
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

22

Formalizing and Validating UML Architecture
Description of Service-Oriented Applications

Zhijiang Dong1, Yujian Fu2, Xudong He3 and Yue Fu4

1Department of Computer Science, Middle Tennessee State University
2Department of Computer Science, Alabama A&M University
3School of Computer Science, Florida International University

4Department of Technology, Fuyuan High Technology Co.,Ltd.
1,2,3USA

4P.R. China

1. Introduction

Service-oriented applications, especially web systems, are self-descriptive software
components which can automatically be discovered and engaged, together with other
web components, to complete tasks over the Internet. The importance of service-
oriented application architecture descriptions has been widely recognized in recently
year. One of the main perceived benefits of a service-oriented application architecture
description is that such a description facilitates system property analysis and thus can
detect and prevent web design errors in an earlier stage, which are critical for service-
oriented applications. Software architecture description and modeling of a service-
oriented application plays a key role in providing the high level perspective, triggering
the right refinement to the implementation, controlling the quality of services of
products and offering large and general system properties. While several established
and emerging standards bodies (e.g., [5, 4, 3, 1, 2] etc.) are rapidly laying out the
foundations that the industry will be built upon, there are many research challenges
behind service-oriented application architecture description languages that are less
well-defined and understood [33] for the large number of web service application
design and development.
On the other hand, Unified Modeling Language (UML), a widely accepted object-
oriented system modeling and design language, has been adapted for software
architecture descriptions in recent years. Several research groups have used UML
extension to describe the service-oriented application’s architecture ([7, 29]). However,
it is hard to detect the system problems, such as correctness, consistency [30] etc., of the
integration of Web services without a formal semantics of web services architecture.
Currently, although a software architecture description using UML extension contains
multiple viewpoints such as those proposed in the SEI model [39], the ANSI/IEEE
P1471 standard, and the Siemens [31]. The component and connector (C&C) viewpoint
[42], which addresses the dynamic system behavioral aspect, is essential and necessary
for system property analysis.

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Petri Net: Theory and Applications

498

To bridge the gap between service-oriented application architecture research and practice,

several researchers explored the ideas of integrating architecture description languages

(ADLs) and UML [8, 13, 14, 35]. Most of these integration approaches attempted to describe

elements of ADLs in terms of UML such that software architectures described in ADLs can

be easily translated to extensions of UML. There are several problems of the above approach

that hinder their adoption. First, there are multiple ways to describe ADLs in terms of UML

[24], each of which has advantages and disadvantages; thus the decision on which extension

of UML to use is not unique. Second, modifications on UML models are difficult to be

reflected in the original ADL models since the reverse mapping is in general impossible.

Finally, the software developers are required to learn and use specific ADL to model

software architecture and use the specific extension of UML, which is exactly the major

cause of preventing the wide use of ADLs. Currently, there is less work involved to apply

these methodologies to the service-oriented applications.

In this paper, we present an approach opposite to the one mentioned above and apply our

approach to the web applications, i.e. we translate a UML architecture description into a

formal architecture model for formal analysis. Using this approach, we can combine the

potential benefits of UML’s easy comprehensibility and applicability with a formal ADL’s

analyzability. Moreover, this approach is used to formally analyze the integration of web

services. The formal architecture model used in this research is named SO-SAM, an

extended version of SAM [27], which is based on Petri nets and temporal logic; and supports

the analysis of a variety of functional and non-functional properties [28]. Finally, we

validate this approach by using model checking techniques. This approach presents an

effective way of the Service-Oriented Architecture (SOA) in a logical format so that stake

holders can better use artifacts to leverage Unified Modeling Language (UML) components

in their architecture and design efforts.

The remainder of this paper is organized as follows. In section 2, we review SO-SAM with

predicate transition nets and temporal logic for high-level design. After that, we presented

our approach in section 3 and the validation of the approach is demonstrated in section 4.

Finally, we draw conclusions and describe future work in section 6.

2. Preliminaries

2.1 Overview of SO-SAM

SO-SAM [20] is an extended version of SAM [44] with the web service oriented features. SO-

SAM [20] is a general formal framework for specifying and analyzing service-oriented

architecture with two formalisms – Petri Net model and temporal logic, which is inherited

from SAM.

In addition, SO-SAM extended the net inscriptions with servicesorts and net structure with

initial and final ports that carry service triggering information. Furthermore, SO-SAM

restricted SAM connector without hierarchical architecture. Finally, SO-SAM component is

described by WSDL or XML. Also, the message in ports is defined by XML message. For the

more information, please refer to [20]. In this paper, we choose algebraic high level nets [17]

and linear time first order temporal logic as the underlying complementary formalisms of

SAM. Thus, next we simply introduce the algebraic high level nets used in our approach.

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

499

2.2 SAM
SAM [44] is an architectural description model based on Petri nets [37], which are well-
suited for modeling distributed systems. SAM [44] has dual formalisms underlying – Petri
nets and Temporal logic. Petri nets are used to describe behavioral models of components
and connectors while temporal logic is used to specify system properties of components and
connectors.
SAM architecture model is hierarchically defined as follows. A set of compositions C =

{C1,C2, …,Ck} represents different design levels or subsystems. A set of component Cmi and
connectors Cni are specified within each composition Ci as well as a set of composition
constraints Csi , e.g. Ci = {Cmi ,Cni ,Csi }. In addition, each component or connector is
composed of two elements, a behavioral model and a property specification, e.g. Cij = (Sij,

Bij). Each behavioral model is described by a Petri net, while a property specification by a
temporal logical formula. The atomic proposition used in the first order temporal logic
formula is the ports of each component or connector. Thus each behavioral model can be
connected with its property specification. A component Cmi or a connector Cni can be refined
to a low level composition Cl by a mapping relation h, e.g. h(Cmi) or h(Cmi) = Cl.
Figure 1 shows a graphical view of a simple SAM architecture model. The formal analysis
and design strategy of the SAM model on the software architecture is given in work [27].

Fig. 1. A SAM Architecture Model

SAM gives the flexibility to choose any variant of Petri nets and temporal logics to specify
behavior and constraints according to system characteristics. In our case, Predicate
Transition (PrT) net [25] and linear temporal logic (LTL) are chosen.
In summary, although our work was strongly influenced by SAM, we have enhanced the
state of the art by supporting modern software engineering philosophies equipped with
component-based and object-oriented notations and applied to web services-oriented
systems, as well as integrated with WSDL and XML.

2.3 Algebraic high-level nets

An algebraic high-level net [17] integrates Petri net with inscription of an algebraic

specification defining the data types and operations. Instead of specifying a single system

www.intechopen.com

Petri Net: Theory and Applications

500

model, an algebraic Petri net represents a class of models that often differ only in a few

parameters. Such a compact parameterized description is unavoidable for modular

specification and economic verification of net models in the dependable system design.

Generally speaking, an algebraic high-level (AHL) nets N = (SPEC, A, X, P, T,W
+
,W

-
, cond,

type) consists of following parts:

• An algebraic specification S PEC = (S,OP, E), where SIG = (S,OP) is a signature, and E
is a set of equations over SIG;

• A is an S PEC algebra;

• X is an family of S-sorted variables;

• P is a set of places;

• T is a set of transitionssuch that P∩ T = ∅;

• Two functions W+,W- assigning to each t ∈ T an element of the free commutative
monoid1

 over the cartesian of P and terms of SPEC with variables in X.

• cond is a function assigning to each t ∈ T a finite set of equations over signature SIG.

• type is a function assigning to each place a sort in S.
Fig. 2 shows an algebraic high-level net of sender-receiver. Its algebraic specification is

defined as following:
SPEC =

sorts: nat, bool, data, queue

opns: err: → data

nil: → data

inq: data × queue → queue

deq: queue → queue

first: queue → data

empty: queue → bool

length: queue → nat
eqns: deq(nil) = nil

deq(inq(x,nil)) = nil
deq(inq(x,inq(y,q))) = inq(x,deq(y,q))
first(nil) = err
first(inq(x,nil)) = x
first(inq(x,inq(y,q))) = first(inq(y,q))
empty(nil) = true
empty(inq(x,q)) = false
length(nil) = 0
length(inq(x,q)) = length(q) + 1

From the figure, we can see transition send is enabled if place p1 contains a data and the

queue in place p has space. As a result of the firing of send, the data is added to the queue.

Whenever place p4 has a token and the queue in p is not empty, transition receive is

enabled. When it fires, the first data in the queue is output to place p3 and the first data in

the queue is removed.

1 A set M with an associative operation _ and an identity element for that operation is called

a monoid. A commutative monoid is a monoid in which the operation is commutative. A
commutative monoid is a free commutative monoid if every element of M can be written
in one and only one way as a product (in the sense of _) of elements of subset P M.

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

501

Fig. 2. Sender-Receiver Model by Algebraic High-Level Net

2.4 Linear temporal logic

Temporal formulas are built from elementary formulas using logical connectives ¬ and ∧

(and derived logical connective ∨, ⇒, and ⇔, universal quantifier ∀ (and derived existential

quantifier ∃), and temporal operators always ฀, future ◊, and until U.
The semantics of temporal logic is defined on behaviors (infinite sequences of states). The
behaviors are obtained from the execution sequences of petri nets where the last marking of
a finite execution sequence is repeated infinitely many times at the end of execution

sequence. For example, for an execution sequence M0, ,, Mn, the following behavior σ = <<

M0, …, Mn, Mn, … >> is obtained, where Mi is a marking of the Petri net.

Let σ = << M0, M1, … >> be the behavior, where each state Mi provides an interpretation for

the variables mentioned in predicates. The semantics of a temporal formula p in behavior σ

and position j is denoted by (σ, j) j= p. We define:

• For a state formula p, (σ; j) |= p ⇔ Mj |= p;

• (σ; j) ⊨ ¬p ⇔ (σ, j) ⊭ p;

• (σ; j) ⊨ p ∨ q ⇔ (σ, j) ⊨ p or (σ, j) ⊨ q;

• (σ; j) ⊨฀ p , (σ, i) ⊨ p for all i ≥ j;

• (σ; j) ⊨ ◊p , (σ, i) ⊨ p for some i ≥ j;

• (σ; j) ⊨ pUq ⇔ ∃i ≥ j : (σ, i) ⊨ q, and ∀j ≤ k <I, (σ; k) ⊨ p.

2.5 Component and connector view

Component and connector view was one of the four views proposed in [31, 32], which is
described as an extension of UML. The component and connector view describes
architecture in terms of application domain elements. In this view, “the functionality of the
system is mapped to architecture elements called components, with coordination and data
exchange handled by elements called connectors.” [31]
In the component and connector view, components, connectors, ports, roles and protocols
are modelled as UML stereotyped classes. Each of them is represented by a special type of
graphical symbol, as summarized in Fig. 3. A component communicates with another
component of the same level only through a connector by connections, which connect
relevant ports of components and roles of connectors that obey a compatible protocol. In
addition to the connections between components and connectors, ports (roles, resp.) of a
component (connector, resp.) can be bound to the ports (roles, resp.) of the enclosing

www.intechopen.com

Petri Net: Theory and Applications

502

component (connector, resp.).
In order to present our approach we use an image processing example used in the
distributed web application that was adapted from [31]. Fig. 4, 5, 6 from [31] shows a
concrete and complete component and connector view, which is the running example of this
paper. Fig. 4(a) is a configuration of ImageProcessing component. Fig. 4(b) shows another
aspect of the configuration. Both of them are UML class diagrams and model different
aspects of the system. From these two figures, we can see the component ImageProcessing

contains two components: Packetizer and ImagePipline, and one connector Packet-Pipe. The
ports of component ImageProcessing, raw-DataInput, acqControl, and framedOutput are bound
to ports rawDataInput of component Packetizer, acqControl and framedOutput of component
ImagePipeline respectively. Component Packetizer communicates with component
ImagePipeline through connector PacketPipe. Component Packetizer and connector PacketPipe
is connected by a connection between port PacketOut and role source, which obey (conjugate)
protocol DataPacket. Component ImagePipeline and connector PacketPipe is connected by a
connection between port PacketIn and role dest, which obey (conjugate) protocol
RequestDataPacket. Being a conjugate means that the ordering of the messages is reversed so
that incoming messages are now outgoing and vice versa.

Fig. 3. UML Extension for component and connector View

Fig. 4. alone is not enough to illustrate component and connector view since only
components and connectors of the system and corresponding connections among them are
demonstrated. Additional diagrams are needed to define protocols and functional behavior
of components and connectors. A protocol, represented by a stereotyped class, is defined as

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

503

a set of incoming message types, a set of outgoing message types and the valid message
exchange sequences. The valid message exchange sequence is represented by a sequence
diagram. Fig. 5 shows the definition of RawData, DataPacket, and RequestDataPacket

protocols. From Fig. 5(c), we can see protocol RequestDataPacket has one incoming
message: packet(pd), and three outgoing messages: subscribe(c), desubscribe(c), and
requestPacket(c) where c; pd are parameters of messages. In order to communicate with
object B based on protocol RequestDataPacket, object A first sends object B a message
subscribe(c) where c indicates the sender A. Then a message requestPacket is sent to B to
request a packet. Later, object A may receive a packet pd from B. The symbol “*” in the
figure indicates that the pair of message requestPacket and packet(pd) may occur many
times. Finally, object A sends a message desubscribe(c) to B to stop requesting packet.

Fig. 4. Structural Aspect of Component and Connector View

The behavior of components/connectors may be described formally by UML statechart
diagrams, for example the behavior of component Packetizer and connector PacketPipe in
Fig. 6. Statechart diagrams describe the dynamic behaviors of objects of individual classes
through a set of conditions, called states, a set of transitions that are triggered by event
instances, and a set of actions that can be performed either in the states or during the firing
of transitions. From Fig. 6(b), we can see the statechart diagram of connector PacketPipe

contains two states: waiting and “assign packet to ready client” and seven transitions. When
connector PacketPipe receives an event subscribe(c), it invokes its operation AddClient(c)

although we do not know exactly the functionality of this operation. When the connector
receives an event packet(pd), it saves the packet pd. And the response of connector
PacketPipe to an event requestPacket(c) is up to the condition: the client c has read current
packet or not. If yes, the connector treats it as a request for next packet; otherwise it sends
current packet to client c through an event c.packet(pd). If all clients have read current
packets, the connector updates its packet queue and enter state ”assign packet to ready

www.intechopen.com

Petri Net: Theory and Applications

504

client” in which the connector sends current packet to clients that has submitted their
requests. If all requests are processed, the connector returns to state waiting. As we can see
from this figure, connectors and components mainly handle incoming messages of protocols
they obey (conjugate).

Fig. 5. Protocols in Component ImageProcessing

2.6 Service oriented software architecture model

Definition 1 (Web Service) A web service is defined by a service component (composition of sub-
services) as a tuple such that S N =< SID, f, Pt, ST > where

• SID is the service identification. When a service component is a composition of sub-services, each
sub-service has its service id and service component’s id.

• f is SO-SAM structure mapping function.

• and Ptini ∪ Ptf nl = Pt. A service net does not have internal ports compared to service

component, i.e., Ptinternal = ∅.

• S T is a set of service constraints.
The behavior of each web service S i in SO-SAM is defined by a service net SN, which must
starts when the initial ports Ptini has messages and ends when the final ports receive
messages. The properties are defined using a set of temporal logic formulae ST. The relation
between service net and the behavior model of a service component can be summarized as

• A service net SN is a subset of the behavior model of a service component S NCm, i.e., S

N _ S NCm. A service net can be a single activity of a service component that describes
only a sub-service of that service component, or a composite service of all subservices of
that service component. The relation between a service net and other service nets of a
service component can be publishing, binding, discovery, integration, etc.

Fig. 6. State Chart Diagram of Elements

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

505

• Ports of a service net is a subset of ports of its service component, i.e., Pt ∈ PtCm.

• If a service net SN is the behavior model of a service component SNCm, then the service

component does not have internal ports, i.e., Ptinternal = ∅.

• Set of service constraints of a service net ST is a subset of service constraints of its

service component, i.e., ST ⊆ STCm.
Definition 2 (SO-SAM) Service-Oriented Software Architecture Model, SO-SAM, is an extended
version on the SAM, and defined by a set of service components CSm , a set of connectors Cn, a set of
service constraints CSs and a structure mapping function f , i.e., SO-SAM , < CSm,Cn,CSs >.

2.7 Net specification

In the SO-SAM model we define three different group of sorts for three purposes: service
description and publishing (SDP), service communication and binding (SCB), and service
discovery or finding (SDF). In the service description and publishing (SDP) group, we
identify four sorts in the net specification of a PrT net as portSpec, msg-Parameter,
connection, and operation. Message is to specify the data identification flow through a port.
Operation is to describe the operation can be imposed on messages. PortSpec is used to
specify the parameters and functions of the service output from a port. Connection is to
describe the protocol that used for the data flow through the port (which can be described
by SOAP or HTTP). This group of sorts can be mapped to WSDL specification in the Table 1.

Table 1. Mapping Relation between SDP (in SO-SAM) and WSDL

In the service discovery or finding (SDF) group, we concern two participants – service
provider (SP) and service registry and broker (SR). Service provider has to have
identification, contact info, category, service description, and so on. Service registry
provides access point, communication protocol, and information about the company itself,
including contact information, industry categories, business identifiers, and a list of services.
Moreover, the binding process can be defined on the above specification. Let us use symbol
S DF =< SP,SR > denote all possible sorts using for the SDF group. After identifying these
sorts, we can map a sort to a tag in the UDDI specification. However, reverse mapping from
UDDI tags to SDF sorts is impossible. Because some tags such as bindingTemplate need
functional description instead of signatures.
The behavior model in a SO-SAM refers to a Petri net, in this paper we use PrT net. The
binding can be formally specified by the constraint function R. Checking the sat isfiability of
R is to checking the each data in a message, data type matching, protocol conformation, and
so on between web services from requestor and provider. Since a web service may have
multiple binding templates, a mutual exclusion choice occurs.
The group of service communication and binding (SCB) is more related to the
communication protocol (SOAP/HTTP). SOAP is a simple XML based protocol to let
applications exchange information over HTTP. The communication protocol constructs the
connection between parties. The specific sorts for the protocol signature can be message

www.intechopen.com

Petri Net: Theory and Applications

506

definition of header, body and fault, encoding style etc..
All the above three groups are called service sorts SS = {SSDP, SSCB, SSDF}. For instance,
SName, SDesc, portS pec, message,URL are service sorts, where S Name is the name
(identification) of the service, S Desc is the service description, URL is the Uniform
Resource Locator. We use OPS S to denote the operations on the service sorts. We call the
sorts defined in SAM model data sorts SD.
The extension on the signature of the sorts and operations is very convenient for the
specification and modeling of the web services architecture, binding, substitution, and the
composition of sub-services and their integration of legacy code.
Each architectural component is either statically or dynamically realized by a web services
component. Architectural components are connected to each other via XML-based message
passing through Simple Object Access Protocol (SOAP) [3]. The behavior of the connection
is specified by SAM architectural connectors. The message passing mediates the interactions
between architectural components via the rules that regulate the component interactions. In
our model, connectors carry the tasks of service compositions. Thus our model supports
both executable and dynamic web service compositions.
Ports in each component are either input ports or output ports. In the extension to web
applications, ports are used to transfer messages among services, same as in SAM model.
However, we regulate messages as a tuple with the information of service name, service
description, location, URL, etc., so that the message carries service information.
A component is composed of the above ports that carry service information, behavior
description and property specification. The behavior of a component is defined by a Petri
net, which is called a service net. In the service net, tokens in a place has to have specific sort
to be consistent with the above port and message definition. A basic component is one that
does not have sub-components and non-empty connectors, otherwise, it is a composition. A
composition is a composite service. The relation between a composition and its
subcomponents and connectors is defined by a mapping function f . Mapping function f is a
set of maplets from super component(connector)’s identities to sub-
components’(connectors’).
Service integration and composition can be done through connectors. Connectors have the
same definition as in SAM. The Petri net for a connector is a regular Petri net that describe
the integration and composition of services. A connector cannot be a composition.

2.8 Net structure

There is a relation between the architecture elements of a component/connector and the
elements in its behavior model (a PrT net). For each port of a component/connector, we
have a corresponding one place defined in its PrT net. The sort of the port is same as the sort
of the corresponding place. The relation between port and place can be defined as a port-

place mapping function ξ as follows.
Definition 3 (Port-Place Mapping Function) The behavior mapping function _ is a mapping
relation from the set of ports of a component or a connector Ci to the set of places of its behavior
model, a PrT net Ni. Let Pt be the set of ports, and P be the set of places in the behavior model, we

simply use Pt and P to represent the set of identifications of ports (places), we have, ξ: Pt → P,

1.

ξ =
∃pi ∈ P: ∀pti ∈ Pt

 ∃φ(p): ∀φ(pti) ∈ φ(Pt)

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

507

2. If there is a message sent out from a port (pti), M’(pi) < M(pi), where f(pti) = pi; if there is
a message received in a port (pti), M’(pi) > M(pi), where f(pti) = pi.

Obviously, this port-place mapping relation is also suitable for the SAM model. The port-

place mapping function ξ connects a component/connector with its behavior model
explicitly.
The behavior model of a component/connector of a SOSAM model, a PrT net, is called a
service net. A service net is different from the behavior model of SAM in following aspects:
1. We identify the initial places and final places for a service net.
2. The set of sorts includes both service sorts and data sorts, i.e., S = SS, SD.

3. The behavior mapping function ξ defined a relation between a components/connector

and its service net and is reversible. In other words, function ξ-1
 exists.

Definition 4 (Port) Ports in SO-SAM are communication interfaces of each service and graphically
represented by semi-circles. Messages in ports are modeled by tokens. The sort of each token is defined
by two parts, service sort SS and data sort SD. Data sort are the sorts defined in SAM [26].

Thus we have sort S of a port is defined by S ≜ SS, S D

A port may have a PrT net that associated to it by a function β : pti → Npti , where Npti is a PrT net
that used to describe the operations that can be performed on the sorts of the port pti.
Service sort S S is a service description, query or binding requestor, which can include a
service name, operation, description, URL, etc.. Service sort must be carried by all tokens in
the service net. A token may be described or represented by a PrT net since it carries service
information and some service information includes both messages and functions. If the port
has an associated net N, the net is actually used to describe some of the tokens or some sort
of the port. The net can be a service net. A service net is a PrT net that carries service
characters, and is defined as follows.

Definition 5 (Service Net) A service net is a Petri net defined by 8-tuple, SN ≜ < P, T, F, φ, R, L,

M0,Mp >, where

• P, T are finite set of places and transitions; F is flow relation: P × T ∪ T × P.

• φ is sort assignment: P → ℘(S) ([26]), but sorts S are extended to carry service information.

• The final ports Ptfnl of a service net communicate with a set of initial ports Ptini of another
service net through a connector.

• R (guard function), L (label function), and M0 (initial markings) follow the definitions in the
paper [26].

• Mp is place mapping function, Mp : Pt → P
where each sort must contain SS . Mapping function Mp associates each port to a place in the service
net. It is a one-to-one mapping function, because in the SAM model the place and ports share the
same name, and two ports between upper level and lower level share the same name. It is also an onto
mapping function because all places that are identified as communicators to the other service nets will
not be increased for a basic service component.

2.9 Architecture structure

We first give the definition of the architecture structure mapping function ζ as follows.
Definition 6 (Architecture Structure Mapping Function) The architecture structure mapping
function is defined as a relation from a composition to the element set of its subelements. We use Ci to
denote a composition, Cmi and Cni denote the component and connector, PtCi , PtCmi , and PtCni

denotes the set of ports in a composition, component, and connector respectively. structurally, we
have

www.intechopen.com

Petri Net: Theory and Applications

508

1.

2. φ(PtCi) ⊆ (PtCmi ∪ PtCni).

The architecture structure mapping function ζ defines the structure relation between
composition and its subcomponents and connectors. The function has two parts, one
regulates the components and connectors in the composition, and another maps the ports of
the composition with those of components and connectors. The constraints mapping can be
considered in the behavior mapping. Since the behavior description of SAM architecture
model is available in the bottom level of the hierarchy, we inherit this character from SAM
directly without any update. Some service sorts SS can be more abstract in the higher level
abstraction. The result services after discovery and matching of these service descriptions
can be satisfied with the service from requestor if there is more detailed information
provided and discovered.
Definition 7 (SO-SAM Structure Mapping Function) The mapping function f defined for SO-
SAM model between two levels is the composition of behavior mapping function and architecture
structure mapping function, i.e.,

f = ξ◦ζ.
Considering the fact that behavior description is only available in the bottom level (which is
inherited from SAM), this structure mapping function is also suitable for the mapping
relation of SAM model.
Definition 8 (Service Component) Each component Cmi in SO-SAM is defined by a tuple,
component name CmiID, mapping function f , set of ports Pt that is composed of the set of input ports

PtI and the set of output ports PtO, the set of initial ports Ptini ∈ Pt, the set of finial ports Ptf nl ∈ Pt, a

service net SN, and a set of temporal logic formulae ST, e.g., Cim ≜ < Cim ID, f, Ptini, Ptf nl, Ptinternal,
SN, S T >.
Initial ports are represented by dash line bold half circles, and final ports are represented by
solid line bold half circles. Each set of initial ports in a service component must connect to a
set of final ports in another service component through a connector, and vice versa.
In the component, each service must be started from one set of initial ports, but can be
ended at multiple finial ports separately. This is because a service can reach different final
states but starts at the same condition.
Connector of SO-SAM model is used to but not limited to describe the following activities:
1. Service publishing. This is an advertisement process of a service provider. The

descriptions of a service or update of a service description is disclosed to possible
requestors. A locating of possible matching service can be done afterwards.

2. Service discovery. We consider service discovery and finding to be the process of
locating candidate service providers. Service repository maintains lists of service
providers categorized according to proprietary classification schemes. Service requestor
located the service based on the request and service description provided. Temporal
and spatial availability for all requests is demanding for a service. Request refinement
does not belong to this process.

3. Service binding. Service binding is a process that based on the discovery a connection
between provider and requestor is established. A protocol for the negotiation is used
after discovery.

4. Service substitution. Substitution uses accurate service descriptions to allow rational

ζ =
Cmi ∪ Cni, if Cmi, Cni ∈ Ci

PtCmi ∪ PtCni, if PtCmi, PtCni ∈ Cmi ∪ Cni
 ∧ Cmi, Cni ∈ Ci

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

509

optimization of sub-services within a composition. Assume we have two services A and
B, Service A may be an electronic new report and service B an electronic weather report.
If we try to outsource them then difficulties arise. A may only be offered in the USA
and B in Chile. Composition of them becomes useless if you live in iceland; and pretty
useless too if A is available on weekdays and B only on weekends. This raises the
notion of substitutability in the context. The subsititution one function F by another G
can be done if G has weaker preconditions and stronger postconditions. Some rules can
be established for service substitution by weakening preconditions.

5. Service integration. The majority of businesses today are in an extremely dis-integrated
state. Years of piecemeal IT development and investment have led to a situation
common in all but the smallest organizations where there are numerous non-
compatible systems. Many have been developed on different platforms using different
languages. Thus organizations have created numerous barriers within their own IT
infrastructures. Web services define a transport method for processes defined in XML.
At the core of the Web service revolution is their ability to allow code to speak to code
without human intervention. In the SO-SAM model, the connector provides the formal
specification that connects service components with different interfaces. The constraint
function R of the transitions in a connector defines the required messages in the input
ports and describes the messages flow to the output ports.

6. Service composition. Compositions produces tightly-coupled integration between sub-
services to ensure that value is added over the sum of the individual service. The
question is: if we have two trusted services A and B, after composition of A and B, we
have a service C, is this service C trustable? Simply, the question is the composition of
sub-services can still hold the properties of its sub-services or not. Connectors in the SO-
SAM model can formally describe the composition of subservices, thus it is possible for
the formal verification of composed service against service properties.

3. Transformation from component and connector view to SO-SAM

Component and connector (C&C) view [42] has been the main underlying design principle
of most ADLs [36], which is also a major view type in several software architecture
documentation models supporting multiple architecture views such as SEI [39] and Siemens
[31]. C&C view is essential and necessary for system dependability analysis since it captures
a system’s dynamic behavioral aspect. SO-SAM model and component and connector view
share a set of common terms such as components, connectors, and ports. Therefore it is
straightforward to map them to the counterparts in SO-SAM. However, due to the meaning
difference and various formal methods to describe elements’ behavior, the concrete
mapping procedure is not that easy. This section shows a method to construct a complete
and executable SO-SAM model from a component and connector view.
A component (connector, resp.) in component and connector view is mapped to a service
component (connector, resp.) in SO-SAM model. It is easy to understand from structural
aspects. However, the behavior mapping is complex since different formal methods are
used to model behavior. UML statechart diagrams are used to model behavior in
component and connector view, contrasting with Petri net model in SO-SAM. Fortunately,
our previous work [12] showed that it is possible to transform statechart diagrams to Petri
net models. In UML statechart diagrams, method invocations and relationships between
variables are implicit in the elements’ structure. For example, in Fig. 6(a), the conditions

www.intechopen.com

Petri Net: Theory and Applications

510

PacketNotFull and PacketFull, and relationship between variable rd and pd is not illustrated
explicitly. However, such information has to be expressed explicitly in order to obtain a
complete and executable Petri net. In order to bridge the gap, we utilize algebraic high level
nets [17], a variant of high level Petri nets, to model behavior of elements. This method is
possible because SO-SAM model does not specify a particular Petri net model as its formal
foundation. We use algebraic specifications [15] to capture structures
of elements obtained from UML statechart diagrams because algebraic specifications are
abstract enough that no additional information about implementation detail is assumed, and
they are also powerful enough to represent implied information about components or
connectors. Although the work [12] is for SAM architecture model, we can still use it and
adapt it to the SO-SAM model since they share the same net structure. The main differences
exist in the service sorts in the net specification, initial and final ports in the net specification
and net inscription. The following rule gives us a general idea to derive components or
connectors in SO-SAM.
Rule 1 (Component and Connector) A Component (connector, resp.) in component and connector
view is mapped to a service component (connector, resp.) in SO-SAM according to following steps:
Step 1 An algebraic specification, which specifies the abstract interface of the component (connector,

resp.), is generated from a UML statechart diagram. The idea to construct algebraic
specification is described later.

Step 2 Construct a complete and executable algebraic high level net from the UML statechart diagram
according to the approach in [12] and the generated algebraic specification. There is a special
place in the generated algebraic high level nets that contains element information and provides
necessary information for transitions.

Step 3 A component (connector, resp.) with a UML statechart diagram in component and connector
view is mapped to a component (connector, resp.) with an algebraic high level net in SO-
SAM.

Step 4 A composited connector in the component and connector view is flattened and mapped to a
connector in the SO-SAM model.

While it is inherently impossible to prove the correctness of the transformation, we have
carefully validated the completeness and consistency of our transformation rule. First, from
structure point of view, concepts of components or connectors in component and connector
view and SO-SAM are the same. Both of them support component composition, binding
with enclosing element, and they can have their own behavior and communication
channels–ports or roles. Therefore, the main functionalities of components or connectors in
component and connector view are presented in SO-SAM counterparts. Second, algebraic
specification can be used to specify modular, more specific classes [16]. Therefore, the
implied information of statechart diagrams, i.e. the operations and their properties can be
correct and fully specified by algebraic specifications. Since functions of algebraic
specifications only define what to be done, no additional implementation information not
implied in statechart diagrams is introduced. Finally, our previous work [12] and others
work [41] have shown that the behavior described by statechart diagrams can be fully
captured by corresponding Petri nets.
The idea to obtain algebraic specifications from UML statechart diagrams is as follows:

• For each element (component and connector), its algebraic specification defines a sort,
called element sort, like packetizer for component Packetizer and packetpipe for connector
PacketPipe. If a data type of parameters is not defined by a primitive algebraic
specification, a new algebraic specification is imported. Such a imported algebraic

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

511

specification generally defines only one sort, like Packet for component Packetizer. Each
action of transitions in a UML statechart diagram is considered as a function such that:

action name : element sort × parameters sort list → element sort. Here parameters sort list
includes service sorts as well. For a guard condition of a transition, a function from
element sort (with necessary parameter sorts) to boolean is added.

• For each variable that is defined in the element (i.e. the variable is not defined in the

related events), a function like GetVariableTypeName : element sort → element sort ×
VariableType2 is specified. The properties of these functions can be constructed as
equations if they are implied in the UML statechart diagrams, like guards PacketNotFull
and PacketFull cannot hold at the same time.

From the above idea, we know that the algebraic specification for component Packetizer

contains four functions, two of them correspond to guard conditions_.PacketNotFull(),

_.PacketFull() : packetizer → bool; and one is obtained from actions: _.AddRawData() :

packetizer × rawdata → packetizer, and one from undefined variable: _.GetPacket() :

packetizer → packetizer× packet. In these functions, “_” is used to indicate a variable
placeholder, bool is a sort defined in primitive algebraic specification Bool [15], and sorts
rawdata and packet are defined in imported algebraic specifications Packet and RawData

respectively, which are defined by users and normally only one sort (rawdata, packet resp.)
is specified. Appendix A gives complete algebraic specifications of component Packetizer

and connector Packet-Pipe obtained from Fig. 6.
With these algebra specifications, we can generate corresponding algebraic high level nets
according to Rule 1. Fig. 7 shows the generated Petri nets from UML statechart diagrams in
Fig. 6. Each generated Petri net has three special places: RECV containing messages from
environment, SEND temporarily storing messages generated for its environment, and the
place whose name is the same as its element’s name (here, Packetizer and PacketPipe resp.),
holding the abstract structural information of the element. In additional to these three
places, there is a corresponding place indicating current status for each state in statechart
diagrams, for example, places idle,waiting, init packet and add data for the same name states.
A special token in these places indicates if the corresponding state is active. Place RECV
sends events from external environment to places that are interested in the event. In Fig. 7(a)
place idle and waiting are interested in event dataReady and rawdata(rd) respectively. If
state idle is active and an event dataReady is available, transition t215 is fired. As a result, an
event requestData is added to place SEND, and place waiting becomes active. State add data

becomes active if state waiting is active and an event rawdata(rd) is available. At the same
time, the token in place packetizer is changed to another one through operation
.AddRawData() of algebraic specification Packetizer.
Components and connectors in component and connector view are connected through a
connection if they are enclosed directly by the same element and the corresponding ports
and roles obey (conjugate) a compatible protocol. Therefore, the mapping from ports or
roles in component and connector view to ports in SO-SAM is actually the mapping from
relevant protocols describing behavior of ports or roles to ports of SO-SAM
components/connectors. However, ports in SO-SAM models have their own characteristics.

2 This is actually the abbreviation of two functions: GetVariable : element sort → VariableTypes

and UpdateElement : element sort → element sort since these two functions are invoked
sequently in our example.

www.intechopen.com

Petri Net: Theory and Applications

512

A port in SO-SAM model is a place that has either no incoming arcs or no outgoing arcs. In
other words, the communication between ports is unidirectional. Therefore, a protocol in
component and connector view, which consists of a set of incoming message types, a set of
outgoing message types and the valid message exchange sequences, is mapped into a set of
interface places (To avoid confusion, we use interface places to refer to ports in SOSAM

model). The type of tokens in an interface place is OID × OID × MESSAGE_TYPE, where
OID is a set of unique identification number for each instance of the element, which specifies
sender and receiver of a message, and MESSAGE_TYPE is the set of message types of the
protocol (Here we ignore the parameters of messages for brief). Rule 2 specifies how to map
a port/role in component and connector view to interface places in SO-SAM.

Fig. 7. Behavior Model of Elements

Rule 2 (Ports and Roles) A port (role, resp.) of a component (connector, resp.) in component and
connector view is mapped to a set of interface places of the corresponding component (connector,
resp.) specified by Rule 1: For each protocol that the port (role, resp.) obeys (conjugate), each kind of
incoming messages is mapped to an incoming (outgoing, resp.) interface place of the component
(connector, resp.) with the name of the message type; and each kind of outgoing messages is mapped
to an outgoing (incoming resp.) interface place of the component (connector, resp.).
Initial and final ports can not be obtained from the UML architecture description directly. We
provided two possible solutions:

• One is extending C&C view with new UML stereotypes initialPort and finalPort. This would
bring a direct transformation from C&C architecture to SOSAM. The problem is this also brings
more complexity into UML architecture description.

• Another is manually adding the specification for these ports according to the system architecture
description. For instance, we can say dataReady and RawData as initial port and frameout and
final port in our case.

A port (role, resp.) of an element is actually –roughly speaking– a “channel” that forwards
messages of specified types either from element itself to environment, or from environment
to element. In Rule 2, a token represents an occurrence of an message of specified type, and
the direction of a message is specified by the place containing the token – incoming or
outgoing. Therefore, the mapping in Rule 2 conserves the main structural features of
ports/roles and related protocols, and the reverse mapping exists, which ensures the

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

513

correctness of the rule.
The behavior of a protocol, defined by UML sequence diagrams to demonstrate valid
message exchange sequences, actually specifies possible sequences of relevant messages
along time axle. A sequence of protocol messages illustrates their occurrence order, which
can be specified by a set of temporal constraints, the basic predicates of which are the names
of interface places obtained through Rule 2. For example, from Rule 2, we know port
RawData of Packetizer is represented by two incoming places dataReady and rawData, and
one outgoing place requestData. We use predicate dataReady(<sid, rid,mdataReady>) to
describe if place dataReady contains a token representing an event dataReady that is sent to
rid by sid.
In order to construct temporal constraints, we consider two elements communicating with
each other through a protocol, for example RawData. First we only consider a pair of
adjacent events, for example DataReady and requestData. For this pair of events, it means if
an event DataReady occurs, then an event requestData must occur some time later, which is
described by a temporal formula:

 ∀<sid,rid,md>, ฀(dataReady(<sid, rid,md>) → ◊ requestData(<sid, rid, mr>)) (1)

However, this temporal formula cannot reflect the situation implied in the sequence
diagram of the protocol: no other events of the protocol can occur between events
dataReady and requestData. In order to describe this implied property, we have a
reasonable assumption at architecture level that the communication media is reliable, no
message is lost and no need to resend a message. Therefore, another temporal formula is
introduced to address this missing situation:

◊∀<sid,rid,md>, ฀(dataReady(<sid,rid,md>) → ¬((»dataReady(<sid,rid,md>)) ∨

requestData(<rid,sid,mr>) ∨ rawData(<sid; rid;mrd>)) U requestData(<sid,rid,mr>)) (2)

This temporal formula means if an event of dataReady occurs, no other events such as
dataReady, requestData and rawData can occur before the first event of request-Data.
Predicate »dataReady(<sid, rid,md>) is used to guarantee that the temporal formula is
satisfied at the time the event dataReady occurs. Therefore, given a sequence diagram of a

protocol with n messages, we can obtain (n - 1) × 2 temporal formulas.
In addition to the consideration of one session of a protocol, we have to inspect the
relationship of two adjacent sessions of the same protocol between two objects, i.e. one
session can start only after the previous session ends. Such a relationship is specified by a
temporal constraint:

∀<sid,rid,mrd>,฀(rawData(<sid,rid,mrd>)→¬(dataReady(<sid,rid,md>)∨requestData

(<rid,sid,mr>) ∨ (»rawData(<sid,rid,mrd>))) U dataReady(<sid, rid,md>)) (3)

Although we think the above generated constraints are strong enough, there is still one
more case we ignored: the first session of a protocol in a running system may starts with any
messages but the first message. For example, a session of protocol RawData starts with
message dataReady, and then obeys relevant part of the sequence diagram. We can see this
session satisfies the above temporal formulas, but conflicts with the behavior of the protocol.
Such a case can be avoided in three different ways, and the choice of them is up to users.
One is to introduce a temporal predicate basetime that holds only at the time “zero”, and a

www.intechopen.com

Petri Net: Theory and Applications

514

new temporal formula:

฀(basetime → ¬(dataReady(<sid, rid,md>) ∨ requestData(<rid, sid, mr>) ∨ rawData

 (<sid, rid, mrd>)) U dataReady(<sid, rid, md>)) (4)

The second method is to introduce a past time operator such as “eventually in the past”. The
final way is to prove that system structure guarantees that such case cannot happen.
Thus, from the above discussion, a sequence diagram for a protocol is mapped to a set of
temporal constraints. Appendix B shows the full property constraints derived from the
sequence diagrams of protocols RawData, DataPacket and RequestDataPacket.
The following rule is used to construct a set of constraints for components or connectors
according to the above discussion.
Rule 3 (Constraint) For each protocol that a port (role, resp.) obeys (conjugate), a set of constraints,
generated from the corresponding sequence diagram according to the above discussion, is added to the
property specification of corresponding components (connectors, resp.) . When a constraint is added
to a component (connector, resp.), sid or rid in tokens (the choice is up to the direction of
corresponding message) is substituted by the actual identification number of the component
(connector, resp.) since the component (connector, resp.) can only receive messages sent to itself.
A sequence diagram of a protocol specifies possible message communication sequences.
However, it is impossible to limit the firing sequences of transitions in Petri nets to meet
specified occurrence sequences of tokens in places. Although we cannot specify the firing
sequences of transitions, but we can prove that if each possible firing sequence meets the
behavior of a protocol. From the above discussion, we can see the generated set of temporal
formulas exactly realizes the behavior of a protocol – the message sequences. By adding
these temporal formulas as property specifications to components/connectors obeying the
protocol, inconsistencies between behavior of elements and protocols can be easily detected.
Since the behavior mapping in Rule 1 is complete and consistent, we know the detected
inconsistencies also exist in the original model, i.e. Rule 3 is complete and consistent.
We may obtain a component (connector, resp.) with a behavioral model, and related ports
and constraints according to Rules 1, 2 and 3 respectively. Next task is to get a complete
component or connector, i.e. ports of a component or connector has to be integrated with its
behavior model. Rule 4 is used to guide such a procedure, and Rule 5 establishes the
connection between components and connectors.
Rule 4 (Integration) The interface places, i.e. ports of a component (connector, resp.) in SO-SAM
are integrated into its behavior model with the previous generated algebraic high level nets according
to the following steps:
Step 1 Each incoming interface place is connected to place RECV through a transition, firing of

which transmits tokens in the incoming place that are sent to the instance of component or
connector to place RECV unconditionally.

Step 2 Each outgoing interface place is connected to place SEND through a transition, which
forwards tokens of a special type in place SEND to the outgoing place.

Rule 5 (Connection) From Rules 2 and 4, if there is a connection between ports of a component and
a role of a connector, then generated behavior models of the component and connector share a set of
places that corresponds to the protocol they obey (conjugate). Therefore, to establish the connection
between a component and a connector in SO-SAM, we merge these shared interface places because an
incoming (outgoing, resp.) interface place in the component has an outgoing (incoming, resp.)
counterpart in the connector such that they contain messages of the same type, and vice versa.

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

515

In component and connector view, relationships between ports and behaviors are not
specified explicitly. A port forwards incoming messages to the queue of the component/
connector, which provide events for its behavior – the statechart diagram. The statechart
diagram sends messages to its environment through a port. In Rule 4, place SEND serves as
output queue and place RECV is input queue. The forward action is represented by the
firing of transitions connecting place SEND, RECV and other interface places. Therefore
Rule 4 captures the communication between ports and the corresponding behaviors in
component and connector view.
Due to the space limitation, we cannot specify the transformation of binding and
multiplicity. However, such transformations are similar and straightforward. Fig. 8 shows
the final result of generated SO-SAM model from the running example. In order to give a
concise description, algebraic specifications and internal parts of behavioral models are
omitted.

Fig. 8. ImageProcessing in SO-SAM

In Fig. 8, components, for example component Packetizer and component ImageProcessing

are represented by solid rectangles, while connectors such as PacketPipe are represented by
dashed rectangles. The Petri nets enclosed by rectangles are the behavior models of
components or connectors. Semicircles on the edge of rectangles are places that represent
ports derived from relevant protocols. An inside semicircle indicates an incoming place that
only receives tokens from environment, while an outside semicircle indicates an outgoing
place that only sends tokens to environment. For example, component Packetizer has two
incoming places dataReady, rawData, and one outgoing place requestData. These three
places are derived from protocol RawData according to Rule 2. Component Packetizer and
connector PacketPipe is connected through Rule 5. The binding between components and
its enclosing component is implemented as a transition between corresponding places,
which only forwards tokens from one place to another according to types of places (i.e.
incoming or outgoing). For example, transition t111 forwards tokens in place dataReady of
ImageProcessing to place dataReady of Packetizer, while transition t113 forwards tokens in
place requestData of Packetizer to place requestData of ImageProcessing.
Finally, we give an execution path of component ImageProcessing. Let component
Packetizer be in state idle, connector PacketPipe in state waiting, and place Image-

Processing.dataReady contains a token representing message dataReady. This initial

www.intechopen.com

Petri Net: Theory and Applications

516

condition can be represented by the initial marking (ImageProcessing.dataReady,
Packetizer.idle, PacketPipe.waiting). Here we only list related places (not including places
such as packetizer and PacketPipe) that contain tokens, and ignore concrete token values
that can be derived from context. We also assume that a packet consists of only one raw
data, i.e. operation PacketFull() will be true if AddRawData() is invoked once. Table 2 shows
the execution of communication based on protocols RawData and DataPacket. This example
demonstrates the application of our method.

4. Validation of the approach

The SO-SAM model allows formal validation of a service net against system constraints and
property specified on its abstraction represented by a component or connector. Here,
validation means that the developer can animate the specification by providing initial
markings and checking if the responses meet the expected results. Validation of SO-SAM is
based on the precise syntax and semantics of Petri net formal language and temporal logic.
The validation will cover the topology and dynamic behavior of the Petri net as well as
temporal logic formulae. Here we simply introduce how to translate SO-SAM model to the
Maude [9] language. For the details, please refer to the work [22].

Step Marking of Component ImageProcessing Fired Transition

1 idle, ImageProcessing.dataReady, PacketPipe.waiting t111

2 idle, Packetizer.dataReady, PacketPipe.waiting t219

3 idle, Packetizer.RECV, acketPipe.waiting t212

4 idle, PacketPipe.waiting t215

5 Packetizer.waiting, Packetize.SEND, PacketPipe.waiting t2111

6 Packetizer.waiting, Packetizer.requestData, PacketPipe.waiting t113

7
Packetizer. waiting, Image Processing. request Data,

PacketPipe. waiting
unspecified
transition

8 Packetizer.waiting, PacketPipe.waiting
unspecified
transition

9
Packetizer.waiting, ImageProcessing.rawData,

PacketPipe.waiting
t112

10 Packetizer.waiting, Packetizer.rawData, PacketPipe.waiting t2110

11 Packetizer.waiting, Packetizer.RECV, PacketPipe.waiting t213

12 Packetizer.waiting, PacketPipe.waiting t216

13 Packetizer.add data, PacketPipe.waiting t217

14 Packetizer.initial packet, Packetizer.SEND, PacketPipe.waiting, t218

15 Packetizer.idle, Packetizer.SEND, Packetpipe.Waiting, t2112

16 Packetizer.idle, Packetizer.packet, PacketPipe.waiting t2213

17 Packetizer.idle, PackePipe.RECV, PacketPipe.waiting t221

18 Packetizer.idle, PacketPipe.waiting t226

 Packetizer.idle, PacketPipe.waiting

Table 2. A Path of Executing Protocols RawData and DataPacket

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

517

4.1 Translation from SO-SAM to Maude

First, we presented a stepwised translation algorithm from SO-SAM model to Maude
programming language. After that, the experimental results are illustrated.
Step 1. Translation to the functional module: generate the sorts operators used in the

functional modules for the model signatures. This step translates each place, sorts,
markings in a Petri net into the corresponding part in Maude’s functional module.

Step 2. Translation to the system modules: there are three types of system modules, one is
for the model signature that corresponds to the architecture structure and dynamic
behavior of the model, one is for the mapping to the predicates, and one is for the
model checking, which includes the property specification.

1. Each basic component and connector are defined as a system module (SysID) with the
declaration of variables and necessary rules and operators. Each composition is
specified as a system module that including its sub-components and connector that are
predefined as a module. All guard conditions in a transition are a (un)conditional rule.

2. Each place is mapped to an operator in the predicate system module (SysID-PREDS).
The connection between operators and predicate is established by an equation.

3. Model checking module (SysID-CHECK) is mainly for the initial marking and property
specification.

In our translation, system signature such as sorts and operators are declared in the
functional module. This translates the places/ports, sorts into algebra in Maude that will be
used in the system modules. The dynamic semantics of Petri net can be mapped to the
rewriting rules used in Maude. Computationally, the meaning of rewriting rules is to
specify local concurrent transitions that can take place in a system if the pattern in the rule’s
lefthand side matches a fragment of the system state and the rule’s condition is satisfied. In
that case, the transition specified by the rule can take place, and the matched fragment of the
state is transformed into the corresponding instance of the righthand side. Thus we can see
an amazing match between semantics of Petri net and rewriting logic. These are theoretic
aspect of the above translation algorithm.

4.2 Results

The basic requirements for the image processing in the distributed web applications are
correctness, robustness and reliability. We use model checker of Maude [9] to validate the
SO-SAM model obtained from UML architecture description against system properties.
After studying models and the errors discovered during the model validation, two main
property categories have been selected:
1. Structural properties: this kind of properties is closely related to the topology of the

model. These properties can be directly verified on the SO-SAM model without
animating the transactions. These properties are necessary conditions that ensure the
feasibility of the state transitions. If one of them is not fulfilled, we can assert firmly that
the communication between ports in UML description cannot happen.

2. Behavioral properties: the dynamic feature of these properties means that they are
related to state changing of the system. The evaluation of the dynamic properties are
based on the behavior description – Petri nets. Its verification is achieved on a set of
places describing a possible evolution of the system. All four properties in section 3 fall
in this group. The results output from Maude are true for all the above formulae. Most
the above formulae are safety properties.

www.intechopen.com

Petri Net: Theory and Applications

518

The results can be obtained within 10ms. It is worth to notice that the model checking
technique used for the verification of system properties are only available for propositional
formula. For the first order formula, it is still a challenge research topic in this area.

5. Related work

We can identify in the literature two categories of works that are mostly related to our
research. The first one concerns works that modeling service oriented architecture
descriptions using UML. The second one is composed of the works of formalizing the
semantics of SOA in different aspects.

5.1 UML description of SOA

In the first category most use UML profiles to describe the service oriented architecture. [11]
proposed UML profiles to specify functional aspects in SOA, which are defined based on the
XML schema of Web Service Description Language (WSDL) [5]. The profile provides a set of
stereotypes and tagged values that correspond to elements in WSDL, such as Service, Port,
Messages and Binding. There is no consideration of nonfunctional aspects of web services.
In work [34] a case study is presented on the investigation of the UML profile specification
of SOA.
Compared to work [34] and [11], [6] proposes a UML profile to describe both functional and
non-functional aspects in SOA. This work provides generic stereotypes to specify a wide
range of applications. However, the semantics of this profile tend to be ambiguous. For
example, several stereotypes for nonfunctional aspects (<<policy>>, <<permission>> and
<<obligation>>) are intended to specify the responsibility of a service. There is no precise
definition of how developers specify web applications with these stereotypes.
[29] proposes a UML profile to facilitate dynamic service discovery in SOA. This profile
provides a set of stereotypes (e.g., <<uses>>, <<requires>> and <<satisfies>>) to specify
relationships among service implementations, service interfaces and functional
requirements. For examples, users can specify relationships in which a service uses other
services, and a service requires other services that satisfy certain functional requirements.
These relationship specifications are intended to effectively aid dynamic discovery of
services.
[23] and [10] define UML profiles to specify service orchestration in UML and map it to
Business Process Execution Language (BPEL) [1]. These profiles provide a limited support of
non-functional aspects in message transmission, such as messaging synchrony. The
proposed profile does not focus on service orchestration, but a comprehensive support of
non-functional aspects in message transmission, message processing and service
deployment.
[43] describes a UML profile for data integration in SOA. It provides data structures to
specify messages so that users can build data dictionaries that maintain message data used
in existing systems and new applications. The non-functional aspect of data integration is
separated from functional one in this profile. Data integration can be enabled in an
implementation independent manner.
There is less work on the service architecture description using UML architecture model.
[40] specifies a series of service architecture patterns using UML service component. For
instance, interaction service pattern describes capabilities and functions to deliver content

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

519

and data using a portal, or other related Web technologies, to consumers or users. This work
infuses the component design with service building block to facilitate large scale system
design. However, there is no formal reasoning of these patterns and how develop workers
to use these patterns.

5.2 Formalizing SOA

In this paper we have briefly shown how UML architecture description model can be
formalized using a biformalism SAM extension – SO-SAM, and the benefits that can be
obtained from such formalization, namely the definition of integration and composition
verifications between services, and the architecture reasoning that can bridge the differences
between a priori incompatible Web services. Thus we have shown how existing formal
methods can be successfully applied in the context of Web services, providing useful and
practical advantages.
In addition, the formal specification of service properties using temporal logic provides us
with a tool for expressing other complicated safety and liveness properties (apart from those
already mentioned). In fact, any property expressed as a temporal logic formula can be
considered as a sub-system specification, and therefore, checking that property on a certain
web service component, would consist in reasoning the service-oriented architecture. On
the other hand, having a simple formal description to describe web service architecture and
integrations will allow us the application of model-checking techniques to construct (or
extend) existing validation tools, as made in [19] with Promela.
Two major approaches for describing web service applications can be categorized: (a) the
application oriented view of the service oriented applications or web systems (built only on
the individual WSDL descriptions of the constituent web services); (b) the platform
independent, architecture oriented view of service-oriented applications, which consists of
different (simple) “global model” that describes how such independently defined service
integration and compostion in high level abstraction.
BPEL4WS, WSFL and WSCDL are notations that use the application oriented view
approach, whilst UML profile, service components, and web component are examples of the
architecture oriented view approach. Application oriented view notations are in general
more adaptable to each particular situation and system, but are not as amenable to web
service reuse as architecture view descriptions are. Although the web service community is
currently divided trying to decide which is the best approach, we argue that they can be
considered as complementary tactics, rather than rivals.
The way to marry both approaches can be achieved by integrating and infusing the results
from different categories, similarly like what we have discussed in this paper, mapping the
UML architecture description to SO-SAM model and simply checking that the system
properties defined over its constituent web services that can be replaced (in our sense),
integrated or composed by their individual constituents (can be defined using an
application oriented view approach). In this way, both approaches could easily co-exist.
Apart from the previous work of the authors [20, 22], there is a large amount of proposals in
the literature dealing with composition, interoperation and adaptation issues in the field of
Component-Based Software Engineering (CBSE), and in protocol verification in general [19].
Some of these works have been also applied to web service architecture reasoning. In cite
[18], building on previous work in the field of Software Architecture by the same authors, a
model-based approach is proposed for verifying Web service composition, using Message

www.intechopen.com

Petri Net: Theory and Applications

520

Sequence Charts (MSCs) and BPEL4WS. In [38], and from a semantic Web point of view, a
first-order logical language and Petri Nets are proposed for checking the composition of
Web services. In [19], model-checking using Promela and SPIN is proposed for analysing the
composability of choreographies written in WSFL. All these works deal with the (either
manual or automated) simulation and analysis of Web service composites, been able to
detect mismatch between their choreographies.

6. Conclusion

In this paper, we proposed a method to use SO-SAM to formally specify service-oriented
application architectures modeled by an extension of UML – component and connector
view. By doing so, we combine the benefit of UML – easy to comprehend and extensive
tools support, and the analyzability of SO-SAM.
The cost of our methods mainly comes from three parts: the construction of algebraic
specifications, the generation of algebraic high-level nets from statechart diagrams, and the
creation of temporal formulas from sequence diagrams. Since an algebraic specification is
used to model the implied information of statechart diagrams, generally speaking we can
generate operation and sort definitions of an algebraic specification automatically, but not
for the relationships among these operations. The size of a generated algebraic specification
is “linear” to the size of implied information. From our previous work [12], we know the
generation of Petri nets from a statechart diagram can be fulfilled automatically for most
cases, and a Petri net and the corresponding statechart diagram are at the same size. The
generation of temporal logic formulas from sequence diagrams can be largely automated
since the generation is very simple and straightforward.
There are at least three immediate extensions to the work we have presented here. First, we
intend to integrate the translation from UML architecture to SO-SAM with the mapping
from SO-SAM to Maude so that some existing tool we have developed can be used for the
model checking of system properties. And second, we intend to make effective use of the
tools currently available for SAM model [21] to reason about the web specifications during
the runtime. Finally, the translation into SO-SAM presented here must be extended in order
to consider full application oriented view approach such as WSCI [4]; in particular, dealing
with constructs such as correlations, transactions, properties and others, that have been
omitted in this work. This extension would allow the analyzing on the more application
oriented view approach using UML architecture descriptions.

7. Acknowledgments

This work is supported in part by Alabam A&M University.

8. References

[1] Business Process Execution Language for Web Services (BPEL4WS). Available from
http://www.ibm.com/developerworks/library/wsbpel.

[2] DAML-S and OWL-S. Available from http://www.daml.org/services/owl-s/.
[3] Simple Object Access Protocol (SOAP), W3C Note 08. Available from

http://www.w3.org/TR/SOAP/.
[4] Web Service Choreography Interface (WSCI) 1.0. Available from

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

521

 http://www.w3.org/TR/2002/NOTEwsci-20020808/.
[5] Web Services Description Language (WSDL) 1.1. Available from

http://www.w3.org/TR/wsdl.
[6] R. Amir and A. Zeid. A UML profile for service oriented architectures. In OOPSLA ’04:

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pages 192–193, New York, NY,
USA, 2004. ACM Press.

[7] H. S. Bhatt, V. H. Patel, and A. K. Aggarwal. Web enabled client-server model for
development environment of distributed image processing. In Proceedings of the

First IEEE/ACM InternationalWorkshop on Grid Computing (GRID’00), pages 135–
145, London, UK, 2000. Springer-Verlag.

[8] S.-W. Cheng and D. Garlan. Mapping Architectural Concepts to UML-RT. In
Proceedings of International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’2001), June 2001.
[9] M. Clavel, F. Dur´an, S. Eker, P. Lincoln, N. Mart´ı-Oliet, J. Meseguer, and J. F. Quesada.

Maude: specification and programming in rewriting logic. Theoretical Computer

Science, 285(2):187–243, 2002.
[10] DeveloperWorks. UML 1.4 Profile for Software Services with a Mapping to BPEL 1.0,

July 2004.
[11] DeveloperWorks. UML 2.0 Profile for Software Services, April 2005.
[12] Z. Dong, Y. Fu, and X. He. Deriving Hierarchical Predicate/Transition Nets from

Statechart Diagrams. In Proceedings of The 15th International Conference on

Software Engineering and Knowledge Engineering (SEKE2005), 2003.
[13] A. Egyed. Automating Architectural View Integration in UML. Technical Report

USCCSE-99511, Center for Software Engineering, University of Southern
California,Los Angeles, CA, 1999.

[14] A. Egyed and N. Medvidovic. Extending Architectural Representation in UML with
View Integration. In Proceedings of the 2nd International Conference on the

Unified Modeling Language, pages 2–16, October 1999.
[15] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial

Semantics. Springer-Verlag, 1985.
[16] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications

and Constraints. Springer-Verlag, 1990.
[17] H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic High-Level Nets: Petri Nets Revisited. In

Proceedings of Recent Trends in Data Type Specification, 9
th

 Workshop on

Specification of Abstract Data Types Joint with the 4th COMPASS Workshop,
volume 785 of Lecture Notes in Computer Science, pages 188–206. Springer, 1994.

[18] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service
Compositions. In 18th IEEE International Conference on Automated Software

Engineering (ASE’03), volume 00, page 152, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[19] X. Fu, T. Bultan, and J. Su. Formal verification of e-services and workflows. In Revised

Papers from the International Workshop on Web Services, E-Business, and the

Semantic Web (CAiSE’02/WES’02), pages 188–202, London, UK, 2002. Springer-
Verlag.

[20] Y. Fu, Z. Dong, and X. He. An Approach to Web Services Oriented Modeling and
Validation. In Proceedings of the 28th ICSE workshop on Service Oriented

www.intechopen.com

Petri Net: Theory and Applications

522

Software Engineering (SOSE2006), 2006.
[21] Y. Fu, Z. Dong, and X. He. A method for realizing software architecture design. In

Proceedings of the Sixth International Conference on Quality Software(QSIC’06),
pages 57–64, Washington, DC, USA, 2006. IEEE Computer Society.

[22] Y. Fu, Z. Dong, and X. He. Modeling, Validating and Automating Composition of Web
Services. In Proceedings of The Sixth International Conference on Web Engineering

(ICWE 2006), 2006.
[23] T. Gardner. UML Modeling of Automated Business Processes with a Mapping to

BPEL4WS. In ECOOP Workshop on OO and Web Services, July 2003.
[24] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling the Needs of Architectural

Description with Object-Modeling Notations. Science of Computer Programming,
44(1):23–49, July 2002.

[25] H. J. Genrich. Predicate/Transition Nets. Lecture Notes in Computer Science, 254, 1987.
[26] X. He. A formal definition of hierarchical predicate transition nets. In Proceedings of

the 17th International Conference on Application and Theory of Petri Nets, pages
212–229, London, UK, 1996. Springer-Verlag.

[27] X. He and Y. Deng. A Framework for Specifying and Verifying Software Architecture
Specifications in SAM. volume 45 of The Computer Journal, pages 111–128, 2002.

[28] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng. Formally analyzing software architectural
specifications using sam. Journal of Systems and Software, 71(1-2):11–29, 2004.

[29] R. Heckel, M. Lohmann, and S. Th¨one. Towards a UML Profile for Service-Oriented
Architectures. In Workshop on Model Driven Architecture: Foundations and

Applications, 2003.
[30] R. Heckel, H. Voigt, J. K¨uster, and S. Th¨one. Towards Consistency of Web Service

Architectures. Available from
 http://www.upb.de/cs/agengels/Papers/2003/HeckelVoigtKuesterThoene-

CI03.pdf.
[31] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison Wesley,

2000.
[32] C. Hofmeister, R. L. Nord, and D. Soni. Describing Software Architecture with UML. In

Proceedings of the TC2 1st Working IFIP Conference on Software Architecture

(WICSA1), pages 145 – 160, 1999.
[33] R. Hull, M. Benedikt, V. Christophides, and J. Su. Eservices: A look behind the curtain.

In Proceedings of the International Symposium on Principles of Database Systems

(PODS). ACM Press, June 2003.
[34] E. Marcos, V. de Castro, and B. Vela. Representing web services with UML: A case

study. International Conference on Service Oriented Computing, 2003.
[35] N. Medvidovic, A. Egyed, and D. S. Rosenblum. Round-Trip Software Engineering

Using UML:From Architecture to Design and Back. In Proceedings of the 2nd

Workshop on Object-Oriented Reengineering, pages 1–8, September 1999.
[36] N. Medvidovic and R. N. Taylor. A classification and comparison framework for

software architecture description languages. Software Engineering, 26(1):70–93,
2000.

[37] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the

IEEE, 77(4):541–580, 1989.
[38] S. Narayanan and S. A. McIlraith. Simulation, verification and automated composition

www.intechopen.com

Formalizing and Validating UML Architecture Description of Service-Oriented Applications

523

of web services. In WWW ’02: Proceedings of the 11th international conference on

World Wide Web, pages 77–88, New York, NY, USA, 2002. ACM Press.
[39] J. S. Paul Clements, Len Bass. Documenting Software Architectures: Views and Beyond.

Addison-Wesley, January 2003.
[40] I. Prithvi Rao, Certified IT Architect. Using uml service components to represent the

SOA architecture pattern. Available from
 http://www.ibm.com/developerworks/architecture/library/arlogsoa/.
[41] J. Saldhana, S. M. Shatz, and Z. Hu. Formalization of Object Behavior and Interactions

From UML Models. International Journal of Software Engineering and Knowledge

Engineering, pages 643–673, 2001.
[42] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.
[43] M. Vok´ac and J. M. Glattetre. Using a domainspecific language and custom tools to

model a multitier service-oriented application—experiences and challenges. In C.
W. Lionel Briand, editor, Models 2005, Montego Bay, Jamaica October 2-7, LNCS
3713, pages 492–506, Heidelberg, 2005. Springer-Verlag GmbH.

[44] J. Wang, X. He, and Y. Deng. Introducing Software Architecture Specification and
Analysis in SAM through an Example. Information and Software Technology,
41(7):451–467, 1999. Appendix

A Algebraic specifications for Packetizer and PacketPipe

Packetizer(Packet, RawData) = Bool + Packet + RawData
sorts: packetizer

opns: _.PacketNotFull(): packetizer → bool

_.PacketFull(): packetizer → bool

_.AddRawData(): packetizer × rawdata → packetizer

_.GetPacket(): packetizer → packetizer × packet

eqns: c ∈ packetizer

c.PacketNotFull() = ¬ c.PacketFull()

PacketPipe(Client) := Bool + Client
sorts: packetpipe

opns: ReadByAll(): packetpipe → bool

_.PacketRead(): packetpipe → bool

_.PacketNotRead(): packetpipe → bool

_.IsClientReady(): packetpipe × client → bool

_.NoClientReady(): packetpipe → bool

_.AddClient(): packetpipe × client → packetpipe

_.RemoveClient(): packetpipe × client → packetpipe

_.AppendPacket(): packetpipe × packet → packetpipe

_.SetClientReady():packetpipe × client → packetpipe

_.GetPacket(): packetpipe → packetpipe × packet

_.UpdatePacket(): packetpipe → packetpipe

eqns: pp ∈ packetpipe, c ∈ client, p ∈ packet

pp.IsClientReady(c) = true ⇒ pp.NoClientReady()=false

www.intechopen.com

Petri Net: Theory and Applications

524

(pp.SetClientReady(c)).IsClientReady(c) = true
(pp.AddClient(c)).IsClientReady(c) = false

B Temporal constraints obtained from UML sequence diagrams

Temporal formulas for protocol RawData:

∀sid, rid,

฀ (dataReady(<sid, rid, md>) ⇒ ◊requestData(<sid, rid, mr>))

฀(dataReady(< sid, rid, md >) ⇒ ¬((»dataReady(< sid, rid,md >)) ∨ requestData(< rid, sid, mr >) ∨
rawData(< sid, rid, mrd >))UrequestData(<sid, rid, mr>))

฀ (requestData(<sid, rid, mr>) ⇒ ◊rawData(<sid, rid,mrd>))

฀ (requestData(<sid, rid, mr >) ⇒ ◊(dataReady(< rid, sid, md >) ∨ (»requestData(<sid, rid, mr >))

∨
rawData(< rid, sid, mrd >))UrawData(<rid, sid, mrd>))

฀ (rawData(< sid, rid, mrd >) ⇒ ◊(dataReady(< sid, rid, md >) ∨ requestData(< rid, sid, mr >) ∨
(»rawData(< sid, rid, mrd >)))UdataReady(<sid, rid, md>))

Temporal formulas for protocol DataPacket:

∀(<sid, rid, mp>), ฀ (packet(<sid, rid, mp>) ⇒ true)

Temporal formulas for protocol RequestDataPacket:

∀sid, rid,

฀ (subscribe(<sid, rid, ms>) ⇒ ◊requestPacket(<sid, rid, mr>))

฀ (subscribe(<sid, rid, ms >) ⇒ ¬((»subscribe(<sid, rid, ms >)) × requestPacket(<sid, rid, mr>) ×

packet(<rid, sid, mp>) ×
desubscribe(<sid, rid, md>))UrequestPacket(<sid, rid, mr>))

฀ (requestPacket(<sid, rid, mr>) ⇒ ◊packet(<rid, sid, mp>))

฀ (requestPacket(< sid, rid, mr >) ⇒ ¬(subscribe(<sid, rid, ms >) × (»requestPacket(<sid, rid, mr

>)) × packet(<rid, sid, mp >) ×
desubscribe(<sid, rid, md>))Upacket(<rid, sid, mp>))

฀ (packet(< sid, rid, mp >) ⇒ ◊(desubscribe(< rid, sid,md >) × requestPacket(<rid, sid, mr>)))

฀ (packet(<sid, rid, mp >) ⇒ ¬(subscribe(<rid, sid, ms >) × requestPacket(<rid, sid, mr>) ×

(»packet(<sid, rid, mp>)) ×

desubscribe(< rid, sid, md >))U (desubscribe(<rid, sid, md >) × requestPacket(<rid, sid, mr>)))

฀ (desubscribe(<sid, rid, mp >) ⇒ ¬(subscribe(<sid, rid, ms>) × requestPacket(<sid, rid, mr >) ×

packet(<rid, sid, mp >) ×
(»desubscribe(<sid, rid, md>)))Usubscribe(<sid, rid, md>))

www.intechopen.com

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhijiang Dong, Yujian Fu, Xudong He and Yue Fu (2008). Formalizing and Validating UML Architecture

Description of Service-Oriented Applications, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN:

978-3-902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/formalizing_and_validating_uml_architec

ture_description_of_service-oriented_applications

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

