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Chapter

Turbulent Heat Transfer Analysis
of Silicon Carbide Ceramic Foam
as a Solar Volumetric Receiver

Chen Yang, Huijin Xu and Akira Nakayama

Abstract

A volumetric solar receiver receives the concentrated radiation generated by a
large number of heliostats. Turbulent heat transfer occurs from the solid matrix to
the air as it passes through the porous receiver. Such combined heat transfer within
the receiver, including radiation, convection and conduction, is studied using a local
thermal non-equilibrium model. Both the Rosseland approximation and the P1
model are applied to consider the radiative heat transfer through the solar receiver.
Furthermore, the low Mach approximation is exploited to investigate the com-
pressible flow through the receiver. Analytic solutions are obtained for the devel-
opments of air and ceramic temperatures as well as the pressure along the flow
direction. Since the corresponding fluid and solid temperature variations generated
under the Rosseland approximation agree fairly well with those based on the P1
model, the Rosseland approximation is used for further analysis. The results indi-
cate that the pore diameter must be larger than its critical value to obtain high
receiver efficiency. Moreover, it has been found that optimal pore diameter exists
for achieving the maximum receiver efficiency under the equal pumping power.
The solutions provide effective guidance for a novel volumetric solar receiver
design of silicon carbide ceramic foam.

Keywords: turbulent heat transfer, thermal non-equilibrium, Rosseland
approximation, P1 model, volumetric solar receiver, porous media, ceramic foam

1. Introduction

A solar volumetric receiver is required to have the resistance to temperature as
high as 1000 degree Celsius, high porosity for sufficiently large extinction volume
such that the concentrated solar radiation penetrates through the receiver, high cell
density to achieve large specific surface area and sufficiently high effective thermal
conductivity to avoid possible thermal spots. Extruded monoliths with parallel
channels (i.e. honeycomb structure) are being used in some solar power plants in
Europe, including the solar power tower plant of 1.5 MW built in 2009, in Julich in
Germany [1, 2]. However, in such conventional receivers, both thermal spots [3]
and flow instabilities [4] have been often reported. In the monolith receiver, locally
high solar flux leads to a low mass flow with high temperature, whereas locally low
solar flux leads to a high mass flow with low temperature. This causes the absorber
material to exceed the design temperature locally, which then leads to its
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destruction although the average temperature is comparatively low. These
difficulties encountered in the receiver must be overcome to run the power
plant safely.

In consideration of these requirements, ceramic foams have come to draw
attention as a possible candidate to replace the conventional extruded monoliths
with parallel channels. Many researchers including Becker et al. [4], Fend et al. [5]
and Bai [6] focused on porous ceramic foams as a promising absorber material.
Recently, Sano et al. [7] carried out a local non-thermal equilibrium analysis to
investigate the receiver efficiency under the equal pumping power. For the first
time, the complete set of analytical solutions based on the two-energy equation
model of porous media was presented, so as to fully account for the combined
effects of tortuosity; thermal dispersion and compressibility on the convective,
conductive and radiative heat transfer within a ceramic foam receiver. In their
analysis, however, the Rosseland approximation was applied to account for the
radiative heat transfer through the solar receiver. It is well known that the
Rosseland approximation ceases to be valid near boundaries. Although no wall
boundaries exist for the case of the one-dimensional analysis of the solar volumetric
receiver, the validity of applying the Rosseland approximation near the inlet
boundary of the receiver has not been investigated yet. Furthermore, the effects of
turbulence mixing on the heat transfer were not considered.

In this study, the validity of the Rosseland approximation [7] will be examined
by comparing the results based on the Rosseland approximation and the results
obtained from solving the irradiation transport equation based on the P1 model. The
set of the equations will be reduced to a fifth-order ordinary differential equation
for the air temperature. Once the air temperature distribution is determined, the
pressure distribution along the flow direction can readily be estimated from the
momentum equation with the low Mach approximation. Thus, the receiver effi-
ciency, namely, the ratio of the air enthalpy flux increase to the concentrated solar
heat flux, can be compared under the equal pumping power, so as to investigate the
optimal operating conditions. Some analytical and numerical investigations [3-8]
have been reported elsewhere. However, none of them appeared to elucidate well
the combined effects of turbulence, compressibility, radiation, convection and con-
duction within the volumetric receiver on the developments of air and ceramic
temperatures as well as the pressure along the flow direction. This study appears to
be the first to provide the complete set of analytical solutions based on the two-
energy equation model of porous media [9], fully accounting for the combined
effects of turbulence, tortuosity, thermal dispersion, compressibility and radiative
heat transfer within a ceramic foam receiver.

2. Volume averaged governing equations

As illustrated in Figure 1, the structure of silicon carbide ceramic foam volu-
metric receiver may be treated as homogeneous porous medium. Since the depen-
dence of the Darcian velocity on the transverse direction can only be observed in a
small region very close to the walls of the passage, we may neglect the boundary
effects (i.e. Brinkman term).

Based on a theoretical derivation of Darcy’s law, Neuman [10] pointed out that
the application of Darcy’s law to compressible fluids is justified as long as Knudsen
numbers are sufficiently small to ensure the no-slip conditions at the solid—gas
interface. This is usually the case for the volumetric receivers. Thus, allowing the

density to vary through the receiver, the following Forchheimer extended Darcy
law should hold:
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Volumetric veceiver.
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where K and b are the permeability and the inertial coefficients, respectively.
Furthermore, by virtue of the volume averaging procedure [11-13], the microscopic
energy equations of the compressible fluid flow phase and the solid phase may be
integrated over an elemental control volume V, so as to derive the corresponding
macroscopic energy equations. Since the porous medium is considered to be homo-
geneous, the integration of the two distinct energy equations gives:

For the air:

8% <Pf (hsmg J;j) >f + 8% (o) () ha)

0 Fo(Ty 1 -\ f
= gj <kf> 0—x] + V kaTnjdA — 8<p>f<hsmguj> + £<ul-'rl-j>
Aint
1 oT
— —nidA 2
+Vkaaxjn]d 2)
Aint
For the solid matrix:
a(T}S_ 0 o(Ty kSJ 1 J oT
(1—¢)pycs o ox, (1— ek, o,V Tn;dA-qy v k¢ dxjn]dA
Amt Aint
(3)

where the intrinsic volume average of a certain local variable ¢ in the fluid phase
and solid matrix phase can be defined as.

f= 2| gavigyr= 2| gav
o' =y |, wav.or =y | o 4)

Note that subscripts f and 7 refer to the fluid phase and solid matrix phase,
respectively. The decomposition of the local variable ¢ can be expressed in terms of
its intrinsic average and the spatial deviation from it:
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o= () +o (5)

Moreover, g is the radiative heat flux, Ajy, is the interfacial surface area
between the fluid and solid matrix phases, while #; is the normal unit vector from
the fluid phase to the solid matrix phase.

In order to simplify the foregoing set of the equations, the low Mach approxi-
mation is applied due to the relatively low Mach number when the air flows through
a porous medium. Thus, the dynamic pressure change is sufficiently small as com-
pared to the absolute pressure prevailing over the system, such that the stagnant
enthalpy is approximated by A4, = h + ugu, /2 = h. Combining the foregoing two
energy equations namely Egs. (2) and (3), and, then, noting the continuity of
temperature and heat flux at the interface, we obtain the one-equation model for
the steady state as follows:

f 5
85ﬁﬁ>®ﬁ@ﬁ=£;< Vaj +(- m§2+§j@fmew

int

(6)

For the time being, let us assume a<T>f/ax]- >~ o(T) Jox; = o(T) /ox
(this assumption will be relaxed shortly). Then, the equation reduces to

f
e%j<ﬂf> () ()f :% (eer)” + (1—e)ks)%7;>+‘1/ J (ks — ko) TndA

Aint

@)

where

1

7 eav (8)

W=y

is the Darcian average of the variable ¢ such that <u j> = 8<u j>f is the Darcian
velocity vector. From the foregoing equation, that is, Eq. (6), the macroscopic heat

flux vector q; = (qx, q,> qz> and its corresponding stagnant thermal conductivity

kay may be defined as follows:

q;, = kmga; +qR—|—8<pf> < Zt,->f

= —(elkp) + @ o)k,) ‘352 z J (kg — k) Tnd + g+ e(p, Y (i)’

A int
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or

T oT) 1
ksmg;T) = (e(k PN e)les) §7> +3 J (ks — k) TnidA (10)
Aint

The term e<p f>f<l~zﬁi>f in Eq. (9) describes the thermal dispersion heat flux

vector, which serves an additional heat flux resulting from the hydrodynamic mixing
of fluid particles passing through pores. On the other hand, the second term on the
right-hand side term in Eq. (10) is associated with the surface integral, and it describes
the effects of the tortuosity on the macroscopic heat flux, which adjusts the level of the
stagnant thermal conductivity from its upper bound (ks + (1 — €)k;) to a correct one.
Yang and Nakayama [9] introduced the effective porosity ¢, which is defined as

o ks =gy ek + (1 — e)ks — kg
£ —W—E'i‘ k_v—kf (11)
such that
. oI 1 _
(e* —¢) o VJAmtTnldA (12)

f
Using the effective porosity ¢* and the equation of state {p)f = <p f> R(T) and

(n) = cp (T)/, the volume average energy equations Eqs. (2) and (3) may be
concisely rewritten for the steady state for air as:

f f
2 (o) iy mf == ( (kg 2T ey, 24T ) (i) — (1)

& 0_x] 0x | 0x j 0y,
(13)
for the solid matrix phase as:
J * a<T>S s f\ _
e ((1_ ek +qR) ho((T) = (1)) =0 (14)

Note that the assumption of equal temperature gradients, o(T)” /ox T
d(T)’ /ox; = o(T)/ox j, has been discarded. This practice has been proven to be quite
effective in a series of computations (e.g. [8, 9]). According to the gradient diffu-
sion hypothesis [14], the thermal dispersion term is usually expressed as:

<Pf>f<’~‘ﬁj>f = <Pf>ffp<Tﬁj>f = ki % (15)

while the interfacial heat transfer between the solid and fluid phases is modeled
using Newton’s cooling law:
1 oT
= "~ nidA = h, ((TY —(T)/ 1
7], kg ma = (i1 - ) 16)

where , is the volumetric heat transfer coefficient. The Maxwell approxima-
tions may be used for the dynamic viscosity and thermal conductivity of the air:
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ﬂ(<T>f) = 4o Y _18x105( D OJ[Pa.s] (17)
<T>f 300K

0

and

f n f 0.7
kf<(T>f>:ko(%> :0.025(%) [W/mK] (18)

where the exponent n is 0.7 according to [4]. The specific heat capacity of the air
¢, = 1000[J /kgK] and the Prandtl number Pr = 1.8 x 10> x 1000/0.025 = 0.72 are
assumed to be constant.

3. One-dimensional analysis for volumetric receiver
In this section, we perform one-dimensional analysis to obtain analytic solutions
for convective-radiative heat transfer in volume receiver. Prior to that, the radiative

heat flux g, needs to be determined in advance. In the literature, there are two
models, namely, the Rosseland approximation and the P1 model.

3.1 Analysis based on the Rosseland approximation

In the Rosseland approximation, the radiative heat flux is given by

(19)

where 6 = 5.67 x 108 [W/m?K"] is the Stephan-Boltzmann constant while f is
the mean extinction coefficient.
As schematically shown in Figure 1, the air is flowing through a passage of

length L at the rate of the mass flux G = <p f>f(u). Under the low Mach number

f
approximation, namely, <p f> «1/(T)’, the macroscopic governing equations

Egs. (1), (13) and (14) can be simplified to be a one-dimensional set of equations as
follows:

o w6, G R <<”>fG+bG2)<T>f (20)
dx K <,0f>f <,0f>f <p>f K

cpcdng—di( “(ky) +ekdm) ( (T)f —(T}‘) (1)

s(a=em +1f—ﬂ"<<T>>)d;Z>S—hv(<T>f—<T>f) —0 @

According to Calmidi and Mahajan [15, 16], Dukhan [17], Kuwahara et al. [18]
and Yang et al. [19, 20], the permeability and inertial coefficient of foams are
given by
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—-1.11
—0.224 1.18 1—¢ 2
K = 0.00073(1 — ¢) (1 —onei\ 5 ) dyn (23)
and
b= 12(411 —¢) (24)

respectively, where d,, is the pore diameter of foam. The longitudinal dispersion
coefficient is roughly about 20 times more than the transverse one. Thus, following
Calmidi and Mahajan [16], we may evaluate the longitudinal dispersion coefficient
using the following expression:

ekais.. = 1.2c,GVK (25)
With respect to the stagnant thermal conductivity and the volumetric heat

transfer coefficient for foams, Calmidi and Mahajan [15, 16] empirically provided
the following correlations:

ksgag = ek + 0.19(1 — )*7%k, (26)
_—(1-€)/0.04\ 1/2 1/2 k

h, =8.72(1—¢&)V* <1 ¢ ) (%) PVO'37d—f2 (27)
£ u "

Kamiuto et al. [21] experimentally affirmed that the Rosseland model is quite
effective. Therefore, it can be deduced that the Rosseland model is also applicable
for the present case of silicon carbide ceramic foam. Based on the measurements
made on cordierite ceramic foams by Kamiuto et al., the mean extinction coefficient
p is calculated by the following correlation:

p=81-e)/dy (28)

f
For a given mass flux G = <p f> (u), the foregoing three equations along with
the equation of state may be solved for the four unknowns, namely, (T)/ (T, (p)

and <p f>f. The boundary conditions are given as follows:

x = 0 (inlet):
(1) = (T){ = 300[K] (29)
) = (p)} = 10°[Pa] (30)
such that <Pf >f = <Pf>£ — (p)] /R(T) = 105/(287 x 300) = 1.2[kg/m’]
f i S
_ (5* <kf>f + Ekdiyxx>6% - ((1 _e* )ks + % (<T>3>3)d§lz>
-0 e

x 0
—Tpcosé— (1—¢) (a(;((mfo)“ . (<T>5)4> +hc,m,,(<T>’O . <T>gj>> (31)
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where Iy is the intensity of radiation and ¢ is the incidence angle. Moreover,
a = 0.9 is the emissivity of the front surface of the receiver, while /,, is the
convective heat transfer coefficient at the frontal surface. The properties of the air
depend on the temperature, which makes the integrations of the foregoing
governing equations formidable. In order to obtain analytic expressions for the
unknown variables, we may approximate these properties by their representative
values evaluated at the average air temperature over the receiver as given by

= %K<T>f dx (32)

Likewise we shall define the solid phase average temperature as follows:

L
@ = | rvas (33

The two energy equations, that is, Egs. (21) and (22) may be added together and
integrated using the boundary conditions in Egs. (29) and (31) to give

AN f
ch<<T>f - <T>§) - (s*ko (%) +gkdm> d—g

0

+ ((1 — &% ks + 136—; <<T>5>3) dgf +Io cos¢

(34)

This equation is substituted into Eq. (21) to eliminate (T)* in favor of (T)f . The
resulting ordinary differential equation for (T) runs as

&y Ge, a1y’
3 —\7 2
dx 8*k0 (Zg;) + gkdisxx i
160 s 3
n kxtag + R gisxx + @ (<T> ) d<T>f
’ * W ’ . _ g% 16_6 7\ dx
(5 ko (<T>g) + Ekdzsxx) ((1 € )ks + 34 <<T> >
G
b, 2 ()

(e*ko (@) " skd,m) ((1 ek + 136—; (@) 3)
Iocosé — (1— ) (aa((<T>fo)4 - <<T>{§)4) + heov ({TVy = <T>5))

A 16 3
(E*kO (gig) + 8kdi5xx> ((1 —&* )ks + 3—; <<T>S> )

+hy
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This ordinary differential equation, with the boundary conditions in Egs. (29),

(30) and (31) and the auxiliary asymptotic condition d <T>g Jdx = d2<T)g Jdx* = 0,
yields

T =T, — <Teq . <T>{;>e‘7’“ (36)
and
(T) =Ty — (Teg — (T)y)e ™ (37)

where y is the positive real root, which can uniquely be determined from the
following cubic equation:

Ge Ge
r’+ N r—r— =0 (9
(8* ko (g;f) + 8kdisxx) A (ksmg + gkdisxx + 136_; (<T>S> )’1
where
—\3
(ksmg + 8kdisxx + 136_; <<T>S) )hv
y) (39)

— 7 S 3
(6‘*]60 (25;({) + €kdisxx) ((1 —e* )ks + 136_5 (<T> > >

The solid phase temperature at the inlet (T');, and temperature at the thermal
equilibrium, namely, T, = TV, = (T).,, are given by

GCp + (S*ko <@>n + fkdisxx)y/1
<T>S0 = Teq + <Teq - <T>g> ° N (40)
((1 — e ks + e ((T)‘) )M

and

2l +Io cosé — (1—¢) (aa((<T>So)4 i ((T)g> > +hcov<(T>50 - (T>g>)

(41)

respectively. Usually, the receiver length L is sufficiently long to reach the local

thermal equilibrium. Thus, the average air and solid temperatures are evaluated
from

1_ 1L 1— 7L 1 1
for=e¢ " S e ~_— 1\ _
1_ 1L 1—e 1AL 1 1
U G L G L

As one of the most important performance parameters, the receiver efficiency is
defined by
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Ipcosé— (1—¢) (aw(((T)SO)4 - <<T>5)4> +hcov<<T>S0 - <T>g>) (44)
44

Igcosé

;’I:

Having established the temperature development, the momentum equation, that
is, Eq. (20) along with the equation of state can easily be solved to find out the
pressure distribution along the receiver as

o= (08 i () ) (5 b (-5

0
(45)

Under the low Mach approximation, the required pumping power per unit
frontal area may be evaluated from

(46)

Note that the dynamic pressure change is sufficiently small as compared to the

absolute pressure such that <p f>f x1/(T).

3.2 Analysis based on the P1 model

Since the Rosseland approximation used in the previous analysis ceases to be
valid near boundaries, the validity of applying the Rosseland approximation near
the inlet boundary of the receiver should be investigated. In order to examine the
validity of the Rosseland approximation, the results based on the Rosseland
approximation will be compared with the results obtained from solving the irradia-
tion transport equation based on the P1 model. Since the silicon carbide ceramic

10
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foam is optically thick, the radiant energy emitted from other locations in the
domain is quickly absorbed such that the radiative heat flux is given by

1 0G
9r = _ﬁgj (47)

where the diffuse integrated intensity G, satisfies the irradiation transport
equation based on the P1 model as follows:

0 (1 oG,

A axj) i K<46(<T>S)4 - Gy> —0 (48)

where « is the absorption coefficient.
Moreover, the effects of turbulence mixing on the heat transfer are also consid-
ered. Therefore, the energy equation for the air will be written as

e )"\ o(r
8cp£j<pf>f<u]>f ( (kg > <0 (kdisjk 4 Pr H ) oT) 5jk>
)

oT axk
—hv(< (T

(49)

where turbulent Prandtl number 617 = 0.9 is assumed to be constant.

Under the low Mach number approximation, namely, we may reduce the
macroscopic governing equations namely Egs. (1), (49), (14) and (48) to a
one-dimensional set of the equations as follows:

dp)  w G G R <<u>f ) s
_ — +b = G +bG* |(T) (50)
dx K <Pf>f <pf>f @)f K

. e i) f
B T WY B

oT
(51)
d ., ATy  1dG, 4 f\ _
E(u—e o AT +@dx) ity - @) =0
d 1 dG;» s\4 _
Ld (ﬁ o~ ) +x(40((T))* - G,) =0 (53)

The turbulence kinetic energy is dropped from the momentum equation since it
stays nearly constant within the receiver.

Nakayama and Kuwahara [22] established the macroscopic two-equation turbu-
lence model, which does not require any detailed morphological information for the
structure. The model, for given permeability and Forchheimer coefficient, can be
used for analyzing most complex turbulent flow situations in homogeneous porous
media. For the case of fully developed turbulent flow in an isotropic porous
structure, the eddy viscosity is given by

11
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()" = 2GbK (54)

Note that

kai/ (69, ) for) = 0.607/ebVE > 1

such that the dispersion thermal conductivity usually overwhelms the eddy
thermal conductivity.

For absorption coefficient k, the measurements made on cordierite ceramic
foams by Kamiuto et al. [22] give the following correlation:

k=4a(l—¢)/dy, (55)

The boundary conditions of (T)f and (p)f are the same as Egs. (29) and (30).
The other boundary conditions are given as follows:

1 dG, G,
QR,C:_@ Ie 2 (56)
and
f f s
— (8* <kf>f +e (kdisxx + Cpf <l:t> >>d<d’1.:€> - (1 — 8* )ks diljy? - GV|2x_O
o e x=0
=(1-(1-a)(1—¢))lycosé |
4 4
— =) (ao{ (08)* = (T6)") o (125 — (1)
(57)

Furthermore, the streamwise gradients of the dependent variables (T), (T) and
G, are set to zero sufficiently far downstream atx = L.

The two energy equations, namely, Egs. (51) and (52) may be added together
and integrated using the boundary conditions in Egs. (29) and (57) to give

oG(( - (1)

L (Y &, () \ \ d(T)f . ATy 14dG,
: <€ « (W) +€<kd”""+ o PR e v

0 J

HL= (=01 eocose — (1 &) (o (T3)* = (7)) +hom (1755~ (1))

(58)
Egs. (52) and (53) are combined to give
B s Py (s A (A —e")kdX(T)
Gy = 4o((T))! +72 (1) — (1)) ) = === 5 (59)

This equation, Eq. (59), and Eq. (51) are substituted into Eq. (58) to eliminate

G, and (T)'in favor of (T)/. The resulting ordinary differential equation for (T)
runs as

12
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o1y Ge, a1y
x> e, (u)\ dx*
*k <<f) + e (kdixxx + pf<’ut>>
>o oT
160 3 h,
(=t () + 55 " A1y
+| 3px A + 7 3
(1—e*)ks (T a4 dx
ETRQ <T>g e\ Ris,., o7
166 (—\3 hy 3pkGe d*(T)/
—( (1 —e* s +— ((T) +—) 2
(( ) 34 (( >> 36k 7 n CPf</"t>f A2
*k0<f) +el kg, +——— | | (1 — &%)k
>o orT
f
Cp M 16 3
ksmg + & kdis]k +M +_0(<T>S)
or 3p d(T)!
3pxh,
o W " k CP]‘(ﬂt>f 1 Ve dx
E£*Ro w7 + & disﬂ“‘T (1—¢*)ks
3pkh,Ge
L (¢ =)l

+ < >f
e (N (e o
(e ko <(T)0f> + € (kduxx + or )) (1—e*)ks

(1—(1—a)1—e)locosé—(1—é) (aa<(<T>g)4 - (<T>§)4> + heom (<T>g - (T){;))

—3p«h, ( >f
* @ ! . Cipf He —e*
(8 ko <(T>(j;> +e (kd”xx + or >> (1—e*)ks

This ordinary differential equation, with the boundary conditions in Egs. (29),
(56) and (57) and the zero derivative conditions far downstream (x — oo: Note L is
sufficiently large), yields Egs. (36) and (37). Note that y is the positive real root
which can be determined from the following characteristic equation:

(60)

Geyp 4

7 4
Cp, (U
)
oT

I MY )
3K (s <Q> +e<kd%+ s ) )) (( e* +36—ﬁ(<T>>3+3hﬂ”K> +(1—e* )k 3

/\
*
e
(=]
N
ov\‘\

by (1Y% or
k kai +Cpf<ﬂt>f +16—G(T )3 7
stag T € | Ris,., o7 3 < >
s 166 v 3 hv
(1—ek+37 () 35 kG, , 3px
B o, )\ 16 st T
kStﬂg + & <kdi5xx + prTt ) + 3_/;’ (<T>S)
) 3pxGe, Y

Cps </4t>f 160 5
(kstag + e (kdisxx + or + ﬁ (<T>
(61)

where
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& ) )
(kstag + g(kdinx _|_ pfg: ) + 136_/§7 <<T>S> )hv

AN o ) \

The solid phase temperature at the inlet (T'), and temperature at the thermal

A= (62)

equilibrium, namely,T., = (T){o = (T):,, are determined from the following
implicit equations:

Ge (T —<T>f):—(*k i <k +CPf'<ﬂt>f>> /I(T —(T)f)
p\ ‘e 0 € RO T &\ Risy, o) YA\ Leq 0

q
3 (sotmiy* <22 (e - d) + =R g, - )
(63)
Ty = (T)}
(1-(1-a)1—e)locosé — (1—¢)(ac (<T>3)“—(<T>£)4 + heons ({5 = (T
) ( <ch ) )
(64)

where the boundary condition in Eq. (56) is utilized. Usually, the receiver length
L is sufficiently long to reach the local thermal equilibrium. Thus, the average air
and solid temperatures are evaluated from Egs. (42) and (43).

4. Validations of the Rosseland approximation

Smirnova et al. [23] numerically studied the compressible fluid flow and heat
transfer within the solar receiver with silicon carbide monolithic honeycombs. In
their paper, the following input data were collected to obtain the analytic solutions
based on the present local thermal non-equilibrium model:

<pf>£ = 12[kg/m*, (T)} = 300[K]((p)} = 10°[Pa)), c, = 1000]j/kgK],

G = 1.2[kg/m?s], L = 0.05[m], Iy =10°[W/m?|, &= 0, hum = 0[W/m?K],
ks = 150[W/mK]kg; = 0[W/mK], &, = 8.8 x 10*[W/m?K], = 0.5, = 50[1/m].

However, it should be noticed that the porosity of the silicon carbide monolithic
honeycombs is not available in Smirnova et al. [23], its value was estimated to be
e = 0.5 from the figure provided by Agrafiotis et al. [24]. The mean extinction
coefficient f for silicon carbide monolithic honeycombs is not available in their
paper. Finally, the value was estimated to be 50[1/m] by correlating the present
results against theirs. It should also be noted that the convective heat transfer
coefficient was set to zero since radiation predominates over convection in the
receiver front.

As for possible instabilities, the fifth-order characteristic Eq. (61) based on the
P1 model should be examined carefully. Figure 2 shows the residual of the fifth-
order characteristic equation f(y). The figure clearly shows that the fifth-order
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Figure 2.
Residual of the fifth-ovder characteristic equation.

characteristic Eq. (61) under a possible range of the silicon carbide parameters
yields two positive roots y, and y;, which are fairly close to each other. The
corresponding temperature variations of both phases however depend strongly on
its value, which results in a non-unique value of equilibrium temperature. Since
flow instability is inferred by an unexpected nature of the quadratic pressure dif-
ference with respect to equilibrium temperature, the existence of two positive roots
may be responsible for possible hydrodynamic and thermal instabilities reported
previously. A further investigation based on an unsteady procedure is definitely
needed to explore possible causes of these instabilities, closely related to the radia-
tive heat transfer mode.

The third-order characteristic Eq. (38) based on the Rosseland approximation,
on the other hand, yields only one positive root y;. The corresponding fluid and
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Figure 3.
Comparison of the temperature developments with the Rosseland approximation and P1 model.
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Figure 4.
Axial developments of the fluid and solid phase temperatures: comparison of the present analysis and FEM
analysis.

solid temperature variations generated under the Rosseland approximation are com-
pared with those based on the P1 model with the larger root y,,. Figure 3 shows that
both sets of the temperature developments agree fairly well with each other. Thus, the
Rosseland approximation for this case, despite its failure near the inlet boundary, is
fairly accurate and may well be used for quick estimations and further analysis.

In Figure 4, the present analytic solutions are compared against the large-scale
FEM numerical calculations based on COMSOL, reported by Smirnova et al. [23]. It
should be mentioned that the direct numerical integrations of Egs. (20)-(22) were
also carried out using the finite volume method code, SAINTS [12]. As the conver-
gence criteria, the residuals of all equations are less than 107, It can be clearly seen
that the air temperature increases as receiving heat from the monolithic receiver.
Eventually, these two phases reach local thermal equilibrium near the exit. Both sets
of solutions agree very well with each other, indicating the validity of the present
local thermal non-equilibrium model.

5. Applications to silicon carbide ceramic foam volumetric receiver

In order to overcome the problems associated with thermal spots and flow
instabilities, we would like to study fluid flow and heat transfer characteristics in
silicon carbide ceramic foams based on the analytical expressions of pressure and
temperature fields within a solar volumetric receiver. The performance of the
receiver may be assessed in terms of the receiver efficiency  under equal pumping
powerPP. Thus, the effects of the pore diameter d,, on the receiver efficiency 7 are
presented in Figure 5, since d,, is a crucial geometry parameter affecting hydrody-
namic and thermal characteristics of foam shown in Egs. (23), (24) and (27). The
pore diameter d,, is varied whereas the other parameters are fixed as follows:

<Pf>£ = 12[kg/m*, (T)} =300[K]((p)} = 10°[Pa]), ¢, = 1000[) /kgK],
L= 0.03[1’)1], Iy = 106[W/m2], E=0,heom = O[W/mzK], ke, = 150[W/mK], £—009.
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Figure 5.
Effects of the pore diameter on the receiver efficiency.

All other parameters are evaluated using Egs. (17), (18) and from Eq. (23) to (28).

As shown in Figure 5, it is interesting to note that # suddenly increases at some
critical value of 4,, for a given value of PP, which means that the pore diameter d,,
must be larger than this critical value to achieve high 5. This finding is useful to
design a volumetric receiver, and can be interpreted in what follows.

As indicated in Eq. (46), it can be easily deduced that G « VPP for low PP and
G « v/PP for high PP, which results in that the amount of heat carried by the air,

G (Te - <T)g > x VPP, increases drastically on increasing the pumping power PP
from zero. Nevertheless, its rate of increase diminishes for the higher PP range, in
which G(Teq - <T>£ ) o /PP. Moreover, it can also be concluded that the sharp rise

in the receiver efficiency occurs around the transition from the Darcy to
Forchheimer regime, namely,

T, \
P =) Go=bGy’ (65)
K \(1);
or
G, = (ZTO( (IO C"Sf) ) (66)
Cp<T>0
since
T, ECPGMT){;JFIO cos¢  Ipcosé (67
(1)} ¢,G(T)} ¢,Gi(T)}

Thus, Eq. (46) may be written for the case in which the sharp rise in  takes
place as follows:
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2 2
PP — Gy . (2I9Gtr2) (T_eqf) I =~ 21’)LGtrz ( Iy cos cff)
<<p>5) (T)o (<ﬂ>{§) cpGer(T)g
2 L
_ 2bL Igcosé Ho <Io cos§> >1+n “
(<p>5)2<%<T>5) (bK & (Th)

which, for given PP, gives the minimum value of the pore diameter d,,:

1
fanid 24n

3
dzw — (e) 2 (I 0 COS é) Ho (69)

<<p>5>2PP (TN (’;T@L
o) = ((bdm)" w (12(1 — &))"

2+n
2 - —1.11
K /dy, ) 0.00073(1 — &) 2 (M8 o i)

1
2+n

(70)

For PP = 300, 500 and 1000 W/m? studied here, Eq. (69) gives d,,,= 0.0022,
0.0016 and 0.0010 m, respectively. It is consistent with what is observed in
Figure 5, since an increase in d,, (i.e., decrease inf) from d,,;,, makes further
penetration of the solar radiation possible. This works to keep the solid temperature
at the inlet comparatively low such that heat loss to the ambient by radiation is
suppressed. As a result, high receiver efficiency can be achieved. However, the
increase in d,, on the other hand results in decreasing the volumetric heat transfer
coefficient, as can be seen from Eq. (27). Too large d,, deteriorates interstitial heat
transfer from the solid to air. Thus, as can be seen from the figure, the optimal size
of d,, exits under the equal pumping power constraint.

In order to achieve local thermal equilibrium for the two phases within the
receiver, the length of the receiver is assumed to be sufficiently long in the present
study. In view of minimizing the required pumping power, however, it is noticeable
that shorter length is better, as clearly seen from Eq. (46). Hence, a minimum
length required to approach local thermal equilibrium may be chosen to design a
receiver, which would guarantee both maximum receiver efficiency and minimum
pumping power. Therefore, we may roughly set the optimal receiver length as

3
L = _}’/1 (71)
such that
<T)f - T, TV -T
x=L 1 _ < > ’x:L “q e 6_3 >~ 50/0 (72)

(Tl —T,,  (Tho—Tq

Eq. (71) together with Eq. (69) provides useful information for designing a
volumetric solar receiver of silicon carbide ceramic foam.

6. Conclusions

For the first time, the complete set of analytical solutions, which fully considers
the combined effects of turbulence, tortuosity, thermal dispersion, compressibility
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on the convective, conductive and radiative heat transfer within a ceramic foam
receiver, is presented based on the two-energy equation model of porous media.
Both the Rosseland approximation and the P1 model are applied to account for the
radiative heat transfer through the solar receiver, while the low Mach approxima-
tion is exploited to investigate the compressible flow through the receiver. Based on
the P1 model, two positive roots were found from the characteristic equations of the
tifth-order differential equation, indicating possible occurrence of hydrodynamic
and thermal instabilities. However, it has been found that the Rosseland approxi-
mation for this case, despite its failure near the inlet boundary, is fairly accurate and
may well be used for quick estimations and further analysis. Due to their advan-
tages, such as high thermal conductivity and fluid mixing, silicon carbide ceramic
foams are considered as a possible candidate for the receiver, which can overcome
the problems associated with thermal spots and flow instabilities. The results show
that the pore diameter must be larger than its critical value to achieve high receiver
efficiency. As a result, there exists an optimal pore diameter for achieving the
maximum receiver efficiency under the equal pumping power. The optimal pore
diameter yielding the maximum receiver efficiency may be found around the crit-
ical value given by Eq. (71). A simple relation is derived for determining the length
of the volumetric solar receivers of silicon carbide ceramic foam.
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Nomenclature

A surface area (m?)

A interfacial surface area between the fluid and
solid (m?)
inertial coefficient (1/m)

¢ specific heat (J/kg K)

cp specific heat at constant pressure (J/kg K)

A, pore diameter (m)

G mass flux (kg/m2 s)

h specific enthalpy (J/kg)

h, volumetric heat transfer coefficient (W/m’K)

Io intensity of radiation (W/ m?)

k thermal conductivity (W/m K)

K permeability (m?)

L receiver length (m)

nj normal unit vector from the fluid side to solid
side (—)

PP pumping power per unit frontal area (W/m?)

Pr Prandtl number (—)

q heat flux (W/m?)

R gas constant (J/kg K)

T temperature (K)

u; velocity vector (m/s)

% representative elementary volume (m>)

X; Cartesian coordinates (m)

X axial coordinate (m)
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