transition and confer migration and invasion of endome-
trial cancer cells [65]. The association of PIWIL2 via increasing the expression of 
CDK2 and cyclin A in cancer cells is reported in glioma and nonsmall lung cancer 
(NSCLC) cells [66]. PIWIL3 promotes the cancer proliferation, migration, and 
invasion through the JAK2/STAT3 signal pathway [67]. PIWIL4 can promote cancer 
cell division, migration, and survival of breast cancer by activating TGF-β, MAPK/
ERK, and FGF signaling pathways [68].
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The apolipoprotein B mRNA editing catalytic polypeptide 3 (APOBEC3) 
proteins are cytidine deaminases of which family consists of seven family members 
(APOBEC3-A through -H) with diverse activities against a variety of retroviruses 
and endogenous REs, even though the activity of L1 suppression does not correlate 
either with antiviral activity against Vif-deficient HIV-1 and murine leukemia virus, 
or with patterns of subcellular localization [69, 70]. Thus, the inhibitory effect of 
APOBEC3 family members, specifically APOBEC3G on L1 transposition might not 
be due to deaminase activity, but due to novel mechanism(s) [70].

Besides APOBEC3G, MOV10, SAMHD1, and ZAP have all been identified to 
be able to inhibit L1 activity through diverse mechanisms [71]. MOV10 inhibits 
L1 mobility through interacting with L1 RNP resulting in L1 transcript degrada-
tion [72]. SAMHD1 inhibits the L1 RT activity [73]. ZAP also restricts L1 activity 
through the loss of L1 transcripts and ribonucleoprotein integrity [74].

Together, it will be a universal explanation for the various epigenomic modifica-
tions that are directly associated with both genome-wide RE silencing and reactiva-
tion that is much more commonly found in diverse human cancers as frequent as 
4–100 de novo insertions per tumor.

3. Roles of RE expressed in cancers

The genomic instability caused by de novo insertions of REs that frequently 
occur in cancer is the major pathophysiological role accepted by the public [75, 76]. 
However, this is a very limited explanation of the universal functions of REs, 
because most REs lose their ability to mobilize [16]. Although some retain their 
coding potentials, these are silenced tightly by various mechanisms and at various 
levels, such as epigenomic mechanisms, transcription, and posttranscription [77]. 
Thus, a more in-depth understanding of RE function is mandatory.

3.1 The source of genome instability

De novo insertions of REs, despite their defective form, can both directly and 
indirectly affect surrounding human genome sequences [78]. Some of these events 
occur at high enough frequency to result in vast amounts of rearrangement of the 
host genome sequence [16]. This does not happen only via the mechanism of trans-
position activity followed by reintegration but also via the homologous recombina-
tion between dispersed REs, resulting in large structural variations (SVs) including 
duplications, inversions, and deletions [79]. REs are also the source of small SVs 
such as single-nucleotide variants (SNVs) and short indels, which are caused by 
template switching during repair of replication errors [16]. The SVs derived from 
reactivation and expansion of REs via either mobilization activity or homologous 
recombination have been frequently found in many cancers (~50%) [80, 81]. 
A high enrichment was reported especially in certain types of cancers, such as 
esophageal cancers, colon cancers, and squamous cell lung cancers (> 90%) [82]. 
Although this result indicated that somatic L1 insertions are very frequently found 
in certain cancers, it is known that a majority of RE somatic integrations are pas-
senger mutations with little or no effect on cancer development [83].

Nevertheless, specific SV loci derived from somatic L1 insertions have also been 
identified as drivers in most cancer types, including colorectal, breast, lung, and 
liver cancers [84–88]. For example, disruption of the APC gene by the insertion of 
L1 in colon cancer has been well studied [89]. Additionally, a recent study identi-
fied driver SV by L1 insertion in liver cancer [90]. L1 integration in the intron of 
the ST18 gene disrupted a cis-regulatory repressor element, resulting in increased 
expression of the ST18 gene [84].
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Several algorithms have also been developed for the sensitive and precise detec-
tion of SVs from the whole genome sequence (WGS) and whole exome sequence 
(WES) data published in large international consortia such as The International 
Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), and 
driver SV events with remarkable functional consequences have been identified [82, 
91]. The most SVs were generated by L1 (99%), followed by SINE VNTR Alu (SVA) 
and ERV [92]. Yet, few retrotranspositions of HERVs have been reported in human 
cancers [84, 93].

3.2 Epigenomic regulation and reactivation of REs in cancer

Since 1993 when the methylation status of L1 in cancer cells was first measured by 
Thayer et al., L1 hypomethylation has been reported in many types of human cancers, 
including prostate, ovarian, head and neck, lung, thyroid, and breast cancer [94, 95]. 
However, some controversial results showed no changes in L1 methylation levels of 
cancers including thyroid cancer, renal cancer, lymphoma, and leukemia [96]. This 
discrepancy may be due to differences in the tumor histological type, because associa-
tion between L1 hypomethylation and clinical outcome has been demonstrated in mel-
anoma patients. However, the mechanism of L1 hypomethylation effects on aggressive 
tumor behavior has not been fully investigated [49]. The most likely mechanism is the 
causing of DNA instability, which has been suspected as the main role of REs [92]. 
A DNA methyltransferase 1 (Dnmt1) mutation showed substantial genome-wide 
hypomethylation in all types of tissue and also known to be associated with aggressive 
T cell lymphomas [97, 98]. Notably, the mutation also showed a high frequency of 
chromosome 15 trisomy, which suggested that the DNA hypomethylation has a causal 
role in cancers by promoting genome instability [98]. Another possible mechanism is 
a dysregulation in transcription level, which activates proto-oncogenes and REs that 
affect tumor aggressiveness [99]. MicroRNAs, which are closely related to the develop-
ment of human cancer, can be increased by global DNA hypomethylation, contribut-
ing to the acquisition of tumor aggressiveness [100]. In addition, it is possible that the 
L1 methylation state itself exerts a biological effect. It is known that L1 regulates the 
function of multiple genes by providing an alternative promoter and contributing 
to noncoding RNA expression [101, 102]. Therefore, further studies are needed to 
explain the mechanisms in which L1 hypomethylation affects tumor behavior.

3.3 REs, the origin of cancer associated non-coding transcripts

RNA sequencing using next-generation sequencing technology has provided a 
large amount of gene expression data in both normal and disease conditions, such 
as cancer [103]. Growing evidence suggests that REs in the intergenic regions of the 
human genome are sources of noncoding RNAs, including micro RNAs (miRNAs) 
and long noncoding RNAs (lncRNAs) [104]. Notably, about 30% of human lncRNAs 
originate from REs, specifically HERVs. In addition, about 80% of lncRNAs contain 
RE-originated sequences within or nearby their transcription start sites [105]. 
Importantly, a recent study has reported that many lncRNAs have a crucial role in a 
variety of fundamental cellular processes and diseases [106]. A recent study reported 
that a single-nucleotide polymorphism (SNP) in an L1-containing lncRNA sequence 
located in an intron of SLC7A2 leads to a decrease in its expression and results in a 
lethal encephalopathy phenotype [107]. Alu elements, which encode no functional 
proteins, are also frequently found at multiple locations in lncRNA sequences [108]. 
Recently, many studies have suggested that Alu sequence in lncRNAs can contribute 
to the function of lncRNAs. For example, Alu-mediated CDKN1A/p21 transcrip-
tional regulator (APTR) negatively regulates p21 expression by recruiting polycomb 
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repressive proteins to the p21 promoter. The Alu sequence is crucial to the localization 
of APTR on the p21 promoter that regulates cell growth and proliferation [109].

Despite the limited contribution of L1 and Alu to lncRNAs, a close association 
between HERVs and ncRNAs was reported by Kelley and Rinn [110]. Hundreds of 
ncRNAs originated from HERV-H. For example, the lncRNA ROR known to promote 
the progression of human cancers is one of the ncRNAs promoted by a HERV-H 
element [111]. Moreover, the lncRNA produced by HERV-K11 directly binds to 
polypyrimidine tract-binding protein-associated splicing factor (PSF), of which 
the function is to repress proto-oncogene transcription, reversing the PSF-mediated 
repression of proto-oncogene transcription and subsequently driving tumorigenesis 
[46, 112]. Other HERV-related lncRNAs with tumor-suppressive potential have also 
been identified in the intronic RNAs arising from ERV-9 [45]. It has been reported 
that its antisense RNA at 3′-untranslated regions was found to physically bind to key 
transcription factors for cell proliferation such as NF-Y, p53, and sp1. This means 
that the HERV-related lncRNAs may have a function as decoy targets or traps for the 
transcription factors resulting in the growth retardation of cancer cells [113].

Another role of RE transcripts related to human disease is to form a complex 
with the cytoplasmic cDNA of the reactivated RE transcripts to trigger the signal 
of the inflammatory pathway [23]; for example, RE-derived cytosolic DNA accu-
mulated in Aicardi-Goutières syndrome (AGS) [114]. IFNB1 expression also has an 
anticorrelation with L1 retrotransposition in cancer cells [115]. Moreover, the study 
by Ishak et al. showed that mutation of the RB1 gene causes both genome-wide 
upregulation of L1 expression in somatic cells as well as increased susceptibility to 
leukemia [116]. Gasche et al. reported that the IL-6 treatment of a cancer cell line 
induced genome-wide L1 promoter hypomethylation [117]. Altogether, the evi-
dence indicates that REs modify an important aspect of human tumorigenesis.

3.4 RE proteins associated with tumorigenesis

ORF1 and ORF2 in L1 and GAG, POL, and ENV in HERV are proteins encoded 
by REs that are essential to complete the replication cycle, whereas Alu’s are RNA 
polymerase III-transcribed sequences without coding potential [118]. Most REs lose 
their coding potential due to accumulated mutations; however, it is well known that 
hundreds of L1 are still active to produce two essential proteins, ORF1 (p40, RNA 
binding protein) and ORF2 (p109, endonuclease and reverse transcriptase activities) 
[119, 120]. Additionally, although no infectious virus formed by HERVs is reported, 
multiple protein expressions and their functions have been studied in various HERV 
families [46]. Most comprehensive studies have reported on envelop proteins (ENV) 
and their pathogenic properties. The transcripts encoding capsid and protease (GAG) 
and reverse transcriptase with RNase H domain and integrase (POL) ORFs have been 
detected in many cells and tissues from both diseased and healthy individuals [121]. 
Remarkably, HERV-W encodes an ENV protein known as ERVWE1 (Syncytin1), 
which has been adopted by the human to functionally contribute in placenta biogen-
esis [122]. Similarly, Syncytin2 encoded by ERVFRD1 is known to have a key role in 
the implantation of human embryos [123]. Aberrant expression of HERV-W has been 
known to be associated with various human diseases including cancer [122, 124, 125].

In cancer, an increase in retroviral protein expression was generally detected. 
Overexpression of L1 ORF1 protein was detected from more than 90% of breast, 
ovarian, and pancreatic cancers followed by tubular gastrointestinal tract, lung, and 
prostate cancers (about 50%) [126, 127]. However, the high expression of L1 ORF1p 
expression is dependent on tumor origin, and it differs case by case even within 
a similar histological type of cancer. For example, L1 ORF1p is detected in lung 
adenocarcinoma at greatly varying levels (about 20% are very high, about 30% are 
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moderate, and the rest are undetectable) [128]. Several antibodies targeting ORF2p 
have recently been produced, and thus, the overexpression of ORF2p was detected 
in many cancers. Although the functional effects of L1 proteins in human cancers 
remain unclear in most cancer contexts, this data suggests that L1 proteins are 
potential cancer biomarkers for the diagnosis of cancer development or the progno-
sis of clinical outcomes [126, 129]. On the other hand, the HERV-K ENV protein has 
been identified in various cancer tissues and several different mechanisms by which 
it associates with tumorigenesis have been proposed [130]. The melanocyte antigen 
HERV-K-MEL is expressed in about 85% of malignant melanocytes, whereas breast 
cancer, ovarian cancer, teratocarcinoma, sarcoma, and bladder cancer also express 
HERV-K ENV [131]. Other HERV families, HERV-E, and ERV3 have also been 
detected in more than 30% of ovarian cancer patients and are higher in patients 
with lymph-node-positive breast cancer [11, 132]. Moreover, some antibodies 
against HERV-K have been detected in serum samples with melanoma [133].

Despite HERVs being known to be incompetent in transposition, studies have 
shown that the protein-coding potentials can still promote neoplastic properties dur-
ing tumorigenesis through diverse mechanisms [134]. The oncogenic role of HERV 
proteins is well investigated with NP9 and REC, which are accessory splice proteins 
of HERV-K [135]. The transcripts encoding these proteins are overexpressed in many 
tumors including breast cancers and both are known to interact with the promy-
elocytic leukemia zinc finger (PLZF) tumor suppressor, which is a transcriptional 
repressor and epigenetic modulator implicated in cancer. C-myc proto-oncogene is 
one of the major targets of PLZF. Interaction of NP9 and REC with PLZF abrogates 
the transcriptional repression of the c-Myc gene promoter, which results in c-Myc 
overproduction [136]. In addition, the abnormal cell-to-cell fusion activity of 
HERV-W ENV proteins has been shown to possibly contribute to tumor develop-
ment and metastasis [130]. Further studies to characterize the expression and 
molecular functions of these HERV proteins in cancers are demanded.

4. Implementation of REs for cancer diagnosis and prognosis

4.1 Structural variations (SVs) associated with REs in cancer

Identification of somatic mutation hotspots associated with cancer is very important 
for functional analysis and diagnosis [137]. Several methods have been developed for 
the identification of somatic RE insertions in cancers (L1-seq, TIPseq, and ERVcaller), 
and many bioinformatics tools to discover somatic L1 insertions in silico using WGS or 
WES data have been developed [138, 139]. SVs via L1 insertion associated with cancer 
have been well investigated in a couple of genes, such as the APC gene that is considered 
to be a tumor suppressor of colorectal polyposis in colorectal cancer [89]. A potential 
suppressor of L1, TP53 mutation by L1 insertions, has been observed frequently in 
tumors. In addition, L1 insertional mutation of MOV10, which is a key L1 suppressor, 
decreased the expression of the MOV10 in tumors with high L1 insertions [140].

On the other hand, instead of cancer-associated SVs caused by RE insertion, 
genome variations that might be associated with HERVs or around gene expression 
in cancer have been identified. Chang et al. identified that four HERVs with muta-
tion hotspots overlapped with exons of four human protein coding genes, which 
are TNN (HERV-9/LTR12), OR4K15 (HERV-IP10F/LTR10F), ZNF99 (HERV-W/
HERV17/LTR17), and KIR2DL1 (MST/MaLR). They also evaluated the effect of 
each non-synonymous SNV on the survival of kidney cancer patients. Furthermore, 
they identified 788 HERVs harboring significantly increased the numbers of 
somatic single-nucleotide variations (SNVs) [141].
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4.2  Global hypomethylation in cancer and identification of cancer associated 
RE methylation

Several studies have shown that global hypomethylation is very common in 
cancer [142]. The DNA methylation levels of L1 5′-untranslated region (UTR) in 
cancer have been extensively evaluated for potential use as an epigenomic marker 
for cancer diagnosis. The level of L1 hypomethylation increases in more advanced 
cancers; however, other types of REs, such as Alu and HERVs, have been lesser 
evaluated [143]. Since DNA methylation analysis has some benefits in handling 
tumor specimens, such as similar efficiency in fresh frozen and formalin-fixed 
paraffin-embedded tissue, many studies indeed have proposed DNA methylation 
as a diagnostic marker using fresh tumor biopsies or fixed tissue blocks [144]. 
Association between L1 hypomethylation and diagnostic and prognostic needs, 
such as tumor stage group, metastasis, the recurrence rate, and the survival rate, has 
been studied [145]. Also, L1 hypomethylation has been demonstrated to be a sur-
rogate marker for predicting the response to cancer treatment [146]. Moreover, L1 
hypomethylation is observed in very different types of specimen, including blood 
leukocyte DNA, serum, and oral rinse [147]. Hypomethylation of Alu was reported 
in several cancers, whereas hypomethylation of HERV-K and HERV-W genomes 
were found in urothelial cancer and ovarian cancer, respectively [47, 131, 148].

Classically, CpG methylation analyses have been performed in targeted sequence 
by discriminating between methylated and unmethylated DNA using bisulfite 
treatment followed by PCR amplification [149]. Although recent nanopore technol-
ogy can separate between methylated and unmethylated DNA without any treat-
ment, most analyses are usually based on methylation-specific PCR after bisulfite 
treatment (MSP) [150, 151]. Pyrosequencing-based analysis, specifically methyla-
tion-sensitive single-nucleotide-primer extension (MsSNuPE) and Methylight, is a 
promising method that can be used to reliably measure L1 methylation in paraffin-
embedded cancer tissues with higher reproducibility [152]. Using this method, 
L1 hypomethylation has been tested in various human cancer patients, including 
gastric cancer, colon cancer, colorectal cancer, melanoma, and breast cancer, and 
its clinical implications have been suggested [153]. Recent studies have addressed 
that methylated L1 in circulating cell-free DNA (cfDNA) can be used as a potential 
prognostic and diagnostic target in cancers, and have promoted its potential as a 
minimally invasive screening technique. Lee et al. showed L1 hypomethylation in 
cfDNA of both human breast cancer and dog mammary tumor [154, 155].

Unfortunately, there are not many products in the marketplace that capitalize on 
the association between RE hypomethylation and diverse cancer types and features, 
even though many studies have provided evidence for it. Representatively, the only 
clinical test targeting methylation of L1 is used in the detection of bladder cancer in 
voided urine [156].

4.3 RE transcripts in cancer diagnosis

First of all, the quantitation of various HERV gene expressions was performed 
using a real-time PCR. The transcript expression of HERV-H, -K, -P, and -R ENV 
was significantly increased in the blood of lung cancer patients, and the level was 
generally much higher in the squamous cell carcinoma (SCC) subtype than the 
small-cell lung cancer (SCLC) subtype [157]. The level of HERV-K (HML-2) was 
found to be an independent prognostic factor for the overall survival rate of hepa-
tocellular carcinoma patients [158]. The expression of HERV-H LTR-associating 
protein 2 (HHLA2) was significantly upregulated in bladder cancer, and it was 
suggested as a prognostic factor of tumor metastasis and poor survival of bladder 
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cancer patients [159]. The elevated HERV-K (HML-2) was detected in both protein 
and transcripts level in the blood of breast cancer patients at an early stage and was 
further increased with developing metastasis. Thus, HERV-K (HML-2) expression 
will be one of a best candidate for the early detection of an increased risk for breast 
cancer in women [160]. The expression of HERV-E transcripts is observed in von 
Hippel-Lindau (VHL)-deficient renal carcinomas. Interestingly, the introduced 
VHL gene suppressed HERV-E expression in VHL-deficient carcinoma [11]. In 
addition, high blood levels of the ENV transcripts of various HERV types have been 
detected in breast cancer patients and that are decreased by treatment of adjuvant 
chemotherapy which means that alteration of blood HERV transcripts is a very 
good candidate for diagnosis and is a prognosis marker of breast cancer [132].

4.4 Detection of RE proteins in cancer specimens

A correlation between HERV protein expression and human cancer has been 
described [11]. HERV proteins, GAG, POL, and ENV, have been identified in cancer 
tissues, and several factors from environment and hormone response, such as UV 
radiation, inflammation, estrogen and smoking, have been proposed as a cause of 
HERV protein expression in various cancer tissues [161]. Remarkably, the envelop 
protein, ENV, of HERV-K has been identified in melanoma by immunohistochem-
istry [162]. In melanomas, the expression of HERV-K ENV is higher than that in 
benign lesions, especially in metastatic tumors. Moreover, it has also been found in 
other types of cancers, such as breast, ovarian, and bladder cancer. Antibodies tar-
geting HERV-E, HERV-K (HML-2), and ERV3 have also been detected in more than 
30% of ovarian cancer patients and are higher in patients with lymph-node-positive 
breast tumors. In addition, the presence of serum antibodies against HERV-K 
proteins has been suggested as a prognostic factor for poor survival of melanoma 
patients [11].

In L1 proteins, high levels of ORF1 protein was prevalent in certain cancers, 
including breast and ovarian cancer, whereas no or little expression was detected 
from other cancers such as renal, liver, and cervical cancer [36]. Rodic et al. and 
Ardeljan et al. separately detected ORF1 protein via IHC in ~90% of ovarian cancer 
and in ~90% of the breast cancer samples examined [127, 163]. Chen et al. reported 
that the ORF1 protein level is very high in ductal carcinoma in situ (DCIS) [164]. 
Moreover, the ORF1 level was the highest in high-grade ovarian carcinoma, but the 
expression of ORF1 in prostate cancer has not been fully confirmed [36]. Ardeljan 
et al. reported ORF1 positivity in ~41% of all prostate cancer tissue samples 
examined [163]. ORF1 levels could be clinically measured using CT scans on the 
blood of lung cancer patients. On the other hand, ORF2 has only been limitedly 
tested as a diagnostic marker for cancer when compared to ORF1 expression. 
However, since ORF2 encodes a reverse transcriptase that is heavily associated with 
L1 activity, similar to L1 hypomethylation, it may yet be a better diagnostic marker 
for L1-associated disease development. High expression of ORF2 in transitional 
colon mucosa but no expression in normal colon mucosa was detected via IHC. 
ORF2 was also detected in prostate intraepithelial neoplasia [36]. However, since 
the ORF2 expression has been reported to be much less than that of ORF1, there are 
challenges to measure it in clinic.

5. RE in cancer therapy

Aberration of RE activities in various aspects has been suggested as a potential 
target for cancer therapy [165]. Several studies have shown that inhibiting RT 
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activity is a great therapeutic target for cancer. Sciamanna et al., 2005, uncovered 
that pharmacologic L1 inhibition by two reverse transcriptase inhibitors slows 
down the growth of malignant melanoma and prostatic cancer [166]. Carlini et al. 
similarly demonstrated the efficacy of reverse transcription inhibition of prostate 
cancer growth [167]. Furthermore, a clinical trial showed that Efavirenz, a non-
nucleoside reverse transcriptase inhibitor (NNRTI), provides a therapeutic benefit 
by increasing the progression free survival in a high-stage castration-resistant pros-
tate cancer cohort [168]. Recently, Efavirenz has been shown to suppress L1 activity 
and promote morphological differentiation in melanoma cells [169]. On the other 
hand, another class of RT inhibitor, the nucleoside reverse transcriptase inhibitor 
(NRTI), has also been shown to suppress L1 activity and induce anticancer activity 
in prostate cancer cell lines. Importantly, no significant effects were observed in 
normal cells [167]. Despite these successful findings, it is still unclear regarding the 
molecular function of RT inhibition in the gene expression regulation.

RNA interference (RNAi)-mediated downregulation of L1 generated identi-
cal effects to those observed with RT inhibitory drugs in human melanoma, 
which indicates that RT activity has a crucial role in L1 activity in human cancer 
[170]. Recently, a phase II human trial using Efavirenz on a cohort of metastatic 
patients with prostate cancer showed nonprogression when Efavirenz reached 
an optimal concentration in the blood [171]. Altogether, preclinical and clinical 
data provide evidence that RT inhibition is a potentially effective tool in a novel 
anticancer therapy against diverse human cancers with noncytotoxic effects on 
non-cancer cells [172].

Another approach regarding REs is an immunotherapy approach to target the 
pro-oncogenic effects of HERV ENV, which is possibly involved in tumor progres-
sion and in downstream metastatic spread, in a number of tissues. HERV ENVs 
exclusively upregulated in tumor tissues will be suitable targets to direct both 
passive and active immunotherapy against in cancer cells [130]. The antibodies 
recognizing the HERV ENVs has been developed, and currently, a monoclonal 
antibody against HERV-K (HML2) ENV successfully inhibits human breast cancer 
proliferation, with the activation of apoptosis [173]. On the other hand, various 
HERV-derived ENVs have been investigated as candidates of anticancer immuno-
therapy, either as tumor-associated or tumor-specific antigens in cancer cells [130]. 
ERVs were first used for antitumor immunization in the murine cancer models 
expressing ERV [9]. Similarly, in humans, protective immunity against the HERV-K 
MEL antigen in melanoma development has been investigated. This active immu-
notherapy is considered more advantageous with respect to passive immunization 
[130]. However, despite the antigenic similarity between HERV-K-MEL and yellow 
fever virus (YFV), no significant protective effects were shown in the 10 years 
post-anti-YFV vaccinations in the melanoma cohorts [174, 175]. HERV-H ENV 
(Xp22.3) is an another antigen significantly upregulated in a subset of gastrointes-
tinal cancers. T cells that was sensitized to HERV-H ENV (Xp22.3) had lytic effects 
against colorectal cancer expressing the ENV. HERV-E ENV showed similar effects 
in renal carcinoma [130, 176].

In addition, demethylating drugs are commonly used as anticancer agents and 
are known to trigger RE reexpression [177]. Interestingly, DNA methyl transferase 
inhibitors are caused by immune attacks that increase the expression of HERV and 
thereby increase the viral dsRNA [178]. Accordingly, individual knocking down of 
MDA5, MAVS, or IRF7 inhibits the ability of DNA methyl transferase inhibitor to 
target colorectal cancers resulting in significantly reduced the anticancer activity 
[179]. Altogether, immunotherapy approaches targeting HERV ENV in a broad 
spectrum of cancers might be valuable for the expansion of target cancers and for 
use with other cancer therapies.
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6. Conclusions

In this chapter, we reviewed and summarized the functions and regulatory 
mechanisms of retroelements in the development and progression of cancers, 
and further presented applications in the development of diagnosis and treat-
ment targets using these characteristics (Table 1). We looked at the retrovirus as a 
functional genomic element that forms the genome, not as an ancient infected virus 
and its useless remnants. Reactivation of retroelements means that it affects various 
regulation processes of cells beyond not only controlling the functions of sur-
rounding genes but also increasing the protein formed therefrom or its function, or 
prompting its reinsertion into a new position. Because of this, it is very important 
to analyze and understand retroelements’ functions with regard to various target 
substances, for example, miRNA, transcription factors, epigenetic modifiers, and 
so on (Figure 1).

RE type Cancer type Experimental technique References

L1 Colon, breast, lung, 

ovarian, prostate cancer

Bisulfite-pyrosequencing [45]

MCA/CpG island microarray

L1 Intrahepatic 

cholangiocarcinoma

Bisulfite-pyrosequencing [48]

L1 Prostate cancer Southern blot analysis [49]

Alu Colon cancer Next-generation sequencing of unmethylated 

Alu

[50]

HERV-K Breast cancer RT-PCR, northern blot, in situ hybridization [51]

HERV-K Breast cancer TCGA RNA-seq, RPPA data anaylsis [52]

HERV-K Melanoma IHC, immunoblotting [53]

Cell fusion-dependent colony formation 

assay

HERV-K Kidney cancer RT-PCR, northern blot [54]

HERV-K Head and neck cancer Microarray [34]

LI Ovarian cancer Southern hybridization, RT-PCR [57]

HERV-W Ovarian cancer Southern hybridization, RT-PCR [57]

L1 Breast cancer Absolute quantitative assessment of 

methylated alleles (AQAMA) PCR

[58]

HERV-K Urothelial carcinoma RT-PCT, bisulfite-pyrosequencing [60]

L1 Urothelial carcinoma RT-PCT, bisulfite-pyrosequencing [60]

HERV-K Pancreatic cancer RT-PCR, IHC, IF, ELISA, female 

immunodeficient nude

[61]

HERV-K Prostate cancer RT-PCR, bisulfite-pyrosequencing, ChIP [64]

LI Colorectal, blood, brain, 

prostate, ovarian cancer

Tea (TE analyzer) from paired-end, whole-

genome sequencing

[96]

L1 11 types of cancer Whole genome, exome sequencing [94]

L1 Lung, brain cancer L1-seq [97]

L1 Liver cancer Retrotransposon capture sequencing 

(RC-seq)

[95]

L1 Colon cancer Southern blot, isolation of the fragment 

containing the insertion

[98]
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RE type Cancer type Experimental technique References

L1 Liver cancer RC-seq, whole genome sequencing [99]

L1 Encephalopathy DNA-seq, RT-PCR [116]

Alu Multiple cancer cell lines RNA immunoprecipitation, RT-PCR [118]

ERV-9 Multiple cancer cell lines RT-PCR, western blot, RNA 

immunoprecipitation, xenograft models

[122]

L1 Multiple cancer cell lines IF, LINE-1 activation assay, RT-PCR [124]

L1 Leukemia ChIP-seq, RNA-seq [125]

L1 Oral cancer Bisulfite-pyrosequencing [126]

HERV-W Testicular cancer HERV GeneChip microarray, bisulfite 

sequencing PCR

[133]

HERV-W Endometrial cancer RT-PCR, DNA-seq, immunoblot [134]

L1 Breast, ovarian, 

pancreatic, lung, prostate 

cancer

Immunohistochemistry [136]

L1 Colon, prostate cancer Immunoblot, IF, IHC [138]

HERV Breast cancer RT-PCR [141]

HERV-K Teratocarcinoma CRISPR/Cas9, immunoblot [144]

HERV-K Breast cancer GST pull-down assay, Co-IP [145]

L1 Gastrointestinal cancer Tea (TE analyzer) from paired-end whole-

genome sequencing, somatic SNV, indel call, 

RNA-seq for TCGA

[149]

HERV Multiple cancer types SNV, DNA functional elements analysis [150]

L1 Liver cancer Bisulfite pyrosequencing [154]

L1 NSCLC Methylation-specific real-time PCR assay [155]

L1 Colon cancer Bisulfite pyrosequencing [162]

L1 Breast cancer Bisulfite sequencing, MSRED, and RT-PCR [163]

HERV Lung cancer RT-PCR [166]

HERV-K Liver cancer RT-PCR [167]

HERV-H Multiple cancer types Immunohistochemistry [168]

HERV-K Breast cancer ELISA, RT-PCR [169]

L1 Multiple cancer types Immunohistochemistry [172]

L1 Breast cancer Western blot, IHC [173]

L1 Melanoma, prostate 

cancer

IF, Western blot, xenograft model [175]

L1 Prostate cancer RT activity assay, RT-PCR [176]

L1 Melanoma IF, RT-PCR, western blot, xenograft model [178]

Table 1. 
RE expression in human cancers.
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Figure 1. 
Overall involvement of REs in cancer studies. RE expression was regulated by epigenomic controls such as 
histone modification and methylation. Reactivated RE by hypomethylation causes genome instability and the 
enrichment of cytoplasmic RE transcripts which may increase inflammatory signal. These may be involved 
in diverse biological process as a source of ncRNA including miRNAs. RE proteins are also involved in 
tumorigenesis process, and PIWI and APOBEC3 systems regulate RE activity in various ways.
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