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Chapter

A New BEM for Modeling and
Optimization of 3T Fractional
Nonlinear Generalized
Magneto-Thermoelastic
Multi-Material ISMFGA
Structures Subjected to Moving
Heat Source

Mohamed Abdelsabour Fahmy

Abstract

The main purpose of this chapter, which represents one of the chapters of a
fractal analysis book, is to propose a new boundary element method (BEM) formu-
lation based on time fractional order theory of thermoelasticity for modeling and
optimization of three temperature (3T) multi-material initially stressed multilay-
ered functionally graded anisotropic (ISMFGA) structures subjected to moving heat
source. Fractional order derivative considered in the current chapter has been found
to be an accurate mathematical tool for solving the difficulty of our physical and
numerical modeling. Furthermore, this chapter shed light on the practical applica-
tion aspects of boundary element method analysis and topology optimization of
fractional order thermoelastic ISMFGA structures. Numerical examples based on
the multi-material topology optimization algorithm and bi-evolutionary structural
optimization method (BESO) are presented to study the effects of fractional order
parameter on the optimal design of thermoelastic ISMFGA structures. The
numerical results are depicted graphically to show the effects of fractional order
parameter on the sensitivities of total temperature, displacement components and
thermal stress components. The numerical results also show the effects of fractional
order parameter on the final topology of the ISMFGA structures and demonstrate
the validity and accuracy of our proposed technique.

Keywords: boundary element method, modeling and optimization, time fractional

order, three-temperature, nonlinear generalized thermoelasticity, initially stressed
multilayered functionally graded anisotropic structures, moving heat source

1. Introduction

The fractional calculus has recently been widely used to study the theory and
applications of derivatives and integrals of arbitrary non-integer order. This branch
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of mathematical analysis has emerged in recent years as an effective and powerful
tool for the mathematical modeling of various engineering, industrial, and materials
science applications [1-3]. The fractional-order operators are useful in describing
the memory and hereditary properties of various materials and processes, due to
their nonlocal nature. It clearly reflects from the related literature produced by
leading fractional calculus journals that the primary focus of the investigation had
shifted from classical integer-order models to fractional order models [4, 5]. Frac-
tional calculus has important applications in hereditary solid mechanics, fluid
dynamics, viscoelasticity, heat conduction modeling and identification, biology,
food engineering, econophysics, biophysics, biochemistry, robotics and control
theory, signal and image processing, electronics, electric circuits, wave propagation,
nanotechnology, etc. [6-8].

Numerous mathematicians have contributed to the history of fractional
calculus, where Euler mentioned interpolating between integral orders of a
derivative in 1730. Then, Laplace defined a fractional derivative by means of an
integral in 1812.

Lacroix introduced the first fractional order derivative which appeared in a
calculus in 1819, where he expressed the nth derivative of the function y = x™ as
follows:

& Tm+1) .
dx" T'(m-n+1) x D

Liouville assumed that cﬂ:v

fractional order derivative:

(e™) = a"e™ for v> 0 to obtain the following

d'x? JTla+v)
P _1 N 7 a-v 2
&= Ty @)
Laurent has been using the Cauchy’s integral formula for complex valued ana-
lytical functions to define the integration of arbitrary order v > 0 as follows:

DL (x) = DIER) = {ri JX<X —oP E(de,0<p<1 ()

~dx" |T(p) ).

where D] denotes differentiation of order v of the function f along the x-axis.
Cauchy introduced the following fractional order derivative:

£ = Jf(r) = (—(x; dr (4)

Caputo introduced his fractional derivative of order a < 0 to be defined as follows:

. 1 (f f™(r)
D% f(t) = Flmo) Jo (t—*c)““'m dt,m —1<a<m,a>0 (5)

Recently, research on nonlinear generalized magneto-thermoelastic problems
has received wide attention due to its practical applications in various fields such as
geomechanics, geophysics, petroleum and mineral prospecting, earthquake engi-
neering, astronautics, oceanology, aeronautics, materials science, fiber-optic com-
munication, fluid mechanics, automobile industries, aircraft, space vehicles, plasma
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physics, nuclear reactors, and other industrial applications. Due to computational
difficulties in solving nonlinear generalized magneto-thermoelastic problems in
general analytically, many numerical techniques have been developed and
implemented for solving such problems [9-17]. The boundary element method
(BEM) [18-31] has been recognized as an attractive alternative numerical method
to domain methods [32-36] like finite difference method (FDM), finite element
method (FEM), and finite volume method (FVM) in engineering applications.

The superior feature of BEM over domain methods is that only the boundary of the
domain needs to be discretized, which often leads to fewer elements and easier to
use. This advantage of BEM over other domain methods has significant importance
for modeling and optimization of thermoelastic problems which can be imple-
mented using BEM with little cost and less input data. Nowadays, the BEM has
emerged as an accurate and efficient computational technique for solving
complicated inhomogeneous and non-linear problems in physical and engineering
applications [37-69].

In the present chapter, we introduce a practical engineering application of frac-
tal analysis in the field of thermoelasticity, where the thermal field is described by
time fractional three-temperature radiative heat conduction equations. Fractional
order derivative considered in the current chapter has high ability to remove the
difficulty of our numerical modeling. A new boundary element method for model-
ing and optimization of 3T fractional order nonlinear generalized thermoelastic
multi-material initially stressed multilayered functionally graded anisotropic
(ISMFGA) structures subjected to moving heat source is investigated. Numerical
results show that the fractional order parameter has a significant effect on the
sensitivities of displacements, total three-temperature, and thermal stresses.
Numerical examples show that the fractional order parameter has a significant
effect on the final topology of ISMFGA structures. Numerical results of the pro-
posed model confirm the validity and accuracy of the proposed technique, and
numerical examples results demonstrate the validity of the BESO multi-material
topology optimization method.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of fractional order problems and their applica-
tions. Section 2 describes the physical modeling of fractional order problems in
three-temperature nonlinear generalized magneto-thermoelastic ISMFGA struc-
tures. Section 3 outlines the BEM implementation for modeling of 3T fractional
nonlinear generalized magneto-thermoelastic problems of multi-material ISMFGA
structures subjected to moving heat source. Section 4 introduces an illustration of
the mechanisms of solving design sensitivities and optimization problem of the
current chapter. Section 5 presents the new numerical results that describe the
effects of fractional order parameter on the problem’ field variations and on the
final topology of multi-material ISMFGA structures.

2. Formulation of the problem

Consider a multilayered structure with # functionally graded layers in the
xy-plane of a Cartesian coordinate. The x-axis is the common normal to all layers as
shown in Figure 1. The thickness of the layer is denoted by /. The considered
multilayered structure has been placed in a primary magnetic field Hy acting in the
direction of the y-axis.
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Figure 1.
Geometry of the considered problem.

According to the three-temperature theory, the governing equations of
nonlinear generalized magneto-thermoelasticity in an initially stressed multilayered
functionally graded anisotropic (ISMFGA) structure for the ith layer can be written
in the following form:

Cabp + Tabp — Lap = p' (o + 1), (6)
m| i i i i j il
oap = (x +1) [ il re — Pl (Ta ST+ TlTa)] )
Ty = yi(x +1)" </:laHb + ljlea — Opa (ilfo)) (8)
; m (Oul,  ouj,
Fap =Pl +1) (0xb axa> ©)

According to Fahmy [10], the time fractional order two-dimensional three-
temperature (2D-3 T) radiative heat conduction equations in nondimensionless
form can be expressed as follows:

1

DT (r,7) = EV[K, VT, (r, )] + EW(r,7), &= e (10)
where
W (TL = T}) = W (Te = T, ) + W, a=e,61 =1
W(r,7) = { piW,(T) — T}) + W, a=L&s=1 (1)
P'W,, <TZ — T;) + W, a=p,0 = Tz
in which
W(V, 7) = _KZT;ab + ﬂfszZoTO%,b + piciaro'j"fl —Q(x,7) (12)

i(3
2

. (-1 i .
) W = b T K, = 0,7 0 = 6,1, K, = 4,70 (13)

=

_2
3

Wel - piAeI Tle
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The total energy of unit mass can be described by

. ) 1 .
P=P.+P+p,,P.=cT, P =cT},Pp = ZcpT;l (14)

where 6, 7,,, and u}'e are mechanical stress tensor, Maxwell’s electromagnetic

stress tensor, and displacement vector in the ith layer, respectively, c¢,(a = ¢, I, p)
are constant T Tl C’ abfe and ﬂﬂb are, respectlvely, reference temperature,
temperature, constant elastic moduli, and stress-temperature coefficients in the ith
layer: U h, P, p', and cﬁa are, respectively, magnetic permeability, perturbed
magnetic field, initial stress, density, isochore specific heat coefficients in the ith
layer; 7 is the time; 7o and 7; are the relaxation times; i = 1,2, ..., 7 represents the
parameters in multilayered structure; and m is a functionally graded parameter.
Also, we considered in the current study that the medium is subjected to a moving
heat source of constant strength moving along x-axis with a constant velocity ». This
moving heat source is assumed to have the following form:

Q(x,7) = Qod(x — v7) (15)

where, Q, is the heat source strength and 6 is the delta function.

3. BEM numerical implementation

By using Eqgs. (7)-(9), we can write (6) as

j 2o i i auz auz
Lgbu’f = pli;, — (DaT — P ( )) :fgb (16)

0x, dxb

where inertia term, temperature gradient, and initial stress terms are treated as
the body forces.

In this section, we are interested in using a boundary element method for
modeling the two-dimensional three-temperature radiation heat conduction equa-
tions coupled with electron, ion, and phonon temperatures.

According to finite difference scheme of Caputo at times ( f + 1)At and fAz, we
obtain [1].

DETICF+) 4 par ZW <Tz fH19) () — i F) (,,)> (17)
where
A - . —a . —a
Wa,ozr((zfiza),wa,j: a,o((]+1)1 —(j—1)" ) (18)

Based on Eq. (17), the fractional order heat Eq. (10) can be replaced by the
following system:

W oTH ) () — Mx)TifJ ) = Ko@) T ™ () = Wao T (r) — Ko ()T (7)
i - i( f— ol f+D Tt f)
~Kas(0) T () - Z Wai (T4 T ) = TS 0)) + T, 7w, 2) + W, )

(19)
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wherej =1,2, ... ,F,f =0,1,2, ..., F.

Now, according to Fahmy [10], and applying the fundamental solution which
satisfies (19), the boundary integral equations corresponding to (10) without heat
sources can be expressed as

T () = L g™ — T gi]dC JR £ T dR (20)

Thus, the governing equations can be written in operator form as follows:

Loty = f s (21)
LT, = fop (22)

where the operators Ly, f,, Lay, and f, are as follows:

Lnggbf% + Dyr + ADyyp, Loy = DY (23)
for =7 - (D“ Ta=FP (Z% - %)) (24)
Jar = K%T ai (25)
where
Daf = Cage, €= a_fcg’ Dy = pH; ( aa + 541A) aaf

[0 9 J m
Dy =By~ + 1A+ 71—+ A A="_,
“ “b<a o Hl(a T )ar) x+1

The differential Eq. (21) can be solved using the weighted residual method
(WRM) to obtain the following integral equation:

J(Lghu} ~ fyp )i AR = 0 (26)

R

Now, the fundamental solution %! i % and traction vectors télz and tﬁl can be written

as follows:
Lgbu;;; = —5,40(x, &) (27)
th = abﬁguZ},g"b (28)
o C (T T 2
La _m_ ( abfgU f,g ﬂah( a7 a))nb (29)

Using integration by parts and sifting property of the Dirac distribution for (26),
then using Eqgs. (27) and (29), we can write the following elastic integral represen-
tation formula:

(€)= [t — i+ Tims)dC — [fyizdR — (30)
C R
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The fundamental solution T** can be defined as

LT =

—5(96, é)

(31)

By using WRM and integration by parts, we can write (23) as follows:

LpTPT — LT T )dR = |(¢* ' — ¢'T'*)dC

R

where

c

i .
_Ka’zﬂa’bna

q =

q" = KT,

(32)

(33)
(34)

By the use of sifting property, we obtain from (32) the thermal integral repre-

sentation formula

(6 = (@ Ti ~ g Ti e -
C

Jf ab Tla* dR
C

By combining (30) and (35), we obtain

[u%:)] _
T.(4)

ik
. ”O

—ul By | | W N wy 0 ||
—q'" T, 0 -T,)||q
0

. Fev dR

_Tix* “J ab

a

(35)

}dc

(36)

The nonlinear generalized magneto-thermoelastic vectors can be written in
contracted notation form as

1%
UDA_

~ 1%

TaDA =

(0%

7 %

\ _Ta
1%
tda

—il

_{u; a=A=123

T, A=4
t a=A=12,3
q A=4

d=D=1,2,3;a=A=1,2,3
d=D=1,2,3;A=4
D=4a=A=1,2,3
D=4,A=4
d=D=1,2,3;a=A=1,2,3
d=D=1,2,3;A=4
D=4a=A=1,2,3
D=4A=4

~i%k Tk
Uy _udaﬂafnf

(37)

(38)

(39)

(40)

(41)
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By using the above vectors, we can express (36) as

Up(&) = | (U5aTon — ThpaU )C = U5 SadR @
c R

The source vector S4 can be divided as

Sy =89 +8T 8% +8t st ysih (43)
where
0 A=1,273
so = { (44)
Quélx —vr) A=4
g —_— -D, A=123F=4 45)
4 = @AFYF WIRL @AF = ey [K!, V] otherwise
(0 0
- Pl——-——) A=1,2,3;F=1,2,3,
S4 = wUy with y = (axh ax) 3 3 (46)
; 0 0
i i —Bup™ + A A=4F=4
SZ{ =T'4pUp with Tar = P (a ) ot (47)
K otherwise
St = 645U}, with 0 A-wr=d (48)
= 1 = ..
4 = CAFEp W AF p'ct,to otherwise
i A=12,3;F=1,2,3,
S = :IUF with 4={" (49)

The representation formula (36) can also be written in matrix form as follows:

PRI e B
Qod(x — v7) gv [K’ VT (r,7)]

, 0
X + p'ct 7o [T } +
_KixTza ¢

P (uh, )
0

[Sa] = —

pu

i (50)

In order to convert the domain integral in (42) into the boundary, we approxi-
mate the source vector Sy by a series of known functions fi g and unknown
coefficients o, as

E
Sa~ Y fhpal (51)
q=1
Thus, the representation formula (42) can be written as follows:

Up(§) = J(UE*AT;A aDA U, )dC ZJ pafapdRaj; (52)

Cc
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By implementing the WRM to the following equations

Lyuf = f1 (53)

ae

Luleq = f?

v (54)

Then the elastic and thermal representation formulae are given as follows
(Fahmy [46]):

i (6) = [t — coait)dc — [ud fraR (5
C R

) = (T — g1 )ac — [P ar (56
C R

The representation formulae (55) and (56) can be combined into the following
single equation:

UBe(6) = [(UBaTihe ~ TibaUle)dC - [UafifdR — (57)
C R

By substituting from Eq. (57) into Eq. (52), we obtain the following BEM
coupled thermoelasticity formula:

Uﬁ)(f) = J(UgAszA - TaDAUle)dC
C

E .
+3° | UBe(©) + | (Tiba Ul — UBaTihe)C | o (58)
- C

In order to compute the displacement sensitivity, Eq. (58) is differentiated with
respect to & as follows:

oUp (&) P S
D T _J(UDA,lTaA - TaDA,lUA>dC

o
C
E iq

oUpg(¢) \ i

+Z — j(TaDAanAE UDAlTaAE)dC 0‘% (59)
pm 74 )

According to the procedure of Fahmy [44], we can write (58) in the following
form:

(U —1To = (U —ngp)a (60)

The generalized displacements and velocities are approximated in terms of
known tensor functions f%, and unknown coefficients y% and 7

N
PR Y fineorh (61)
q=1
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where
fli f=F=123d=D=123
fip =1 f* F—4D—4 (62)

0 otherwise

Now, the gradients of the generalized displacements and velocities can also be
approximated in terms of the tensor function derivatives as

N
Upgm Y fip o)k (63)
q=1
By substituting (63) into Eq. (45), we get
N
Sh = Sarflpgrh (64)
q=1

By applying the point collocation procedure of Gaul et al. [43] to Egs. (51) and
(61), we obtain
S=Ja, U =]Yy, (65)

Similarly, applying the same point collocation procedure to Egs. (64), (46),
(47), (48), and (49) yields

S’ =BTy (66)
S4 =yU' (67)
ST =
S =TuU (68)
ST _ ..
S’ =5,pU (69)
§ =30 (70)

where @, Tar, 64r, and 4 are assembled using the submatrices [y], [Car], [64F]
and [d], respectively.
Solving the system (65) for @ and y yields

a=J18, y=J'U (71)

Now, the coefficient @ can be written in terms of the unknown displacements U,

velocities Ui, and accelerations Ui as
a=J1 (SO + (B‘T]"1 + W) U+ TaplU + (3 + bar) U’> (72)

An implicit-implicit staggered algorithm has been implemented for use with the
BEM to solve the governing equations which can now be written in a suitable form
after substitution of Eq. (72) into Eq. (60) as

10
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s T S e STIIPZ X
MU+ T U+ KU= Q (73)
N B g N T N N
X7 + AT + BT ="720+R (74)
PR S
where V.= (ngo — ¢U)J ', M =V(d+464r), I = VIyp,
=~ y o1\ = § 0 A= AN .
K ==L+ V(BT 49), Q@ =-nT+ VS, X = —plé,z, "4 = -K,
B =¢VIK, V], Z =p,Teto, R =—-Qy8(x —vr).

where Ul, Ul, U, T and Q are, respectively, acceleration, velocity, displace-
AN AN ~ =
ment, temperature, and external force vectors,andV, M, I' , K, A ,and B

are, respectively, volume, mass, damping, stiffness, capacity, and conductivity
matrices.

In many applications, the coupling term ?U 141 that appear in the heat con-
duction equation is negligible. Therefore, it is easier to predict the temperature than
the displacement.

Hence Egs. (73) and (74) lead to the following coupled system of differential-
algebraic equations (DAEs):

AN e ~ =~ ; ,_,\ip
M Un+1 + I Un+1 + K Un+1 = @ n+1 (75)
AN /\ A
X Tomer) T A anr1) T B BT, wiy = Z Uy + R (76)

o
where Q , ., = nT? a(nt1)

By integrating Eq. (73) and using Eq. (75), we get

+ VS’ and Tp 14 is the predicted temperature.

Ui = U, + 5 (Una + 0))

. (77)
. A PN WP T .
=U, +7 |:Un + M ( Q- T U - K Un-&-l)}

AT /. -
U = U 25 (00 01

: i AP [ AN AP =
:Un+ATUn+T u,+ M Q1= T U~ KU,y

(78)
From Eq. (77) we have

i At [.i ~A=TV/P
U, =7 lU +5 {Un+ M ( Q,,- K U;H)” (79)

AL~
where7:(1+%M F).

11
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Substituting Eq. (79) into Eq. (78), we derive
Ui:+1 =U, + ATU;

AT [0 AN NP At L/ p : :
+T Un+M Qn+1 Iy U +7 U+M Qn+1_ K Un+1 - I< Un+1

(80)
Substituting U; .1 from Eq. (79) into Eq. (75), we obtain
A 2N /\— P A A~
2 [t o (S )R

(81)

i =1

Un+1 =M

By integrating the heat Eq. (74) and using Eq. (76), we obtain

. . AT /.5 .
Ta(n+1) = Tln + 7 <Ta(n+1) + T(m)

-1

i AT (AN A~ S BT i
— +_< X { Z U+ R — ATy, )~ B T1a<n+1>] +Tom>

an 2
(82)
i At /. 1
Tatwsn) = Ten + <Ta(n+1) + T(m)
i 1'2 i -1 i ) ;
=T, + AT, + 7 (T(m—i- X [Z U1+ R — ATa(n+1) B T;(Hl)])
(83)

From Eq. (82) we get

¥ ) At (A1~ AN AN g
Ta(n+1) Y T +7 X Z Un+1+ R - B Ta(n+1) +Tan (84)

~~ =1
wherey = (I+1 A AT X :
Substituting Eq. (84) into Eq. (83), we obtain

T =T AT +A—12<Ti +7X 1[‘2 U+ R -"A (*1[7”"
a(n+l) — T an an 4 an n+1 Y an
At (A1~ AN A A
+7( X [ U, + R - B Tix(ﬁl)] +74<m)] - B TZ(n+1)D
(85)

Substituting Tln 41 from Eq. (84) into Eq. (76), we get
a(n+1)

i A" ) A~ A~
Tosn = X ZUn+1+ Ay T+2 ZU,,+ R

(86)

12
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Now, a displacement predicted staggered procedure for the solution of (80) and
(85) is as follows:

The first step is to predict the propagation of the dlsplacement wave field:
Un ', = U.,. The second step is to substitute for U 241 and U, .1 from Egs. (77) and
(75), respectively, in Eq. (85) and solve the resulted equation for the three-
temperature fields. The third step is to correct the displacement using the computed
three -temperature fields for the Eq. (80). The fourth step is to compute U, +1 U; +1

+ a(n+1)3 and T a(n+1) from Egs. (79), (81), (82), and (86), respectively.

The continuity conditions for temperature, heat flux, displacement, and traction
that have been considered in the current chapter can be expressed as

T, (%,2,7)| _ = T (x, 2, )|, (87)
q (x,z7)| _; =q"V(x,2,7)| (88)
wp(x,z7)| = uf ™ (x,2,7) » (89)
£ (x,2,7) = £ (x, 2, 7) » (90)

where 7 is the total number of layers, 7, are the tractions which is defined by
t, =oynpy,andi=1,2, ...,n — 1.
The initial and boundary conditions of the present study are

u}(x,z, 0) = u}(x,z, 0)=0 for (x,z)eRuUC (91)
u;(x,z, 1) =¥r(x,2,7) for (x,2)€Cs3 (92)

f; (x,2,7) = ®r(x,2,7) for (x,2)€Cy,7>0 (93)
T (x,2,0) = T' (x,2,0) =0 for (x,z)€RUC (94)
Tfl(x,z, 7) :f(x,z, 7) for (x,2)eCi, >0 (95)
qi(x,z, 7) = E(x,z, 7) for (x,2)€C,, >0 (96)

where Yy, de,f, and % are prescribed functions, C = C; UC; = C3U Cy, and
CinC, = C30C4 = 0.

4. Design sensitivity and optimization

According to Fahmy [58, 60], the design sensitivities of displacements compo-
nents and total 3T can be performed by implicit differentiation of (75) and (76),
respectively, which describe the structural response with respect to the design vari-
ables, and then we can compute thermal stresses sensitivities.

The bi-directional evolutionary structural optimization (BESO) is the evolution-
ary topology optimization method that allows modification of the structure by
either adding or removing material to or from the structure design. This addition or
removal depends on the sensitivity analysis. Sensitivity analysis is the estimation of
the response of the structure to the modification of design variables and is depen-
dent on the calculation of derivatives [70-80].

13
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The homogenized vector of thermal expansion coefficients o/ can be written in
terms of the homogenized elasticity matrix D'’ and the homogenized vector of
stress-temperature coefficients " as follows:

o = (DH) 7 pH (97)
For the material design, the derivative of the homogenized vector of thermal

expansion coefficients can be written as

H H
kl kl kl

where 2 T - and g)ﬁ(m for any /th material phase can be calculated using the adjoint
variable method [73] as

oDH 1J 7 0D™
—=— | u-BU I —B"U™)d (99)
oXp Q| Y( ) aXZf( s
and
" 1 g OD™ o 1 oy T 00"
X ‘Y‘J 1= BU) @~ B )dy-i—lQ’J B
(100)

where |Q| is the volume of the base cell.

5. Numerical examples, results, and discussion

In order to show the numerical results of this study, we consider a monoclinic
graphite-epoxy as an anisotropic thermoelastic material which has the following
physical constants [57].

The elasticity tensor is expressed as

[430.1 130.4 18.2 0 0 201.37
130.4 116.7 21.0 0 0 70.1
182 21.0 736 0 0 2.4
ijkl = GPa (101)
0 0 0 19.8 8.0 0
0 0 0 -80 291 0
1201.3 701 2.4 0 0 147.3 |
The mechanical temperature coefficient is
1.01 2.00
.= 1200 1.48 106 N (102)
b Km”
0 0 752

14



A New BEM for Modeling and Optimization of 3T Fractional Nonlinear Generalized Magneto...
DOI: http://dx.doi.org/10.5772/intechopen.92852

The thermal conductivity tensor is

520 0
ky=|0 76 0 |W/Km (103)
0 0 383

Mass density p = 7820kg/m? and heat capacity ¢ = 461 J/kg K.

The proposed technique that has been utilized in the present chapter can be
applicable to a wide range of three-temperature nonlinear generalized thermoelastic
problems of ISMFGA structures. The main aim of this chapter was to assess the
impact of fractional order parameter on the sensitivities of total three-temperature,
displacement components, and thermal stress components.

Figure 2 shows the variation of the total temperature sensitivity along the x-axis.
It was shown from this figure that the fraction order parameter has great effects on
the total three-temperature sensitivity.

Figures 3 and 4 show the variation of the displacement components %; and u,
along the x-axis for different values of fractional order parameter. It was noticed
from these figures that the fractional order parameter has great effects on the
displacement sensitivities.

Figures 5-7 show the variation of the thermal stress components 611, 612, and 622,
respectively, along the x-axis for different values of fractional order parameter. It was
noted from these figures that the fractional order parameter has great influences on
the thermal stress sensitivities.

Since there are no available results for the three-temperature thermoelastic prob-
lems, except for Fahmy’s research [10-14]. For comparison purposes with the special
cases of other methods treated by other authors, we only considered one-dimensional
numerical results of the considered problem. In the special case under consideration,

0.8 . : . : T
Z=075
0.7+ a=10 |
0.6p -
£ sl 1
-
—
£ 04f -
2
- 0.3 :
ﬂ
0.2F -
0.1k -
D i i i i
i 1 2 3 4 5 &

Figure 2.
Variation of the total 3T sensitivity along x-axis.
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Figure 3.
Variation of the displacement u, sensitivity along x-axis.

ﬂ.? T T T T T

a=0.5
sl =101

04+ .

0.3F -

0.2p 1
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01k -

Figure 4.
Variation of the displacement , sensitivity along x-axis.

the displacement %1 and thermal stress 011 results are plotted in Figures 8 and 9. The
validity and accuracy of our proposed BEM technique were demonstrated by com-
paring our BEM results with the FEM results of Xiong and Tian [81], it can be noticed
that the BEM results are found to agree very well with the FEM results.

Example 1. Short cantilever beam.

The mean compliance has been minimized, to obtain the maximum stiffness,
when the structure is subjected to moving heat source. In this example, we consider
a short cantilever beam shown in Figure 10, where the BESO final topology of
considered short cantilever beam shown in Figure 11a for o = 0.5 and shown in
Figure 11b for @ = 1.0. It is noticed from this figure that the fractional order
parameter has a significant effect on the final topology of the multi-material
ISMFGA structure.
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Variation of the thermal stress ©,, sensitivity along x-axis.
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Figure 6.

Variation of the thermal stress ©,, sensitivity along x-axis.

Example 2. MBB beam.

It is known that extraordinary thermo-mechanical properties can be accom-
plished by combining more than two materials phases with conventional materials
[75]. For this reason, it is essential that the topology optimization strategy permits
more than two materials phases within the design domain. In this example, we
consider a MBB beam shown in Figure 12, where the BESO final topology of MBB
beam has been shown in Figure 13a for a = 0.5 and shown in Figure 13b for a = 1.0
to show the effect of fractional order parameter on the final topology of the multi-
material ISMFGA structure.

Example 3. Roller-supported beam.

17
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Variation of the thermal stress ,, sensitivity along x-axis.

0.8

—— FEM
0.7 BEM

0.5

0.4

0.3

Uy sensitivity

0.2

Figure 8.
Variation of the displacement u, sensitivity along x-axis.

In this example, we consider a roller-supported beam shown in Figure 14, where
the BESO final topology of a roller-supported beam shown in Figure 15a for a = 0.5
and shown in Figure 15b for a = 1.0.

Example 4. Cantilever beam (validation example).

In order to demonstrate the validity of our implemented BESO topology optimi-
zation technique, we consider isotropic case of a cantilever beam shown in Figure 16
as a special case of our anisotropic study to interpolate the elasticity matrix and the
stress-temperature coefficients using the design variables X", then we compare our
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Variation of the thermal stress 6,, waves along x-axis.
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Figure 10.
Design domain of a short cantilever beam.

Figure 11.
The final topology of a short cantilever beam: (a) a = 0.5 and (b) o = 1.0.

- 240 mm -

Figure 12.
Design domain of a MBB beam.
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Figure 13.
The final topology of MBB beam: (a) o = 0.5 and (b) o = 1.0.

|t B mm

Figure 14.
Design domain of a roller-supported beam.

a b
Figure 15.

The final topology of a multi-material voller-supported beam: (a) o = 0.5 and (b) a = 1.0.
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Figure 16.
Design domain of a cantilever beam.

BESO final topology shown in Figure 17a with the material interpolation scheme of
the solid isotropic material with penalization (SIMP) shown in Figure 17b.

The BESO topology optimization problem implemented in Examples 1 and 4, to
find the distribution of the M material phases, with the volume constraint can be
stated as
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Figure 17.
The final topology of a cantilever beam: (a) MMA and (b) BESO.

Find X

IMimi T er ,mec r
That minimize CV = % (PM) uM = % (fM’t +fM ) uM
Subject to vM Zf\LlVwaﬁw -0

KMyM — pM
XM = x,, V1

1

where X" is the design variable; C" is the mean compliance; P is the total load
on the structure, which is the sum of mechanical and thermal loads; # is the
displacement vector; VM. is the volume of the solid material; N is the total number
of elements; KM is the global stiffness matrix; x,, is a small value (e.g., 0.0001),
which it guarantee that none of the elements will be removed completely from
design domain; f™" is the mechanical load vector; and f**" is the thermal load
vector. Also, the BESO parameters considered in Examples 1-4 can be seen in
Tables 1-4, respectively.

The BESO topology optimization problem implemented in Examples 2 and 3, to
find the distribution of the two materials in the design domain, which minimize the
compliance of the structure, subject to a volume constraint in both phases can be

stated as.
Find X
T
That minimize CM = % (PM)TMM = % ( fM’teV +f Mm“) uM

Subject to V" — -, VXY - 1V = 05 =12

KMyM = pM
XM = %, V13 = 1,2

Variable name Variable description Variable value
VIJ\”/I Final volume fraction 0.5
ERM Evolutionary ratio 1%
M . .
AR Volume addition ratio 5%
) Filter ratio 3 mm
min
T Convergence tolerance 0.1%
N Convergence parameter 5
Table 1.

BESO parameters for minimization of a short cantilever beam.
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Variable name Variable description Variable value
V% Final volume fraction of the material 1 for both interpolations 0.10
V% Final volume fraction of the material 2 for both interpolations 0.20
ERM Evolutionary ratio for interpolation 1 2%
ERM Evolutionary ratio for interpolation 2 3%
A Rxax Volume addition ratio for interpolation 1 3%
A Rfr‘n/[ax Volume addition ratio for interpolation 2 2%
e Filter ratio for interpolation 1 4 mm
M Filter ratio for interpolation 2 3 mm
T Convergence tolerance for both interpolations 0.01%
N Convergence parameter for both interpolations 5
Table 2.

Multi-material BESO pavameters for minimization of a MBB beam.

Variable name Variable description Variable value
Vf‘j{l Final volume fraction of the material 1 for both interpolations 0.25
Vf‘J/{.l Final volume fraction of the material 2 for both interpolations 0.25
ERM Evolutionary ratio for interpolation 1 3%
ERM Evolutionary ratio for interpolation 2 3%
A Rfr‘n/’ax Volume addition ratio for interpolation 1 1%
A R%M Volume addition ratio for interpolation 2 1%
M Filter ratio for interpolation 1 4 mm

M Filter ratio for interpolation 2 4 mm
T Convergence tolerance for both interpolations 0.5%
N Convergence parameter for both interpolations 5

Table 3.

Multi-material BESO parameters for minimization of a roller-supported beam.

Variable name Variable description Variable value

VIJ‘f Final volume fraction 0.4

ERM Evolutionary ratio 1.2%

A R]r\n/[ax Volume addition ratio 3%

M Filter ratio 0.19 mm

T Convergence tolerance 0.1%

N Convergence parameter 5
Table 4.

BESO parameters for minimization of a cantilever beam.
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where Vs/l is the volume of jth material phase and i and j denote the element ith
which is made of jth material.

6. Conclusion

The main purpose of this chapter is to describe a new boundary element formu-
lation for modeling and optimization of 3T time fractional order nonlinear general-
ized thermoelastic multi-material ISMFGA structures subjected to moving heat
source, where we used the three-temperature nonlinear radiative heat conduction
equations combined with electron, ion, and phonon temperatures.

Numerical results show the influence of fractional order parameter on the sen-
sitivities of the study’s fields. The validity of the present method is examined and
demonstrated by comparing the obtained outcomes with those known in the litera-
ture. Because there are no available data to confirm the validity and accuracy of our
proposed technique, we replace the three-temperature radiative heat conduction
with one-temperature heat conduction as a special case from our current general
study of three-temperature nonlinear generalized thermoelasticity. In the consid-
ered special case of 3T time fractional order nonlinear generalized thermoelastic
multi-material ISMFGA structures, the BEM results have been compared graphi-
cally with the FEM results; it can be noticed that the BEM results are in excellent
agreement with the FEM results. These results thus demonstrate the validity and
accuracy of our proposed technique. Numerical examples are solved using the
multi-material topology optimization algorithm based on the bi-evolutionary struc-
tural optimization method (BESO). Numerical results of these examples show that
the fractional order parameter affects the final result of optimization. The
implemented optimization algorithm has proven to be an appropriate computa-
tional tool for material design.

Nowadays, the knowledge of 3T fractional order optimization of multi-material
ISMFGA structures, can be utilized by mechanical engineers for designing heat
exchangers, semiconductor nano materials, thermoelastic actuators, shape memory
actuators, bimetallic valves and boiler tubes. As well as for chemists to observe the
chemical processes such as bond breaking and bond forming.
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