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Chapter

Pre-treatment Technologies to 
Enhance Anaerobic Digestion
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Kritika Pandey and Rajeshwar Dayal Tyagi

Abstract

Sustainable energy production is the major priority in the world due to global 
warming, climate change, and fossil fuels depletion. Anaerobic digestion (AD) of 
sludge is the sustainable process producing the energy and minimizing the fossil fuel 
usage. However, conventional AD of sludge is not sustainable since it takes longer 
time for digestion which increases the energy input and greenhouse emissions. 
Therefore, pretreatment technologies have emerged to enhance methane production 
and thus the energy output from the AD process. In this chapter, pre-treatment tech-
nologies adopted mainly physical, chemical, thermal, and other advanced processes 
to enhance methane production in the last decade are elaborated. In addition, energy 
balance of the process and the feasibility of the pre-treatment technologies and their 
current status are discussed.

Keywords: waste activated sludge, pre-treatment, anaerobic digestion, methane, 
sustainability

1. Introduction

The production of inevitable waste activated sludge (WAS) as a by-product 
during the biological wastewater treatment demands for sustainable treatment 
options that assist in the proper utilization of sludge before its disposal. The com-
position of sludge mainly includes microbial cells and organic components such as 
proteins, carbohydrates, and lipids. Understanding the properties of the sludge may 
help in processing it to produce beneficial products or as a feedstock for bioenergy 
generation.

Anaerobic digestion (AD) for sludge stabilization is operated in about 38% of 
the total treatment plants, whereas only 6% of plants employ aerobic digestion and 
composting [1]. AD of sludge produces biogas, which mainly contains methane and 
carbon dioxide. AD of sludge is a sustainable process as it recovers energy from the 
biogas and replaces fossil fuel usage and minimizes GHG emissions. However, the 
efficacy of these processes is limited by the presence of complex structural compo-
nents, extracellular polymeric substances, and rate-limiting cell lysis in WAS [2]. 
Moreover, the effects of hydrolytic enzymes are reduced in WAS as their penetration 
inside the bacterial cell is hindered by the cell walls, making the degradation of intra-
cellular organic compounds tedious. Thus, it increases the digestion time and energy 
required for digestion processes. Hence, to overcome these drawbacks, pre-treatment 
technologies are adopted to break the cells and to liberate the cell constituents. 
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Various physical, chemical, and biological pre-treatment methods have been reported 
in the literature which is used individually or in combination for pre-treatment of 
WAS. These include treatment by hydrolysis, ultrasound, enzymatic lysis, acidifica-
tion, alkaline hydrolysis, alkaline-thermal, and thermal-H2O2, microwave alkaline, 
and others [3]. The use of appropriate pre-treatment strategy can enhance the degra-
dation and disintegration of both extracellular and intracellular substances reducing 
the retention time needed by biological digestion processes [4].

This chapter presents literature about the different methods of pre-treatment 
that have been used for enhancing the AD. Moreover, the factors affecting their 
operational efficiency have also been discussed. Furthermore, a brief account of the 
large-scale feasibility and economic aspects of the overall pre-treatment processes is 
discussed.

2. Pretreatment technologies

The pre-treatment technologies enable the cells constituents easily available 
for the microorganisms to produce the biogas. Various pre-treatment technologies 
(mainly mechanical, chemical, biological, and physio-chemical) and their effect on 
enhancing the AD and methane production presented in the literature during last 
decade are discussed here.

2.1 Mechanical pre-treatment

2.1.1 The process involved and mode of action

Mechanical pre-treatment disintegrates and/or grinds solid particles of the 
substrates, thus releasing cell compounds and increasing the specific surface area. 
The increased surface area provides better contact among substrate and anaerobic 
bacteria, which enhances the AD process [5]. A larger particle radius exhibits lower 
chemical oxygen demand (COD) degradation and a lower methane production rate 
[6]. Likewise, the particle size is inversely proportional to the maximum substrate 
utilization rate of the anaerobic microbes [7]. Therefore, mechanical pre-treatments 
such as sonication, liquid shear, collision, a high-pressure homogenizer and lique-
faction are conducted to reduce the substrate particle size. During sonication the 
electrical energy from the source is converted to mechanical vibration which then 
converts to cavitation. The shear forces exerted as a result of cavitation cause WAS 
floc dispersion and further cell disintegration releasing organic macromolecules 
that are further degraded into short-chain compounds [8]. The irradiation inten-
sity, time, and temperature-induced, as a result, can impart a cumulative effect 
enhancing the sludge degradation [9]. The main effect of ultrasonic pre-treatment 
is particle size reduction at low frequency (20–40 kHz) sound waves [10]. High-
frequency sound waves also cause the formation of radicals such as HO−, H+, which 
results in oxidation of solid substances [11]. Besides ultrasonic irradiation, cavita-
tion can also be produced by venturi meter tubes under controlled conditions of 
liquid flow [12].

High-pressure homogenization (HPH) pre-treatment involves the use of 30 and 
150 MPa pressure for 3–30 min to pressurize the heterogeneous sludge components. 
The homogenization occurs due to shear, that is, when the pressurized sludge is 
released to impact on a ring [13]. The formed cavitation induces internal energy, 
which disrupts the cell membranes [14]. Both electroporation and liquefaction 
pre-treatments cause cellular structure damage, thus the effect on the AD process 
is similar to maceration [15]. Barjebruch and Kopplow treated surplus sludge with 
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HPH at 600 bars and showed that the filaments were completely disintegrated [14]. 
Increased 25% volatile solids reduction was observed in AD for HPH pretreated 
sewage sludge [16]. This improvement was induced by increased soluble protein, 
lipid, and carbohydrate concentration.

The advantages of mechanical pre-treatment include no odor generation, an 
easy implementation; better dewaterability of the final anaerobic residue, and 
moderate energy consumption. Disadvantages include no significant effect on 
pathogen removal and the possibility of equipment clogging or scaling [17].

2.1.2 Nanobubbles

Nanobubbles are spherical liquid structures containing gas which are stable and 
efficient when possessing typical overall diameters in the nanometer range (less 
than 103 nm). The presence of negative charge on nanobubbles is observed when 
present in pure water over a wide pH range. Nanobubbles stabilized their structures 
because of the same charge repulsion that occurred between adjacent nanobubbles 
[18]. However, some reports suggest hydrophobic attraction between negatively 
charged surfaces of nanobubbles and these contradictory reports could be attributed 
to the differences in nanobubble generation techniques, surface tension, or varying 
molecular arrangement at the gas-liquid interface [19]. Nanobubbles with diameters 
of approximately 13 nm have been well-engineered as spherical water packages with 
gas for food safety applications whose efficiency is well established based on bubble 
surface stability and the electrostatic charges present on the bubble surface [20]. 
Besides possessing high stability, nanobubbles in liquid systems also show a high 
mass transfer rate and enhanced solubility in gas [21]. Nanobubbles with a varying 
range of diameters have been engineered by different methods such as constant 
purging of octafluoropropane gas into an ultrasonicated solution of mixed surfac-
tant which creates bubbles ranging in 400–700 nm mean diameter [22]. Palladium 
electrode with ultrasonication has been used to form nanobubbles of 300–500 nm 
diameter [23]. Nanobubbles form reactive free radicals as they collapse due to the 
presence of ions in groups at the gas-liquid interface [24]. The ability of nanobubbles 
to form reactive free radicals makes them potent applicants in the field of pre-treat-
ment of wastewater components. In submerged systems, nanobubbles formed by 
the use of air or nitrogen are known to enhance the activity of aerobic and anaerobic 
microorganisms that improve the waste degradation efficiency and overall water 
quality [25]. According to the studies the higher negative charges were observed on 
sludge components on the addition of nitrogen gas nanobubble water the degradation 
of carbohydrates and proteins get increased along with methane production, that is, 
29% more than that of control [25].

2.1.3 Hydrodynamic cavitation

Cavitation is a process of cavity bubble formation which burst within the liquid 
to create intense pressure spots and shock waves. These factors create localized 
energy and turbulence which causes an impact on adjacent particles and also mixing 
of insoluble substances like oil and water to form emulsion [26]. This mechanism 
is favorable in cases where AD of sludge is hindered due to the presence of lipid-
containing substances which are insoluble in water. Their insolubility causes 
adversity in their interaction with hydrolytic bacteria which decreases the efficiency 
of the overall hydrolysis process. Applying localized energy supplies insignificant 
amounts to small elements of the liquid volume resulting in an increase of internal 
energy of the liquid elements to that point which causes phase change from liquid 
to gas and the formation of bubbles filled with vapor and gases. Following, when 
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the bubbles leave the high energy zones, they violently implode and disappear. The 
localized energy could be provided by a laser beam or a stream of heavy elementary 
particles such as protons by molecular or optical cavitation process based on the 
source of applied energy [27]. Hydrodynamic cavitation was frequently been 
proved as a more energy-efficient method compared to other cavitation techniques 
[28]. Hydrodynamic cavitation for pre-treatment of sludge where cavitation was 
generated by using a venturi cavitation system in which bubbles are created in 
venturi throat (constriction) has been used. The system achieved better energy 
efficiency than high-speed homogenizer in terms of soluble COD/kJ WAS and also 
the authors observed linear relationship between total solid concentration and the 
increased insoluble COD for WAS indicating towards better cavitation formation 
at high concentration of total solids [29]. In another study, the degradation of WAS 
was analyzed using a novel rotation generator of hydrodynamic cavitation at pilot 
scale [30]. Cavitation (as a pre-treatment) of WAS resulting in an increment in 
soluble COD from 45 to 602 mg/L along with a 12.7% increase in biogas production 
due to improved AD of the pretreated WAS [30].

2.2 Thermal pre-treatment

Thermal pre-treatment of WAS has been classified as low-temperature pre-
treatment (<100°C) and high-temperature thermal pre-treatment at 100–210°C [31]. 
High-temperature pre-treatment cause disintegration of solids in sludge, removal 
of pathogens at low sludge retention time and leads to biogas production but it also 
has been reported that exposure to high temperature causes the formation of new 
chemical bonds which results in agglomeration of substances present in the sludge 
[32]. Both the thermal pre-treatment approaches have been reported to degrade 
volatile solids and produce biogas, however, the efficiency of high-temperature 
thermal pre-treatment for solids reduction and biogas formation has been known to 
be comparatively higher [11]. In thermal pre-treatment strategies, temperature and 
time of application are the main operational parameters which decide the success 
of the treatment process. When effectively applied, this pre-treatment can cause 
the disintegration of cell membranes accompanied by the solubilization of organic 
compounds [33]. During WAS pre-treatment, cell wall disruption and hydrolysis due 
to temperature generally occur when the temperature is in the range of 160–180°C at 
a pressure ranging from 600 to 2500 kPa for about an hour [32].

Microwaves generate heat by causing the movement of dipoles in polar molecules, 
realigning them, and producing thermal effects [34]. They cause both thermal and 
non-thermal effects (degradation of polymeric structure) on sludge, improving bio-
gas production and reducing volatile solids. However, microwave generation requires 
higher energy consumption when compared to conventional thermal pre-treatment. 
The increase in temperature is associated with an increase in biodegradability while a 
higher concentration of solids present in WAS inversely affects the degree of pen-
etration of microwaves to the sample [35].

2.2.1 High-temperature treatment

High-temperature thermal pre-treatment is performed at temperature >100°C. 
The heat exchangers or direct steam injection are used to supply the steam at the 
desired temperature [36]. The pressure is developed as a result of steam and high 
temperature which is abruptly released causing a sudden pressure drop. This sudden 
drop in pressure along with application time and temperature comprises the major 
parameters necessary for efficient solubilization and subsequent methane production 
in AD [37]. In many cases, it has been observed that when the temperature is raised 
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above 190°C, recalcitrant and inhibitory compounds, that is, ammonia is released 
which adversely affect the process [38]. Moreover, at a temperature above 180°C car-
bohydrates can react with protein amino terminals resulting in pyrolysis of sludge 
organic matter and formation non-biodegradable compounds [39]. In the case of 
sludge pre-treatment by high temperature, a range of 150–180°C at 600–2500 kPa 
@ 30 min to an hour is optimal because when the temperature is further increased, 
methane production is reduced due to formation of inhibitory products due to 
Maillard reaction. [38]. If the temperature is not in the required range, certain 
biomolecules are partially or incompletely degraded, e.g. proteins solubilize during 
sludge pre-treatment at 175°C but are not completely degraded to ammonia [40]. 
Some of the advantages of high-temperature thermal pre-treatment include the 
reduction in viscosity of sludge which in turn eases handling and transport costs 
[41]. Besides the reduction in viscosity, high-temperature pre-treatment at 134°C 
causes an increase in specific charge on sludge components as a result of colloids 
and extracellular polymer substance (EPS) release [42].

2.2.2 Low-temperature treatment

Low-temperature thermal pre-treatment of WAS deals with the application 
of <100°C temperature for a few minutes to several hours [31]. At temperatures 
ranging from 60 to 70°C, particle size reduction and solubilization of organic com-
ponents occur [43]. Low-temperature thermal hydrolysis of sludge causes solubili-
zation of organic matter and increase in activity of thermophilic bacteria activating 
the release of hydrolytic enzymes in sludge [44]. Also, rheological properties of 
sludge and concentration of methane in biogas during AD are positively influenced 
by thermal pre-treatment of sludge at low temperature [45]. The relation between 
pre-treatment temperature and the time of application is a very crucial factor that 
affects the WAS biodegradation rate [46]. It has been reported that deflocculating 
or reduction in the size of particles is observed when the temperature is applied in 
the range of 50–95°C resulting in an increased surface area which in turn increases 
the rate of hydrolysis in WAS [47]. The type of sludge being pretreated by thermal 
exposure also affects the efficiency of temperature treatment. At 70°C, the total 
percentage of volatile suspended solids removed from WAS was reported to be 17% 
which for primary non-stabilized raw sludge was only 28% indicating towards its 
low biodegradability [48].

2.3 Chemical pre-treatment

2.3.1 Procedure and mode of action

In chemical pre-treatment methods alkali, acid or advanced oxidation methods 
are used to disintegrate the organic sludge components and disrupt microbial cells 
(Table 1). AD generally requires an adjustment of the pH by increasing alkalinity, 
thus alkali pre-treatment is the preferred chemical method [87]. The increase in 
pH of WAS due to alkali pre-treatment causes many effects on sludge components 
which include saponification of lipid bilayer and protein denaturation in the cell 
membrane, solubilizing EPS by ionization of its carboxyl and amino groups and 
hydrolysis of sludge organic substances [99]. In the literature it was stated that 
excessive reagent doses can inhibit the anaerobic microbes and AD, which makes 
it important to control the amount and type of reagent used along with the pH 
desired [100]. Besides treatment with alkali and acids, oxidation processes like 
ozonation are also employed to increase sludge hydrolysis and biogas production 
rate. An advanced oxidation process like ozonation depends upon the oxidation 
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Physical approach

Activated sludge 
(40.8 g TS/kg)

MW Power = 800 W
Duration = 3.5 min
Energy = 336 kJ/kg TS

Increase of SCOD: 214% AD, semi-continuous, 
37°C, SRT 20 d, 42 d

+50% biogas production, +66.6% DS 
removal

[49]

Activated sludge 
(23 g TS/L)

Ultrasonication Frequency = 24 kHz
Power = 300 W
Energy = ~5000 kJ/
kg TS

DDcod: 9% AD, semi-continuous, 
37°C, HRT 20 d, 80 d

+35% methane yield, 0.86 energy ratio [50]

WAS High-pressure 
thermal hydrolysis

Temp = 150°C
Pressure = 3 bars
Duration = 30 min

36% of active, Heterotrophs 
converted to readily 
biodegradable COD and 
64%

Aerobic digestion Increase in total mass = 21% [51]

WAS MW Power = 600 W
Temp = 85°C
Duration = 2 min

COD solubilization up to 
8.5%

NR* NR [52]

WAS MW-Alkali Power = 600W
Duration = 2 min

COD solubilization 
increased up to 46%

Aerobic digestion Soluble COD reduction = 93% VSS 
reduction = 63%

[52]

Mix primary and 
secondary sludge

Ultrasound Power = 480 W
Duration = 30 min

Dissolution of chemical 
oxygen demand up to 
44.4%

Thermophilic aerobic 
digestion

VSS removal efficiency = 55%
RT = 3 d

[53]

Activated sludge Electro kinetic 
disintegration

Power = 19 kV
Frequency = 110 Hz
Duration = 1.5 s

Increase of SCOD/TCOD: 
4.5 times, increase of 
exocellular polymers: 6.5 
times

AD, Batch, 35°C, 20–30 d +2.5 times higher biogas production [54]

Thickened sludge MW Power = 1250 W
Frequency = 2450 MHz
Intensity = 100%

Increase of SCOD/TCOD 
from 0.06 to 0.2

AD, Semi-continuous 
TPAD

+106% biogas production, the maximum 
VS removal: 53.1%

[55]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

WAS (14.2±0.7 g 
TS/kg)

MW Energy = 14,000 kJ/
kg TS

Increase of SCOD/TCOD 
from 2 to 21%

Aerobic digestion, Batch, 
35°C, 35 d

+570.7% biogas production [56]

Meat processing 
Wastewater 
sludge

Alkaline-MW Temp = 140°C Duration 
= 30min, pH = 13

Sludge disintegrate on 
the degree increased up 
to 54.9.VS solubilization 
increased up to 42.5%

Anaerobic digestion Increase in biogas production = 44.5% [57]

Excess sewage 
sludge

Ultrasonic-Fenton Ultrasonic density = 
720 W/L
Duration = 20 min Fe2 
+ dosage = 0.4 g/L H2O2 
dosage = 0.50 g/L
Duration = 20 min

Soluble COD increased up 
to 2.1 fold

NR NR [58]

Thickened sludge 
(43.6 g TS/kg)

Ultrasonication Power = 100 W
Duration = 8 min
Energy = 96 kJ/kg TS

Increase of SCOD: 1741% AD, semi-continuous, 
37°C, HRT 20 d, 67 d

+27% biogas production [59]

Thickened sludge 
(43.6 g TS/kg)

MW Frequency = 2.45 GHz
Power = 800 W
Duration = 1 min
Energy=96kJ/kg TS

Increase of SCOD: 117% AD, Semi-continuous, 
37°C, HRT 20 d, 67 d

+ 20%biogas production [59]

Primary sludge Electro kinetic 
disintegration

Energy = 33 kWh/m3 Accumulation of acetate 
increased by 2.6-fold

AD, MEC, anode 
potential: −0.3 V vs Ag/
AgCl

+2.4-fold current density (~3.1 A/m2) [60]

Activated sludge Electro kinetic 
disintegration

Energy = ~34kWh/m3 Increase of SCOD: 220% AD, CSTRs, 37 ± 1°C, 
SRT 20 d

+33% methane production, +18% TCOD 
removal, –40% digester size

[61]

WAS Visible-
photocatalysis

NR Increase COD degradation 
up to 61.1%

AD Up to 7866.7 mmol H2/L-sludge of 
hydrogen production was achieved

[62]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Mix waste 
activated and 
digested sludge

UV Photocatalysis Catalyst = TiO2

Duration = 4 h
Temperature = 35°C
UV intensity = 0.7 mW/
cm2

Soluble COD concentration 
increased from 1087.2 
to 1451.6 mg/L for 8 h 
pre-treatment

AD Methane production=1266.7 mL/L 
sludge, VS reduction = 67.4%, total COD 
reduction= 60.5%

[63]

Mixed sludge (132 
± 1 g TS/kg)

Ultrasonication Power = 150 W
Duration = 45 min

Increase of TOC: 81.5%, 
increase of TN: 50.0%

AD, Batch, 35°C, OLR 0.9 
± 0.1 kg VS/m3 d

+95% methane yield [64]

Dewatered sludge 
(15–20% TS)

Thermal hydrolysis Full-scale CAMBI™

Temperature = 160°C
Pressure = 6 bar

SS removal: 20–30%, 
increase of SCOD/TCOD 
from 0.04 to 0.4

AD, semi-continuous, 
42 and 55°C, HRT 1–6 d, 
142 d

+2–5 times in VFAs yield, +4–6 times in 
VFA production rate

[65]

Textile dying 
sludge

Ultrasonic-Fenton Ultrasonic density= 
0.14W/ml
pH < 3.0

The floc structures 
disruption, increased from 
1.48 to 6.96%

NR NR [66]

Concentrated 
sludge (40 g/L)

High-pressure 
homogenization 
(HPH)

Pressure = 150 bar,
Flow rate = 2.7 m3/h

NR AD, full-scale, 36–38°C +30% biogas production, +23% sludge 
reduction

[67]

Dewatered 
activated sludge 
(16%TS)

Thermal hydrolysis Pilot-scale CAMBI™

Temperature = 65°C
Pressure = 6 bar
Duration = 20 min

Increase of VS removal 
from 26% to 42% (+62%)

AD, pilot-scale, treated 
sludge: primary sludge 
(80%:20%),3°C, SRT 20d

+2.3 times increase in SLR, 
+30–40%biogas production, improved 
dewaterability

[68]

Secondary sludge 
(30.00 g TS/L)

Thermal hydrolysis Temperature = 
134–140°C
Pressure = 3.4 bar
Duration = 30
min

NR AD, batch, 35°C, HRT 
30 d

+40.2% methane production, +12.6% VS 
removal, +6.8% digestated reduction

[69]

Secondary sludge 
(31.4 g TS/L)

Ultrasonication Frequency = 20 kHz
Power = 750 W
Energy = 5742 kJ/kg TS

Increase of SCOD/TCOD 
from 0.02 to 0.10

AD, batch, 35°C, 30 d +16.9% VS removal, +7.89 × 10−6 kWh/g 
energy output, 1.0 energy ratio

[69]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Dairy activated 
sludge (11.66 g 
TS/L

MW Frequency = 2450 MHz
Power = 900W
Power = 12 min
Energy = 1814 kJ/L

Increase of SCOD: 19% AD, semi-continuous, 
37°C, SRT 15 d, 170 d

+57% biogas production, +64% VS 
removal

[70]

WAS (35.5 ± 0.7 g 
TS/L)

Ultrasonication Energy = 3380 kJ/kg TS DDcod: 21% AD TPAD-BMP assay 
(55°C→35°C)

+42% methane production, +13% VS 
removal

[71]

Mixed sludge Electro kinetic 
disintegration

NR Increase of SCOD: 160%, 
increase of DOC: 120%

AD, full-scale WWTP +40% biogas production, biosolids 
requiring disposal reduced by 30%

[72]

WAS Low thermal Temp = 70 and 90°C
Duration = 180 min

Sludge disintegration the 
rate was increased up to 
25%

Anaerobic batch digestion Increase in methane production = 21% [45]

WAS Mechanical Mixing = 5000 rpm
Duration = 10 min

Sludge disintegration the 
rate was increased up to 
1.5 %

NR NR [45]

WAS Ultrasonic-acid Ultrasonic density= 
10W/mL
Duration = 10 min
pH = 2.0

Sludge disintegration 
increased up to 40%

NR NR [73]

WAS Electro kinetic 
disintegration

Energy = 10kWh/m3 Increase of SCOD/TCOD 
to 10%, increase of SCOD 
from 20 to & $2gt;1000 
mg/L

AD, batch, 25–30 d +100% methane production [74]

Sewage sludge Thermal Temp = 120°C
Pressure = 2 atm
Duration = 15 min

Soluble carbon 
concentration, nitrogen, 
and phosphorus increased 
by 165, 16, and 24%,

AD Increase in methane production = 29% [75]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

WAS MW—Alkali 
(NaOH)

Power = 900 W
Temp = 95˚C
pH = 12

Sludge solubilization 
increased from 0.5 (raw) 
to 52.5%

Mesophilic aerobic 
digestion

COD degradation =81.1%
VSS degradation =72.4% VSS RT = 20 d

[76]

Mixed sludge High-pressure 
homogenization

Pressure = 12,000 psi
Catalyst = 0.009 g 
NaOH/g TS

SCOD/TCOD: & 2 gt; 4.0 AD, 2TPAD, SRT 14 d, 
OLR 1.24±0.05 g VS/L d

0.61–1.32 L CH4/L d methane production, 
43–64% VS removal, pathogen removal, 
net energy output

[77]

WAS Free nitrous acid-
heat pre-treatment

Nitrous acid = 0.52–1.11 
mg N/L
Temp = 70°C

sCOD increased and found 
between 0.16 and 0.28 mg 
sCOD/mg VS

AD Methane production increased by = 
17–26%

[78]

Dewatered sludge 
(16.7 ± 0.5% TS

Thermal hydrolysis Temperature = 
140–160°C
Duration = 60– 90 min

Increase of DDcod from 
4.5 to 34.7–42.5% (+6.7–8.4 
times)

AD, batch, 37°C,28d +~16.5% biogas production, reduction of 
SRT from 18–20 d to 12–14 d

[79]

Primary sludge MW- Ultrasound Power = 800 W
Frequency = 2450 MHz, 
Duration = 3min
US density = 0.4 W/ml
US intensity = 150 W
Duration = 6 min

Increase in disintegration 
of flocs and extracellular 
polymeric substances

AD Methane production = 11.9 ml/g tCOD [80]

Mix aerobic 
thicken sewage 
sludge

NaOH Ultrasonic NaOH dosage = 100 
g/kg
Duration = 30 min
Ultrasonic energy = 
7500 kJ\Kg

Soluble COD increased 
from 275 to 6797 mg/L

Aerobic digestion Increase in organic matter degradation = 
50.7%

[81]

Sewage sludge (23 
g TS/L)

High-pressure 
homogenization 
(HPH)

Pressure = 50MPa
Cycles = 2

SCOD: 2167 mg/L, DDcod: 
7.7%

AD, batch, 35°C, 7 d +115% biogas production, +41.17% VS 
removal, +61.89% TCOD removal

[82]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Chemical approach

Maize canning 
sludge

Ozonation Ozone intensity = ~0.18 
g O3/g D

Increase of BOD5/COD 
from 26 to 93% (+2.58 
times)

AD, batch,30°C, 30 d Increase of biogas production from 1.037 
to 9.52 cm3/g COD d(+8.2 times)

[83]

WAS Ozonation Ozone intensity = 10 
mg O3/g TSS
20 cycles
Duration = 30 s/cycle

DDcod:18%, VSS 
reduction:18%

AD, batch, F/I0.8, 35°C, 
20 d

+800% specific biogas production, +1.6 
folds VSS reduction

[84]

Activated sludge 
(5%TS)

Acidic treatment 8.75 mLHCl/kg wet 
sludge
pH = 2

Four and Six times increase 
of soluble carbohydrate 
sand proteins, respectively

AD, semi-continuous, 
35°C, HRT 12 d

+14.3% methane yield, –40% polymer 
dose for dewatering

[85]

Activated sludge Ozonation Ozone intensity = 0.09g 
O3/g MLSS, pH = 11

COD solubilization: 40%, 
TS reduction: 30%

AD, lab-scale AS-MBR, 
120 d

Solids degradation: 37% [86]

Sewage sludge Alkaline treatment 0.1 mol NaOH/L Increase of DDcod from 
22.3 to 26.9%

AD, batch (BMP), 21 d +26.4% organic removal, +1.5% biogas 
yield; delay of AD start up due to residual 
NaOH

[87]

Pulp and paper 
sludge

Alkaline treatment 8 g NaOH/100 g TS Increase of SCOD:83%, 
56–192% higher Sv

AD, batch, 37°C, 42 d 1040 mg acetate/L, +83% methane yield 
(0.32 m3CH4/kg S removed); sodium 
toxicity at 16 g NaOH/100 g TS

[88]

Secondary waste 
water sludge

Peroxide/oxidation 60 g H2O2/kg TS, 0.07 g 
Fe2+/g H2O2

pH = 3

Reduction of SS:21%, 
reduction of VSS:25%, 
increase of SCOD from 0.82 
to 7.8 g/ L

AD, lab-scale, 35°C, 30 d Increase of methane production from 
430 to 496 m3 CH4/Mg VS degraded, +3.1 
time increased net energy, reduced GHG 
emissions (0.128 Mg CO2/Mg of TDS)

[89]

WAS Alkali NaOH dosage = 157 g/
kg TS

Pre-treatments reduced the 
viscosity of the sludge

AD Increase in methane production = 34% [90]
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Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Activated sludge 
(10.2 mg TS/L)

Peroxide/oxidation 4 g Fe3+/°/kg TS, 40 g 
H2O2/kg TS
pH = 3
1 h

DDcod:23.6%, (Fe2+), 
DDcod:16.7% (Fe°)

AD, BMP, 35°C, 60 d +30.2%biogas and +38.0% methane 
production for Fe2+, +24.4% biogas and 
+26.8% methane production for FeO

[91]

WAS Fenton Catalyst iron dosage = 4 
g/kg TS
H2O2 dosage = 40 g/
kgTS
pH = 3
Duration = 60 min

Sludge disintegration 
increased up to 23.6%

AD Total methane production increased = 
26.9%

[73]

Activated sludge 
(10.6 ± 0.1 g 
TS/L)

Alkaline treatment pH = 9–11(4 mol/L 
NaOH)
Duration = 24 h

NR AD, batch,37.0 ± 0.1°C, 
25 d

+10.7–13.1% TSS removal, +6.5– 12.8% 
VSS removal, +7.2–15.4% biogas yield, 
improved dewaterability

[92]

Anaerobically 
digested sludge

Acidic treatment Temperature = 170°C
pH = 5–6 (H2SO4)
Duration = 1 h

NR AD, continuous, 35°C, 
HRT 20 d

+2–2.5 times VSS removal, +14–21% 
methane production, 22–23% better 
dewaterability

[93]

Activated sludge Alkaline treatment Temperature = 130°C
pH = 10 (KOH)

DDcod: around 60% AD, continuous, 35°C, 
HRT 20 d

+36.4% COD removal, +33% TS removal, 
+74% biogas production

[94]

WAS Free nitrous acid-
heat pre-treatment

Nitrous acid = 0.52–1.11 
mg N/L
Temperature = 70 °C

sCOD increased and found 
between 0.16 and 0.28 mg 
sCOD/mg VS

AD Methane production increased by = 
17–26%

[78]

Sewage sludge Ozonation Ozone intensity = 0.1 g 
O3/g COD

Oxidization of organics: 
38%, solubilization of 
organics: 29

AD, batch, 33°C, 30 d +1.8 times methane yield, +2.2 times 
production rate, decreased dewaterability

[95]

Activated sludge 
(11.7 ± 2.3 g TS/L)

Alkaline treatment 8 g NaOH/m3 wet 
sludge (pH 8)

SCOD/TCOD: 1.99% AD, CSTR, 55°C, HRT 
21 d

+9.7% TS removal, +11.5% VS removal, 
+18.1% COD removal, 84.22–78.24 mL/d 
for biogas (–7.1%)

[96]



13 P
re-trea

tm
en

t T
echn

ologies to E
n

han
ce A

n
a

erob
ic D

igestion
D

O
I: h

ttp
://d

x.d
oi.org/10.5772/in

tech
op

en
.93236

Type of sludge Pre-treatment method Biological coupling Ref.

Method Condition Outcome Method Outcome

Activated sludge 
(13.9 ± 0.2 g 
TS/L)

Peroxide/oxidation 50 mg H2O2/g TS, 7 mg 
Fe/g T Sin sludge
pH = 2.0
Duration = 30 min

Increase of SCOD from 8 ± 
1 in control to 103 ± 7 mg/g 
TS (+11.9 times)

AD, BMP, 37 ± 1°C, 23 d +10% methane production, +13% 
methane potential but no significant effect 
on hydrolysis rate

[78]

Biological approach

WAS Bacterial 
enzymaticpre-
treatment

Strains = Bacillus jerish

EDTA dosage = 0.2 
g/g SS

Extracellular polymeric 
substance decrease to 40 
mg/L

AD Suspended solids
reduction = 48.5% COD
solubilization = 47.3%

[97]

Thicken sewage 
sludge

Bioleaching-Fenton Bioleaching = 2 days 
H2O2 dosage= 0.12 
mol/L Fe2+ dosage = 
0.036 mol/L
Duration = 60 min

Volatile solids reduction up 
to 36.93%. Sludge resistance 
to filtration was 3.43 × 108 
s2/g.
Increased dewater ability 
by 4%

NR NR [98]

*NR, not reported; AD, anaerobic digestion; RT, retention time; MW, microwave; WAS, waste activated sludge.

Table 1. 
Methods for activated sludge treatment.
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reaction of hydroxyl radicals with organic compounds present in WAS. Hydroxyl 
radicals are highly reactive species and may cause complete mineralization of 
WAS after oxidation [101]. Ozone forms free radicals on reacting with water 
and causes hydrolysis of organic matter in WAS enhancing its biodegradability 
[102]. Chemical pre-treatment is not suitable for easily biodegradable substances 
containing high amounts of carbohydrates, due to their accelerated degradation 
and subsequent accumulation of volatile fatty acids, which leads to failure of the 
methanogenesis [103].

2.3.2 Acid pre-treatment

Acid pre-treatment is done to disintegrate the polymeric structures and cells 
in WAS which is achieved by the use of reagents such as HCl, H2SO4, H3PO4, and 
HNO2. The pH during the acid pre-treatment ranges from 1 to 5.5. During acid 
pre-treatment, flocculation is observed near isoelectric point as the lowering 
of pH causes reaction between hydrogen ions and the ionized carboxyl groups 
rendering them in unionized forms resulting in the formation of aggregates 
[104]. Strong acidic pre-treatment may result in the production of inhibitory 
by-products, such as furfural and hydroxyl-methylfurfural [105]. Hence, strong 
acidic pre-treatment is avoided and pre-treatment with dilute acids is coupled 
with thermal methods. Other disadvantages associated with acid pre-treatment 
include the loss of fermentable sugar due to the increased degradation of complex 
substrates, a high cost of acids, and the additional cost for neutralizing the acidic 
conditions before the AD process [106].

2.3.3 Alkali pre-treatment

Alkali treatment is relatively effective in sludge solubilization, within the order 
of efficacy being highest for NaOH followed by KOH, Mg(OH)2 and Ca(OH)2 [107]. 
However, too high concentrations of Na+ or K+ may cause subsequent inhibition 
of AD [107]. The increase in pH of WAS due to alkali pre-treatment causes many 
effects on sludge components which include saponification of lipid bilayer and 
protein denaturation in the cell membrane, solubilizing EPS by the ionization of its 
carboxyl and amino groups and hydrolysis of sludge organic substances [99].

An alkali pre-treatment study demonstrated that the best-performing alkali for 
WAS is NaOH. The results of this study indicated an increase by 39.8, 36.6, 15.3, and 
10.8% of the soluble COD (mg/L) for WAS by using NaOH, KOH, Ca(OH)2, and 
Mg(OH)2, respectively [108]. Using 8% of NaOH, an increase in the methane yield 
by 81% was observed for pulp and paper sludge [88]. Moreover, these pre-treatment 
methods were further studied with the pH range between 4 and 11 [109]. The results 
indicated that acidic pre-treatment was less effective than the alkali pre-treatment 
method for soluble COD in short-chain fatty acids from excess sludge. The main 
disadvantage of this pre-treatment includes additional pH adjustment need of this 
pre-treatment for AD which increases operational cost and also increases environ-
mental concerns due to additional chemical agents.

2.3.4 Oxidation

The COD removal during AD was enhanced through oxidation at 90°C with 
2 gH2O2/g VSS (volatile suspended solids) but not by the oxidation at 37°C [110]. 
Moreover, post-treatment on the recirculation loop, treating 20% of the sludge 
stream, was more efficient than a configuration with pre-treatment. However, the 
process consisting of one anaerobic digester, high-temperature oxidation and a 



15

Pre-treatment Technologies to Enhance Anaerobic Digestion
DOI: http://dx.doi.org/10.5772/intechopen.93236

second digester led to the highest removal of fecal coliforms [110]. Fenton reaction 
involves the decomposition of hydrogen peroxide in the presence of ferrous ions 
as the catalyst to form hydroxyl radicals [111]. The hydroxyl radicals thus formed 
are highly reactive free radical species that oxidize organic matter in sludge fur-
ther enhancing WAS biodegradability and dewatering [112]. Besides catalyst and 
hydrogen peroxide, pH during the reaction is also a very crucial parameter to be 
maintained during Fenton oxidation as the catalytic activity of ferrous ions is lost 
at pH > 4 [113]. Hence, an effective Fenton oxidation involves adjustment to acidic 
pH values, oxidation, neutralization, and separation of by-products [114]. Use of 
Fenton catalyzed oxidation (0.067 g Fe(II)/g H2O2, and 60 g H2O2/kg TS) decreased 
sludge resistance to dewatering in terms of capillary suction time, but did not have a 
positive effect on sludge dewatering performance on a belt press simulation [115].

2.3.5 Ozonation

Ozonation depends upon the oxidation reaction of hydroxyl radicals with organic 
compounds present in WAS. Ozone forms free radicals on reacting with water and 
causes hydrolysis of organic matter in WAS enhancing its biodegradability [102]. 
The pH of the system is reduced after ozonation because ozone degrades higher 
molecular weight organic compounds into simpler acidic compounds like carboxylic 
acid [11]. Ozone is a strong oxidant, which disintegrates itself into radicals and 
reacts with organic substrates [116] in two ways; the direct reaction depends on the 
structure of the reactant, whereas the indirect reaction is based on the hydroxyl 
radicals. As a result, the recalcitrant compounds become more biodegradable and 
accessible to the anaerobic bacteria [117]. Prior to ozone treatment, the methane 
production was observed to be 440.3 ml CH4/g VS and after applying ozone doses 
of 0.034 g O3/g TS, 0.068 g O3/g TS, 0.101 g O3/g TS, and 0.202 g O3/g TS increased 
by 35.2, 46.4, 32.9, and 22.2%, respectively [118]. Several ozonation pre-treatment 
systems are commercially available in the market. They include the Aspal SLUDGE™ 
and Praxair® Lyso™. The former offers high dewaterability and low energy con-
sumption, and the latter achieves 80% sludge reduction and 75% reduction in ozone 
use with increasing dewaterability of sludge [112].

2.3.6 Temperature phased AD (TPAD)

Temperature phased AD (TPAD) occurs in two phases. In the primary hydrolytic/
acidogenic phase, 45–70°C temperatures for 2–6 d is applied whereas the second 
phase is the methanogenic or acetogenic phase for which temperature favorable to 
thermophilic microorganisms is provided for 14–30 d. The effects of Maillard reac-
tion have not been reported during TPAD which may be due to increased activity of 
hydrolytic enzymes or defense created by microorganisms through enzymes sup-
pressing the effects of Maillard reaction products [119]. An additional acidification 
step decreases the amount of polyelectrolyte required to dewater the digestate since 
poor dewaterability is observed in the acidogenic effluent.

3. Other different pre-treatment methods

3.1 Thermochemical pre-treatment

Integration of pre-treatment methods has also been studied for sludge stabiliza-
tion to further improve AD and biogas production. A combination of thermal and 
chemical pre-treatment methods is known to improve the degradation of volatile 
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solids and biogas production [108]. Thermal-alkaline pre-treatment of sludge was 
reported to cause floc disintegration, cell disruption and reduction in organic sludge 
components with high increase in sludge pH to 13 [120]. The authors also reported 
about 100 times increase in SCOD of sludge as compared to raw untreated sludge 
[120]. The improvement in reduction of volatile solids as a result of thermochemical 
pre-treatment enhanced two times high reduction in volatile solids than that in control 
when sodium hydroxide was combined with thermal pre-treatment at 121°C [108]. 
In a similar study, 72% enhancement in volatile solids removal and biogas production 
was observed when sludge was pre-treated at 170°C and pH 12 [94]. The improved 
content of soluble COD after thermochemical pre-treatment plays role in increas-
ing the efficiency of AD with biogas production increased to 52.78% [2]. Chemical 
pre-treatment of carbohydrates and proteins can increase their hydrolysis into sugars 
and amino acids, respectively, and these later products react with each other through 
Maillard reaction at high temperature resulting in high molecular weight polymers like 
melanoidins. In another study, a high 78% biogas production with 60% methane was 
obtained after thermochemical pre-treatment at a lower temperature of 70°C [121].

Microwave-alkaline pre-treatment is another integrated technology for sludge 
pre-treatment which improves the efficiency of AD. Microwave irradiation coupled 
with alkaline pre-treatment of sludge improved the volatile solids reduction by 35% 
and methane formation by 53% as compared to control [122].

4. Feasibility of a full-scale application

With an ever-increasing concern for the environment, different pre-treatment 
methods can enhance the AD performance. Nevertheless, the high capital cost, high 
consumption of energy, required chemicals, and sophisticated operating conditions 
(maintenance, odor control, etc.) are the major factor hindering their full-scale 
application [123]. There are only a few examples of the thermal hydrolysis process 
(THP) that have been applied at full-scale such as the Cambi, Porteous, and Zimpro 
process and thermochemical pre-treatment methods such as Synox, Protox, and 
Krepro. It should be noted that these methods are all applied for WWTP sludge. 
Concerning the organic fraction of municipal solid wastes, only a few mechanical 
pre-treatment methods such as Cambi THP and AD with a pre-hydrolysis stage 
(two-stage AD) have been applied at a full scale.

4.1 Energy balance

The required energy depends on the desired pre-treatment temperature. If it 
is above 100°C, most of the energy is utilized in water vaporization, thus making 
it less desirable [124]. Microwave heating provides direct heating from the inside 
and therefore unlike conventional heating strategies, negligible or no heat losses 
are reported [125]. However, neither microwave nor ultrasound were found to be 
energy-intensive for pretreating mixed sludge, as the enhanced methane yields were 
not enough to compensate for the required energy [126]. The total biogas obtained 
after thermal pre-treatment of sludge is relatively higher than other methods and 
thus costs could be compensated by utilizing the extra biogas through an efficient 
heat exchanger [127]. A better energy balance was estimated while treatment 
of organic fraction of municipal solid waste in two-stage AD systems where the 
authors observed higher energy potential to be associated with not the first stage 
hydrogen production but to the higher performance in the methanogenic reactor 
[128]. The energy efficiency of a two-stage AD reactor for sewage sludge in which 
excess energy of 2.17 kJ/d was obtained was higher when compared to a single-stage 
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system [129]. It was further concluded that the energy balance can be enhanced by 
18.5% if the two-stage AD process is optimized.

4.2 Economic feasibility

Estimated net profit of various pre-treatments (low-temperature thermal pre-
treatment not included) to enhance the biogas production of food waste obtained 
the best result (10–15 euro/ton FW) with less energy-intensive methods (acid and 
freeze-thaw) [130]. The estimation of the economic feasibility of pre-treatment 
methods based on a full-scale application has only been reported for WWTP sludge. 
The operational and maintenance cost of a full-scale AD (3300 m3) treating 380 m3 
sludge per day based on the application of focused-pulsed pre-treatment technol-
ogy could generate a benefit of 540,000 USD per year [72]. An approximate cost 
estimate associated with pre-treatment methods was suggested in research which 
included capital, operational, and maintenance costs between 70 and 150 US $/
ton sludge [131]. In another cost estimate study, comparative costs for sludge pre-
treatment methods were calculated to improve the process of AD of sludge where 
the authors estimated costs associated with microwave pre-treatment, conventional 
thermal pre-treatment, ultrasound, and chemical pre-treatment methods as 
0.0162, 0.0187, 0.0264, and 0.0358 US$/m3, respectively [125]. The comparative 
cost analysis suggested microwave and conventional pre-treatment methods to be 
cheaper than ultrasonic and chemical pre-treatments.

The amount of sludge for pre-treatment is also an important factor to consider 
when estimating the pre-treatment cost. Pre-treatment strategies such as ultrasound 
can prove to be energetically acceptable for a large scale application if 6 kWh energy 
value is considered for each cubic meter of sludge [124]. If higher energy is required, 
biological pre-treatment such as adding hydrolytic bacteria could be a cheaper 
option [132]. The extent of net economic benefit also depends upon other factors 
besides the type of pre-treatment method and quality and quantity of sludge. Other 
parameters to be considered include treatment capacity, availability of labor, the 
cost associated with collection and transport, taxes and tariffs, energy prices, price 
of land selected for setup, costs for additional mixing and pumping requirements, 
the market value of end product as well as waste and residue disposal [133].

5. Conclusion

The pre-treatment methods have the potential to solubilize complex sludge com-
ponents which include the organic matter, EPS, and the microbial cell wall which in 
turn makes the progression of subsequent biological degradation treatments easier. 
AD is the sustainable process widely employed for bioenergy generation from the 
WAS. Further pre-treatment enhances the methane percentage in the biogas thus 
the process is energy efficient and sustainable. To attain a clear understanding of 
the mechanism behind each method, the focus should be given to the conversion 
strategy and structural alterations that occur in complex WAS components upon 
the application of each pretreatment technology. Many physical, chemical and 
biological pretreatment methods have been mentioned in the literature that has 
been used individually but each of them owns certain disadvantages. These limita-
tions range from high energy requirement of microwaves to excess degradation and 
fermentable sugars loss in acid pre-treatment. Using two pre-treatment methods in 
combination has known to overcome these problems, reaping the efficiency of both 
methods simultaneously. Thus combing pre-treatment process and AD will lead to 
sustainable process for sludge management.
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