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Chapter

Modular Sumset Labelling of
Graphs
Sudev Naduvath

Abstract

Graph labelling is an assignment of labels or weights to the vertices and/or edges
of a graph. For a ground set X of integers, a sumset labelling of a graph is an

injective map f : V Gð Þ ! P Xð Þ such that the induced function f⊕ : E Gð Þ ! P Xð Þ is

defined by fþ uvð Þ ¼ f uð Þ þ f vð Þ, for all uv∈E Gð Þ, where f uð Þ þ f vð Þ is the sumset
of the set-label, the vertices u and v. In this chapter, we discuss a special type of
sumset labelling of a graph, called modular sumset labelling and its variations. We
also discuss some interesting characteristics and structural properties of the graphs
which admit these new types of graph labellings.

Keywords: sumset labelling, modular sumset labelling, weak modular sumset
labelling, strong modular sumset labelling, arithmetic modular sumset labelling

1. Introduction

For terminology and results in graph theory, we refer to [1–5]. For further
notions and concepts on graph classes, graph operations, graph products and
derived graphs, refer to [3, 6–10]. Unless mentioned otherwise, all graphs
mentioned in this chapter are simple, finite, connected and undirected.

1.1 Basics of graph labelling

Labelling of a graph G can broadly be considered as an assignment of labels or
weights to the elements (vertices and edges) of G subject to certain pre-defined
conditions. The research on graph labelling has flourished in the second half of
twentieth century after the introduction of the notion of β-valuations of graphs in
[11]. The β-valuation of a graph G is an injective map f : V Gð Þ ! 1, 2, 3, … , jEjf g

such that the induced function f ∗
: E Gð Þ ! 1, 2, 3, … , jEjf g, defined by f ∗ uvð Þ ¼

∣ f uð Þ � f vð Þ∣ for all uv∈E Gð Þ, is also injective. Later, β-valuation of graphs was
popularly known to be the graceful labelling of graphs (see [12]). Many variations of
number valuations have been defined in the literature since then and most of those
studies were based on the number theory and/or number theoretic properties of
sets. For concepts and results in number theory, see [13–16].

Analogous to the number valuations of graphs, the notion of set-labelling of
graphs has been introduced in [17] as follows: Given a non-empty ground set X, a
set-labelling or a set-valuation of a graph G is an injective function f : V Gð Þ ! P Xð Þ,

the power set of X, such that the induced function f⊕ : V Gð Þ ! P Xð Þ defined by
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f⊕ uvð Þ ¼ f uð Þ⊕f vð Þ, for all uv∈E Gð Þ, where ⨁ is the symmetric difference of two
sets. A graph which admits a set-labelling is called a set-labelled graph or a set-valued

graph. If the induced function f⊕ is also injective, then the set-labelling f is called a
set-indexer.

Subsequent to this study, many intensive investigations on set-labelling of
graphs and its different types have been taken place. An overview of such studies on
set-labelling of graphs can be seen in [17–23]. The study on set-labelling has been
extended by replacing the binary operation ⨁ by some other binary operations of
sets. For example, two different types of set-labellings—called disjunctive set-
labelling and conjunctive set-labelling—of graphs have been studied in [24]. These
set-labellings are defined respectively in terms of the union and the intersection of
two sets instead of the symmetric difference of two sets.

1.2 Sumsets and integer additive set-labelled graphs

Integer additive set-labelling or sumset labelling of graphs has been a new
addition to the theory of set-labelling of graphs recently. The notion of sumsets of
two sets is explained as follows: Let A and B be two sets of numbers. The sumset of A
and B is denoted by Aþ B and is defined by Aþ B ¼ aþ b : a∈A, b∈Bf g (see
[25]). Remember that a sumset of two sets can be determined if and only if both of
them are number sets. If either A or B is countably infinite, then their sumset Aþ B
is also a countably infinite set and if any one of them is a null set, then the sumset is
also a null set. If C is the sumset of two sets A and B, then both A and B are said to be
the summands of C.

We note that Aþ 0f g ¼ A and hence A and 0f g are called the trivial summands
of the set A. Also, note that Aþ B need not be a subset or a super set of A and/or B.
But, A⊂Aþ B if 0∈B. Furthermore, the sumset of two subsets of a set X need not
be a subset of the ground set X. These observations are clear deviations from the
other common binary operations of sets and thus the study of sumsets becomes
more interesting. For the terms, concepts and results on sumsets, we refer to
[25–34].

Note that if A and B are two non-empty finite sets of integers, then ∣A∣þ ∣B∣�
1≤ ∣Aþ B∣ ≤ ∣A� B∣ ¼ ∣A∣ ∣B∣ (see [25]). The exact cardinality of the sumset Aþ B
always depends on the number as well as the pattern of elements in both the
summands A and B. The counting procedure in this case is explained in [35] as
follows: Two ordered pairs a, bð Þ and c, dð Þ in A� B is said to be compatible if aþ
b ¼ cþ d. If a, bð Þ and c, dð Þ are compatible, then it is written as a, bð Þ � c, dð Þ. It can
easily be verified that this relation is an equivalence relation. A compatibility class of
an ordered pair a, bð Þ in A� B with respect to the integer k ¼ aþ b is the subset of
A� B defined by c, dð Þ∈A� B : a, bð Þ � c, dð Þf g and is denoted by a, bð Þ½ �k or Ck.
The cardinality of a compatibility class in A� B lies between 1 and min jAj, jBjf g.
Note that the sum of coordinates of all elements in a compatibility class is the same
and this sum will be an element of the sumset Aþ B. That is, the cardinality of the
sumset of two sets is equal to the number of equivalence classes on the Cartesian
product of the two sets generated by the compatibility relation defined on it.

Using the concepts of the sumsets of sets, the notion of integer additive set-
labelling of graphs has been introduced in [36] as follows: Let X be a set of non-
negative integers and P0 Xð Þ be the collection of the non-empty subsets of X. Then,
an integer additive set-labelling or an integer additive set-valuation of a graph G is an

injective map f : V Gð Þ ! P Xð Þ such that the induced function f⊕ : E Gð Þ ! P Xð Þ is

defined by fþ uvð Þ ¼ f uð Þ þ f vð Þ, for all uv∈E Gð Þ, where f uð Þ þ f vð Þ is the sumset
of the set-label the vertices u and v (see [36, 37]). A graph with an integer additive
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set-labelling is called an integer additive set-labelled graph. It can very easily be
verified that every graph G admits an integer additive set-labelling, provided the
ground set X is chosen judiciously.

Following to the above path-breaking study, the structural properties and char-
acteristics of different types of integer additive set-labellings of graphs are studied
intensively in accordance with the cardinality of the set-label, nature and pattern of
elements in the set-label, nature of the collection of set-label, etc. Some interesting
and significant studies in this area can be found in [35–44]. Later, the studies in this
area have been extended by including the sets of integers (including negative
integers also) for labelling the elements of a graph. Some extensive studies in this
area, can be seen in [45, 46].

As a specialisation of the sumset labelling of graphs, the notion of modular
sumset labelling of graphs and corresponding results are discussed in the following
section.

2. Modular sumset labelling of graphs

2.1 Basics of modular sumsets

Recall that n denotes the set of integers modulo n, where n is a positive integer.
The modular sumset of two subsets A and B of n is the set k : a∈A, b∈B,f
aþ b � k mod nð Þg. Unless mentioned otherwise, throughout this chapter, the
notation Aþ B denotes the modular sumset of the sets A and B. Unlike the ordinary
sumsets, the modular sumset Aþ B⊆n if and only if A,B⊆n. This fact will ease
many restrictions imposed on the vertex set-label of a sumset graph G in order to
ensure that the edge set-label are also subsets of the ground set.

If we assign the null set Ø to any vertex as the set-label, the set-label of every edge
incident at that vertex will also be a null set. To avoid such an embarrassing situation,
we do not consider the null set for labelling any vertex of graphs. Thus, the set of all
non-empty subsets of a set X is denoted by P0 Xð Þ. That is, P0 Xð Þ ¼ P Xð Þn 0f g.

2.2 Modular sumset graphs

In view of the facts stated above, the modular sumset labelling of a graph is
defined as follows:

Definition 2.1. [47] A modular sumset labelling of a graph G is an injective

function f : V Gð Þ ! P0 nð Þ such that the induced function fþ : E Gð Þ ! P0 nð Þ is

defined as fþ uvð Þ ¼ f uð Þ þ f vð Þ, where f uð Þ þ f vð Þ is the modular sumset of the set
labels of the vertices u and v. A graph which admits a modular sumset labelling is
called a modular sumset graph.

Definition 2.2. [47] A modular sumset labelling of a graph G is said to be a
uniform modular sumset labelling of G if the set-label of all its edges have the same
cardinality. A modular sumset labelling f of G is said to be a k-uniform modular

sumset labelling if fþ uvð Þ ¼ k, ∀uv∈E Gð Þ.
Proposition 2.1. [47] Every graph G admits modular sumset labelling (for a suitable

choice of n).
The proof of the above proposition is immediate from the fact that f uð Þ þ

f vð Þ⊆n if and only if f uð Þ, f vð Þ⊆n.
An immediate question that arises in this context is about the minimum size of

the ground set n (that is, the minimum value of n) required for the existence of a
modular sumset labelling of G.

3

Modular Sumset Labelling of Graphs
DOI: http://dx.doi.org/10.5772/intechopen.92701



As in the case of sumsets, the cardinality of the modular sumsets also attracted
the attention. Hence, we have the bounds for the cardinality of an edge set-label of a
modular sumset graph G is as follows:

Theorem 2.2. [47] Let f : V Gð Þ ! P0 nð Þ be a modular sumset labelling of a given
graph G. Then, for any edge uv∈E Gð Þ, we have

∣ f uð Þ∣þ ∣ f vð Þ∣� 1≤ ∣ fþ uvð Þ∣ ¼ ∣ f uð Þ þ f vð Þ∣ ≤ ∣ f uð Þ∣ ∣ f vð Þ∣ ≤ n: (1)

The theorem follows immediately from the theorem on the cardinality of
sumsets (see Theorem 2.7, p. 52, [25]).

In this context, it is quite interesting to investigate whether the bounds
are sharp. It has also been proved in [25] that the lower bound is sharp when
both f uð Þ and f vð Þ are arithmetic progressions (we call set an arithmetic
progression if its elements are in arithmetic progression) with the same common
difference. We shall discuss the different types of modular sumset graphs based on
the set-labelling numbers of its vertices and edges, one by one in the coming
discussions.

3. Arithmetic modular sumset graphs

As mentioned above, the lower bound of the inequality (1) is sharp if both
summand set-label are arithmetic progressions with the same common difference.
If the context is clear, the common difference of the set-label (if exists) of an
element may be called the common difference of that element. The deterministic ratio
of an edge of G is the ratio, k≥ 1 between the common differences of its end
vertices. In view of this terminology we have the following definition.

Definition 3.1. For any vertex v of G, if f vð Þ is an arithmetic progression, then
the modular sumset labelling f : V Gð Þ ! P0 nð Þ is called a vertex arithmetic modular
sumset labelling of G. In a similar manner, for any edge e of G, if f eð Þ is an arithmetic
progression, then the modular sumset labelling f : E Gð Þ ! P0 nð Þ is called an edge
arithmetic modular sumset labelling of G.

The difference set of a non-empty set A, denoted by DA, is the set defined by
DA ¼ ja� bj: a, b∈Af g. Note that if A is an arithmetic progression, then its differ-
ence set DA is also an arithmetic progression and vice versa. Analogous to the
corresponding result of the edge-arithmetic sumset labelling of graphs (see
[44, 46]), the following result is a necessary and sufficient condition for a graph G
to be edge-arithmetic modular sumset graph in terms of the difference sets the set-
label of vertices of G.

Theorem 3.1. Let f be a modular sumset labelling defined on a graph G. If the set-
label of an edge of G is an arithmetic progression if and only if the sumset of the difference
sets of set-label of its end vertices is an arithmetic progression.

Proof. Let f : V Gð Þ ! P ℕ0ð Þ be a modular sumset labelling defined on G. Let
ai, a j be two arbitrary elements in f uð Þ and let br, bs be two elements in f vð Þ. Then,

∣ai � a j∣ ∈D f uð Þ and ∣ai � a j∣ ∈D f uð Þ. That is, D f uð Þ ¼ jai � a jj: ai, a j ∈ f uð Þ
� �

and

D f vð Þ ¼ jbr � bsj: br, bs ∈ f vð Þf g.

Now, assume that fþ eð Þ ¼ fþ uvð Þ is an arithmetic progression for an edge e ¼
uv∈E Gð Þ. That is, A ¼ f uð Þ þ f vð Þ is an arithmetic progression. Then, the differ-
ence set DA ¼ ja� bj: a, b∈A ¼ f uð Þ þ f vð Þf g is also an arithmetic progression.
Since a, b∈A, we have a ¼ ai þ br and b ¼ a j þ bs, where ai, a j ∈ f uð Þ and
br, bs ∈ f vð Þ. Then,
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DA¼ ja� bj: a, b∈Af g

¼ jai þ br � a j þ bs
� �

j: ai, a j ∈ f uð Þ, br, bs ∈ f vð Þ
� �

¼ jai � a jj þ jbr � bsj: ai, a j ∈ f uð Þ, br, bs ∈ f vð Þ
� �

¼ jai � a jj: ai, a j ∈ f uð Þ
� �

þ jbr � bsj: br, bs ∈ f vð Þf g

¼ D f uð Þ þD f vð Þ

Hence, D f uð Þ þD f vð Þ is an arithmetic progression.

Conversely, assume that D f uð Þ þD f vð Þ is an arithmetic progression. Then, by

previous step, we have D f uð Þ þD f vð Þ ¼ DA, where A ¼ f uð Þ þ f vð Þ. Then, we have

DA is an arithmetic progression. Since the difference set DA is an arithmetic

progression, then by the above remark, we have A ¼ f uð Þ þ f vð Þ ¼ fþ uvð Þ is also an
arithmetic progression. Hence, the edge e ¼ uv has an arithmetic progression as its
set-label. □

In view of the notions mentioned above, we note that there are some graphs, all
whose elements have arithmetic progressions as their set-label and there are some
graphs, the set-label of whose edges are not arithmetic progressions. Keeping this in
mind, we define the following notion.

Definition 3.2. An arithmetic sumset labelling of a graph G is a modular sumset
labelling f of G, with respect to which the set-label of all vertices and edges of G are
arithmetic progressions. A graph that admits an arithmetic modular sumset label-
ling is called an arithmetic modular sumset graph.

Analogous to the condition for an arithmetic sumset graphs (see [44]), a neces-
sary and sufficient condition for a graph to admit an arithmetic modular sumset
labelling is discussed in the following theorem.

Theorem 3.2. A graph G admits an arithmetic modular sumset labelling f if and
only if for any two adjacent vertices in G, the deterministic ratio of every edge of G is a
positive integer, which is less than or equal to the set-labelling number of its end vertex
having smaller common difference.

Proof. Here, we need to consider the following two cases:
Case 1: First note that if the set-label of two adjacent vertices are arithmetic

progressions with the same common difference, say d, then the set-label of the
corresponding edge is also an arithmetic progression with the same common dif-
ference d. Then, it is clear that a vertex arithmetic modular sumset graph is an
arithmetic modular sumset graph if the common differences between any two
adjacent vertices of G are the same.

Case 2: Assume that u, v be any two adjacent vertices in G with common differ-
ences du and dv respectively such that du ≤ dv. Also, assume that f uð Þ ¼
ar ¼ aþ rdu : 0≤ r<mf g and f vð Þ ¼ bs ¼ bþ sdv : 0≤ s< nf g. Then, ∣ f uð Þ∣ ¼ m and

∣ f vð Þ∣ ¼ n. Now, arrange the terms of f uð Þ þ f vð Þ ¼ fþ uvð Þ in rows and columns as
follows. For any bs ∈ f vð Þ, 0≤ s< n, arrange the terms of Aþ bs in sþ 1ð Þth row in
such a way that equal terms of different rows come in the same column of this
arrangement. Without loss of generality, assume that dv ¼ kdu and k≤m. If k<m,
then for any a∈ f uð Þ and b∈ f vð Þ we have aþ bþ dvð Þ ¼ aþ bþ kdu < aþ bþmdi.
That is, a few final elements of each row of the above arrangement occur as the
initial elements of the succeeding row (or rows) and the difference between two
successive elements in each row is du itself. If k ¼ m, then the difference between
the final element of each row and the first element of the next row is du and the
difference between two consecutive elements in each row is du. Hence, if k≤m,

then fþ uvð Þ is an arithmetic progression with common difference du.
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In both cases, note that if the given conditions are true, then f is an arithmetic
modular sumset labelling of G.

We prove the converse part by contradiction method. For this, assume that f is
an arithmetic modular sumset labelling of G. Let us proceed by considering the
following two cases.

Case-1: Assume that d j is not a multiple of di (or di is not a multiple of d j).
Without loss generality, let di < d j. Then, by division algorithm, d j ¼ pdi þ

q, 0< q< di. Then, the differences between any two consecutive terms in fþ viv j

� �

are not equal. Hence, in this case also, f is not an arithmetic modular sumset
labelling, contradiction to the hypothesis. Therefore, di∣d j.

Case 2: Let d j ¼ kdi where k>m. Then, the difference between two successive
elements in each row is di, but the difference between the final element of each row
and the first element of the next row is tdi, where t ¼ k�mþ 1 6¼ 1. Hence, f is not
an arithmetic modular sumset labelling, a contradiction to the hypothesis. Hence,
we have d j ¼ kdi; k≤m.

Therefore, from the above cases it can be noted that if a vertex arithmetic
modular sumset labelling of G is an arithmetic modular sumset labelling of G, then
the deterministic ratio of every edge of G is a positive integer, which is greater than
or equal to the set-labelling number of its end vertex having smaller common
difference. This completes the proof. □

In the following theorem, we establish a relation between the common differ-
ences of the elements of an arithmetic modular sumset graph G.

Theorem 3.3. If G is an arithmetic modular sumset graph, the greatest common
divisor of the common differences of vertices of G and the greatest common divisor of the
common differences of the edges of G are equal to the smallest among the common
differences of the vertices of G.

Proof. Let f be an arithmetic modular sumset labelling of G. Then, by Theorem
3.2, for any two adjacent vertices vi and v j of G with common differences di and d j

respectively, either di ¼ d j, or if d j > di, d j ¼ kd j, where k is a positive integer such
that 1< k≤ ∣ f við Þ∣.

If the common differences of the elements of G are the same, the result is
obvious. Hence, assume that for any two adjacent vertices vi and v j of G, d j ¼

kd j, k≤ ∣ f við Þ∣, where di is the smallest among the common differences of the
vertices of G. If vr is another vertex that is adjacent to v j, then it has the common
difference dr which is equal to either di or d j or ld j. In all the three cases, dr is a
multiple of di. Hence, the greatest common divisor of di, d j, dr is di. Proceeding like
this, we have the greatest common divisor of the common differences of the
vertices of G is di.

Also, by Theorem 3.2, the edge uiv j has the common difference di. The edge v jvk
has the common difference di, if dk ¼ di, or d j in the other two cases. Proceeding
like this, we observe that the greatest common divisor of the common differences of
the edges of G is also di. This completes the proof. □

The study on the set-labelling number of edges of an arithmetic modular sumset
graphs arouses much interest. Analogous to the result on set-labelling number of the
edges of an arithmetic sumset graph (see [43]), The set-labelling number of an edge
of an arithmetic modular sumset graph G, in terms of the set-labelling numbers of
its end vertices, is determined in the following theorem.

Theorem 3.4. Let G be a graph which admits an arithmetic modular sumset label-
ling, say f and let di and d j be the common differences of two adjacent vertices vi and v j in

G. If ∣ f við Þ∣ ≥ ∣ f v j

� �

∣, then for some positive integer 1≤ k≤ ∣ f við Þ∣, the edge viv j has the

set-labelling number ∣ f við Þ∣þ k j f v j

� �

j�1
� �

.
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Proof. Let f be an arithmetic modular sumset labelling defined on G. For any two
vertices vi and v j of G, let f við Þ ¼ ai, ai þ di, ai þ 2di, ai þ 3di, … , ai þ m� 1ð Þdif g

and let f v j

� �

¼ a j, a j þ d j, a j þ 2d j, a j þ 3d j, … , a j þ n� 1ð Þd j

� �

. Here ∣ f við Þ∣ ¼ m

and ∣ f v j

� �

∣ ¼ n.

Let di and d j be the common differences of the vertices vi and v j respectively,
such that di < d j. Since f is an arithmetic modular sumset labelling on G, by
Theorem 3.2, there exists a positive integer k such that d j ¼ k:di, where 1≤ k≤ ∣ f við Þ∣.

Then, f v j

� �

¼ a j, a j þ kdi, a j þ 2kdi, a j þ 3kdi, … , a j þ n� 1ð Þkdi
� �

. Therefore,

fþ viv j

� �

¼ ai þ a j, ai þ a j þ di, ai þ a j þ 2di, … , ai þ a j þ m� 1ð Þ þ k n� 1ð Þ½ �di
� �

.
That is, the set-labelling number of the edge viv j is mþ k n� 1ð Þ. □

4. Strongly modular sumset graphs

The next type of a modular sumset labelling we are going to discuss is the one
with the upper bound in Inequality (1) is sharp (that is, ∣Aþ B∣ ¼ ∣AkB∣). Thus, we
have the following definition.

Definition 4.1. [47] A modular sumset labelling f : V Gð Þ ! P0 nð Þ defined on a
given graph G is said to be a strongly modular sumset labelling if for the associated

function fþ : E Gð Þ ! P0 nð Þ, ∣ fþ uvð Þ∣ ¼ ∣ f uð Þ∣ ∣ f vð Þ∣∀uv∈E Gð Þ. A graph which
admits a strongly modular sumset labelling is called a strongly modular sumset graph.

Invoking the notion difference set of a set, a necessary and sufficient condition
of a modular sumset labelling of a graph G to be a strongly modular sumset labelling
is given below:

Theorem 4.1. A modular sumset labelling f : V Gð Þ ! P0 nð Þ of a given graph G is
a strongly modular sumset labelling of G if and only if D f uð Þ ∩D f vð Þ ¼ Ø,∀uv∈E Gð Þ,

where ∣ f uð Þ∣ ∣ f vð Þ∣ ≤ n.
Proof. Let f : V Gð Þ ! P0 nð Þ be a modular sumset labelling on a given graph G.

For any vertex u∈V Gð Þ, define D f uð Þ ¼ ai � a j : ai, a j ∈ f uð Þ
� �

.

Let uv be an arbitrary edge in E Gð Þ. Assume that f is a strong modular sumset

labelling of G. Then, by definition ∣ fþ uvð Þ∣ ¼ ∣ f uð Þ∣ ∣ f vð Þ∣. Therefore, for any ele-

ments ai, a j ∈ f uð Þ and br, bs ∈ f vð Þ, we have ai þ br 6¼ a j þ bs in fþ uvð Þ∀uv∈E Gð Þ.
That is, ∣ai � a j∣ 6¼ ∣bs � br∣ for any ai, a j ∈ f uð Þ and br, bs ∈ f vð Þ. That is,
D f uð Þ ∩D f vð Þ ¼ Ø. Therefore, the difference sets of the set-label of any two adjacent

vertices are disjoint.
Conversely, assume that the difference D f uð Þ ∩D f vð Þ ¼ Ø for any edge uv in G.

That is, ∣ai � a j∣ 6¼ ∣bs � br∣ for any ai, a j ∈ f uð Þ and br, bs ∈ f vð Þ. Then, ai � a j 6¼

bs � br. That is, ai þ br 6¼ a j þ bs. Therefore, all elements in f uð Þ þ f vð Þ are distinct.

That is, ∣ fþ uvð Þ∣ ¼ ∣ f uð Þ∣ ∣ f vð Þ∣ for any edge uv∈E Gð Þ. Hence, f is a strongly
modular sumset labelling of G.

Also, note that the maximum possible cardinality in the set-label of any element
of G is n, the product ∣ f uð Þ∣ ∣ f vð Þ∣ cannot exceed the number n. This completes the
proof. □

A necessary and sufficient condition for a modular sumset labelling of a graph G
to be a strongly k-uniform modular sumset labelling is given below:

Theorem 4.2. [47] For a positive integer k≤ n, a modular sumset labelling f :

V Gð Þ ! P0 nð Þ of a given connected graph G is a strongly k-uniform modular sumset
labelling of G if and only if either k is a perfect square or G is bipartite.

Proof. If k is a perfect square, say k ¼ l2, then we can label all the vertices of a
graph by distinct l-element sets in such a way that the difference sets of the set-label
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of every pair of adjacent vertices are disjoint. Hence, assume that k is not a perfect
square.

Let G be a bipartite graph with bipartition X,Yð Þ. Let r, s be two divisors of k.
Label all vertices of X by distinct r-element sets all of whose difference sets are the
same, say DX. Similarly, label all vertices of Y by distinct s-element sets all of whose
difference sets the same, say DY , such that DX ∩DY ¼ Ø. Then, all the edges of G
have the set-labelling number k ¼ rs. Therefore, G is a strongly k-uniform modular
sumset graph.

Conversely, assume that G admits a strongly k-uniform modular sumset label-

ling, say f. Then, fþ uvð Þ ¼ k∀uv∈E Gð Þ. Since, f is a strong modular sumset label-
ling, the set-labelling number of every vertex of G is a divisor of the set-labelling
numbers of the edges incident on that vertex. Let v be a vertex of G with the set-
labelling number r, where r is a divisor of k, but r2 6¼ k. Since f is k-uniform, all the
vertices in N vð Þ, must have the set-labelling number s, where rs ¼ k. Again, all
vertices, which are adjacent to the vertices of N vð Þ, must have the set-labelling
number r. Since G is a connected graph, all vertices of G have the set-labelling
number r or s. Let X be the set of all vertices of G having the set-labelling number r
and Y be the set of all vertices of G having the set-labelling number s. Since r2 6¼ k,
no two elements in X (and no elements in Y also) can be adjacent to each other.
Therefore, G is bipartite. □

The following result is an immediate consequence of the above theorem.
Theorem 4.3. [47] For a positive non-square integer k≤ n, a modular sumset

labelling f : V Gð Þ ! P0 nð Þ of an arbitrary graph G is a strongly k-uniform modular
sumset labelling of G if and only if either G is bipartite or a disjoint union of bipartite
components.

For a positive integer k≤ n, the maximum number of components in a strongly k-
uniform modular sumset graph is as follows.

Proposition 4.4. [47] Let f be a strongly k-uniform modular sumset labelling of a
graph G with respect to the ground set n. Then, the maximum number of components in
G is the number of distinct pairs of divisors r and s of k such that rs ¼ k.

The following theorem discusses the condition for an arithmetic modular sumset
labelling of a graph G to be a strongly modular sumset labelling of the graph.

Theorem 4.5. Let G be a graph which admits an arithmetic modular sumset
labelling, say f . Then, f is a strongly modular sumset labelling of G if and only if the
deterministic ratio of every edge of G is equal to the set-labelling number of its end vertex
having smaller common difference.

Proof. Let f be an arithmetic modular sumset labelling of G. Let vi and v j are two
adjacent vertices in G and di and d j be their common differences under f . Without
loss of generality, let di < d j. Then, by Theorem 3.4, the set-labelling number of the

edge viv j is ∣ f við Þ∣þ k j f v j

� �

j�1
� �

.

Assume that f is a strongly modular sumset labelling. Therefore, fþ viv j

� �

¼ mn.
Then,

∣ f við Þ∣þ k j f v j

� �

j�1
� �

¼ ∣ f við Þ∣ ∣ f v j

� �

∣

) k j f v j

� �

j�1
� �

¼ ∣ f við Þ∣ j f v j

� �

j�1
� �

) k ¼ ∣ f við Þ∣:

Conversely, assume that the common differences di and d j of two adjacent vertices
vi and v j respectively in G, where di < d j such that d j ¼ ∣ f við Þ∣:di. Assume that

f við Þ ¼ ar ¼ aþ rdi : 0≤ r< j f við Þjf g and f v j

� �

¼ bs ¼ bþ skdi : 0≤ s< j f v j

� �

j
� �

,

where k≤ ∣ f við Þ∣. Now, arrange the terms of fþ viv j

� �

¼ f við Þ þ f v j

� �

in rows and
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columns as follows. For bs ∈ f v j

� �

, 0≤ s< ∣ f v j

� �

∣, arrange the terms of f við Þ þ bs in

sþ 1ð Þ-th row in such a way that equal terms of different rows come in the same
column of this arrangement. Then, the common difference between consecutive ele-
ments in each row is di. Since k ¼ ∣ f við Þ∣, the difference between the final element of
any row (other than the last row) and first element of its succeeding row is also di.
That is, no column in this arrangement contains more than one element. Hence, all
elements in this arrangement are distinct. Therefore, total number of elements in
f við Þ þ f v j

� �

is ∣ f við Þ∣ ∣ f v j

� �

∣. Hence, f is a strongly modular sumset labelling. □

5. Supreme modular sumset labelling of G

In both types of modular sumset labelling discussed above, it is observed that
the cardinality of the edge set-label cannot exceed the value n. This fact creates
much interest in investigating the case where all the edge set-label have the
cardinality n.

Definition 5.1. [47] A modular sumset labelling f : V Gð Þ ! P0 nð Þ of a given
graph G is said to be a supreme modular sumset labelling or maximal modular sumset

labelling of G if and only if fþ E Gð Þð Þ ¼ nf g.
Put in a different way, a modular sumset labelling f : V Gð Þ ! P nð Þ of a given

graph G is a supreme modular sumset labelling of G if the set-label of every edge of
G is the ground set n itself.

A necessary and sufficient condition for a modular sumset labelling of a graph
G to be its supreme modular sumset labelling is discussed in the theorem given
below:

Theorem 5.1. [47] The modular sumset labelling f : V Gð Þ ! P nð Þ of a given
graph G is a supreme modular sumset labelling of G if and only if for every pair of
adjacent vertices u and v of G some or all of the following conditions hold.

i. ∣ f uð Þ∣þ ∣ f vð Þ∣ ≥ n if D f uð Þ ∩D f vð Þ 6¼ Ø. The strict inequality hold

when D f uð Þ and D f vð Þ are arithmetic progressions containing the same

elements.

ii. ∣ f uð Þ∣ ∣ f vð Þ∣ ≥ n if D f uð Þ ∩D f vð Þ ¼ Ø.

Proof. For two adjacent vertices u and v in G, let D f uð Þ ¼ D f vð Þ ¼ df g are

arithmetic progressions containing the same elements. Then, the elements in f uð Þ
and f vð Þ are also in arithmetic progression, with the same common difference d.
Then, by Theorem 3.4, n ¼ ∣ f uð Þ þ f vð Þ∣ ¼ ∣ f uð Þ∣þ ∣ f vð Þ∣� 1. Therefore, the set-
labelling number of the edge uv is n if and only if ∣ f uð Þ∣þ ∣ f vð Þ∣> n.

Now, let D f uð Þ ∩D f vð Þ 6¼ Ø such that D f uð Þ 6¼ D f vð Þ. Then, clearly ∣ f uð Þ þ

f vð Þ∣ ≥ ∣ f uð Þ∣þ ∣ f vð Þ∣. Therefore, we have ∣ fþ uvð Þ∣ ¼ n if and only if ∣ f uð Þ∣þ
∣ f vð Þ∣ ≥ n. □

Next assume that D f uð Þ ∩D f vð Þ ¼ Ø. Then, ∣ f uð Þ þ f vð Þ∣ ¼ ∣ f uð Þ∣ ∣ f vð Þ∣. There-

fore, we have ∣ fþ uvð Þ∣ ¼ n if and only if ∣ f uð Þ∣ ∣ f vð Þ∣ ≥ n.
A necessary and sufficient condition for a strong modular sumset labelling of a

graph G to be a maximal modular sumset labelling of G.
Theorem 5.2. [47] Let f be a strong sumset-labelling of a given graph G. Then, f is a

maximal sumset-labelling of G if and only if n is a perfect square or G is bipartite or a
disjoint union of bipartite components.

Proof. The proof is an immediate consequence of Theorem 4.2, when k ¼ n. □
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6. Weakly modular sumset graphs

Another interesting question we address in the beginning of this section is
whether the lower bound and the upper bound of the sumset can be equal. Suppose
that A and B be two non-empty subsets of n such that the bounds of their sumset
are equal. Then, we have

∣A∣þ ∣B∣� 1 ¼ ∣AkB∣

∣A∣þ ∣B∣� 1� ∣AkB∣ ¼ 0

∣A∣ 1�jBjð Þ þ ∣B∣� 1 ¼ 0

jAj�1ð Þ jBj�1ð Þ ¼ 0

which is possible only when ∣A∣ ¼ 1 or ∣B∣ ¼ 1 (or both). Also, note that in this
case the cardinality of the sumset is equal to equal to that of one of the summands.
This interesting phenomenon leads us to a new type of a modular sumset labelling
called weakly modular sumset labelling. This type of labelling is investigated in the
following section.

6.1 Weakly modular sumset labelling of graphs

Definition 6.1. A modular sumset labelling f of a graph G is said to be a weakly
modular sumset labelling of G if the cardinality of the set-label of every edge of G is
equal to the cardinality of the set-label of at least one of its end vertices. A graph
which admits a weakly modular sumset labelling is called a weakly modular sumset
graph.

From the above definition, it can be observed that for any edge uv in weakly

modular sumset graph G, ∣ fþ uvð Þ∣ ¼ ∣ f uð Þ∣ or ∣ fþ uvð Þ∣ ¼ ∣ f vð Þ∣. Putting it in a
different way, the set-labelling number of at least one end vertex of every edge of a
weakly modular sumset graph is a singleton. An element (a vertex or an edge) of
modular sumset graph G with set-labelling number 1 is called a sparing element or a
monocardinal elements of G. Hence, analogous to the condition for a sumset graph to
be a weak sumset graph (see [39]), we have.

Theorem 6.1. A graph G admits a weak modular sumset labelling if and only if G is
bipartite or contains sparing edges.

Proof. Note the fact that at least one end vertex of every edge of G is a sparing
vertex. Also, we note that no two vertices with non-singleton set-label in weakly
modular sumset graph can be adjacent to each other. Thus, if every of edge of G has
exactly one end vertex with singleton set-label, then we can partition the vertex set
of G into two subsets X with all sparing vertices and Y with all non-sparing vertices.
Here, no two vertices in the same partition are adjacent and hence G is a bipartite
graph. If G is not a bipartite graph, then obviously G should have at least one
sparing edge, completing the proof.

Invoking Theorem 6.1, the following two results are immediate.
Corollary 6.2. Every graph G admits a weakly modular sumset labelling.
Corollary 6.3. A graph G admits a weakly uniform modular sumset labelling if and

only if G is bipartite.
The above results are similar to the corresponding result of integer additive set-

labelled graphs (see [39]) and hence the notion of sparing number of graphs defined
and studied in [48–57] can be extended to our current discussion also. The notion of
the sparing number of graphs is defined as follows:

Definition 6.2. Let G be a weakly modular sumset labelled graph. Then, the
sparing number of G is the number of sparing edges in G.

10

Number Theory and Its Applications



A set of vertices X of a graph G is said to have maximal incidence if the
maximum number of edges of incidence at the elements of X. Then, analogous to
the corresponding result of integer additive set-valued graphs (see [40]), we have.

Theorem 6.4. Let G be a weakly modular sumset labelled graph and I be I be the
largest independent set of G with maximum incidence. Then, the sparing number of G is
∣E Gð Þ∣�

P

vi ∈ Id við Þ.

Proof. Recall that the degree of a vertex v, denoted by d vð Þ, is equal to the
number of edges incident on a vertex. Note that any vertex vi ∈ I can have a non-
singleton set-label which gives non-singleton set labels to d við Þ edges incident on it.
Since I is an independent set, the edges incident at the vertices in I assumes non-
singleton set-label. Therefore, the number of edges having non-singleton set-label
incident at the vertices in I is

P

vi ∈ Id við Þ. Since I is a maximal independent set of

that kind, the above expression counts the maximal non-sparing edges in G. Hence,
the number of sparing edges in G is ∣E Gð Þ∣�

P

vi ∈ Id við Þ. □

6.2 Weakly modular sumset number of graphs

As a special case of the modular sumset number, the notion of weakly modular
sumset number is introduced in [47] as follows:

Definition 6.3. The weakly modular sumset number of a graph G, denoted by σw is
defined to be the minimum value of n such that a modular sumset labelling f :

V Gð Þ ! P0 nð Þ is a weakly modular sumset labelling of G.
The following theorem discussed the weak sumset number of an arbitrary graph

G in terms of its covering and independence numbers.
Theorem 6.5. [47] Let G be a modular sumset graph and α and β be the covering

number and independence number of G respectively. Then, the weak modular sumset
number of G is max α, rf g, where r is the smallest positive integer such that 2r � r� 1≥ β.

Proof. Recall that α Gð Þ þ β Gð Þ ¼ ∣V Gð Þ∣ (see [4]). Since G is a modular sumset
graph, no two adjacent vertices can have non-singleton set-label simultaneously.
Therefore, the maximum number of vertices that have non-singleton set-label is β.
Let V 0 be the set of these independent vertices in G. Therefore, the minimum
number of sparing vertices is ∣V Gð Þ∣� β ¼ α. Since all these vertices in V � V 0 must
have distinct singleton set-label, the ground set must have at least α elements.

Also, thenumbernon-empty,non-singleton subsets of theground setmust begreater
than or equal to α. Otherwise, all the vertices inV 0 cannot be labelled by non-singleton
subsets of this ground set.We know that the number of non-empty, non-singleton

subsets of a setA is 2∣A∣ � ∣A∣� 1, whereA⊆n is the ground set used for labelling.
Therefore, the weak modular sumset number G is α if 2α � α� 1≥ β. Otherwise,

the ground set must have at least r elements such that 2r � r� 1≥ β. Therefore, in
this case, the weak modular sumset number of G is r, where r is the smallest positive
integer such that 2r � r� 1≥ β. Hence, σ ∗ Gð Þ ¼ max α, rf g. This completes the
proof. □

The weakly modular sumset number some fundamental graph classes are given
in Table 1.

The following theorem discusses the minimum cardinality of the ground set
when the given graph G admits a weakly uniform modular sumset labelling.

Theorem 6.6. [47] Let G be a weakly k-uniform modular sumset graph with
covering number α and independence number β, where k< α. Then, the minimum
cardinality of the ground set n is max α, rf g, where r is the smallest positive integer such

that
r

k≥ β

� �

.
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Proof. Let a weakly k-uniform modular sumset labelling be defined on a graph G
over the ground set A⊂n. Then, by Corollary 6.3, G is bipartite. Let X,Y be the
bipartition of the vertex set V Gð Þ. Without loss of generality, let ∣X∣ ≤ ∣Y∣. Then,
α ¼ ∣X∣ and β ¼ ∣Y∣. Then, distinct elements of X must have distinct singleton set-
label. Therefore, n≥ α.

On the other hand, since f is k-uniform, all the elements in Y must have distinct
k-element set-label. The number of k-element subsets of a set A (obviously, with

more than k elements) is
∣A∣

k

� �

. The ground set A has α elements only if
α

k≥ β

� �

.

Otherwise, the ground set A must contain at least r elements, where r> α is the

smallest positive integer such that
r

k≥ β

� �

. Therefore, n ¼ max α, rf g. □

In view of the above theorem, the following result is immediate.
Corollary 6.7. Let G be a weakly k-uniform modular sumset graph, where k≥ α,

where α is the covering number of G. Then, the minimum cardinality of the ground set

n is the smallest positive integer n such that
n

k≥ β

� �

, where β is the independence

number of G.
The following result explains a necessary and sufficient condition for a weak

modular sumset labelling of a given graph G to be a maximal modular sumset
labelling of G.

Proposition 6.8. [47] A weakly modular sumset labelling of a graph G is a supreme
modular sumset labelling of G if and only if G is a star graph.

Proof. Let f be a weak modular sumset labelling of given graph G. First, assume
that f is a maximal modular sumset labelling of G. Then, the set-labelling number of
one end vertex of every edge of G is 1 and the set-labelling number of the other end
vertex is n. Therefore, n be the set-label of one end vertex of every edge of G,
which is possible only if G is a star graph with the central vertex has the set-label n

and the pendant vertices of G have distinct singleton set-label.
Conversely, assume that G is a star graph. Label the central vertex of G by the

ground set n and label other vertices of G by distinct singleton subsets of n. Then,
all the edges of G has the set-labelling number n. That is, this labelling is a supreme
modular sumset labelling of G. □

7. Conclusion

In this chapter, we have discussed certain types of modular sumset graphs and
their structural properties and characterisations. These studies are based on the

Graph class σ
*(G)

Path, Pp 2 if p≤ 2; ⌊
p
2 ⌋ if p> 2

Cycle, Cp p� 1 if p ¼ 3, 4; ⌊ p
2 ⌋ if p>4

Wheel graph, W1,p 1 + ⌊
p
2 ⌋

Helm graph, Hp p

Ladder graph, Lp p

Complete graph, Kp p� 1

Table 1.

Weakly modular sumset number of some graph classes.

12

Number Theory and Its Applications



cardinality of the set-label of the elements of the graphs concerned and the patterns
of the elements in these set-label. It is to be noted that several other possibilities can
be investigated in this regard. For example, analogous to the topological set-
valuations of graphs, the case when the collection of set-label of vertices and/or
edges of a graph G forms a topology of the ground set n can be studied in detail.
Another possibility for future investigation is to extend the graceful and sequential
concepts of set-labelling of graphs to modular sumset labelling also. All these points
highlight the wide scope for further studies in this area.
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