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Chapter

Emergence of Raman Peaks
Due to Septic Nonlinearity
in Noninstantaneous Kerr Media
Michel-Rostand Soumo Tchio, Saïdou Abdoulkary

and Alidou Mohamadou

Abstract

We analyze the modulation instability induced by cross-phase modulation of
two co-propagating optical beams in nonlinear fiber with the effect of higher-order
dispersion and septic nonlinearity. We investigate in detail the effect of relaxation
nonlinear response to the gain spectrum both in normal group velocity dispersion
(GVD) and anomalous dispersion regime. We show that the walk-off, the
relaxation nonlinear response time as well as the higher-order process particularly
influence the generation of the modulation instability gain. Our results shows that
the emerging Raman peaks is observable both in the case of weak dispersion and in
a higher-order dispersion for mixed GVD regime with slow response time. These
Raman peaks are shifted toward higher frequencies with the decrease of their
magnitude, when the walk-off increases.

Keywords: septic nonlinearity, higher-order dispersions, walk-off effects,
delay response time, cross-phase modulation

1. Introduction

The generation of a wave train is a preoccupying subject in the realm of
nonlinear science. This is mainly due to two effects: nonlinearity and dispersion.
These two notions are essential in the propagation of the wave over long distances
and the optical pulse resulting from this interaction gives rise to an optical soliton.
The dynamic evolution of nonlinear pulses in nonlinear optical systems can be
modeled by the well known nonlinear Schrödinger (NLS) equation which repre-
sents the lowest-order nontrivial condition describing the propagation process [1].
The co-propagation of two nonlinear waves in nonlinear optical Kerr media under a
slowly varying amplitude approximation is made by using extensions of the NLS
equation, whose analytical results provide the dispersion relation, the unstable
conditions, as well as the gain spectra. This extension of NLS equation can take into
account a large variety of physical properties such as higher-orders dispersion (like
third-order dispersion (TOD) and fourth-order dispersion (FOD)) [2–9]; multiple
optical beams [10]; negative index material [11]; saturable nonlinearity [12]; and
non-instantaneous nonlinear response [13]. Third-order dispersion is used to
describe the proprieties of ultrashort pulses in the subpicosecond to femtosecond
domain. Usually in nonlinear optic, Kerr nonlinearity is used to compensate the
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dispersion effects leading to the formation of soliton. Due to this property, focusing
Kerr-type media promote the stable propagation of bright solitons [14]. Despite
this, the diffraction effect is not enough to balance the self-focusing in focusing
quintic nonlinear media and therefore the pulse undergoes critical collapse [15].
Thus, higher-order nonlinearities (HON) play an important role in the description
and the propagation of the pulses in Kerr media. Consequently, the extension of
NLS equation can also take into account the effect of HON. Reyna et al. [16–18]
have experimentally and numerically investigated the nonlinearity management
and spatial modulation instability for cubic, quintic, and septic nonlinearity for
optical beams propagation in metal-dielectric nanocomposites.

The study of the propagation of an intense optical beams through a nonlinear
and dispersive media may lead to fascinating effects such as exponential growth of
amplitude due to modulation in amplitude and frequency. This effect is called
modulation instability (MI). Modulation instability is a fundamental phenomenon
firstly detected in hydrodynamic systems [19] and appears in most nonlinear wave
systems. In nonlinear Kerr media such as optical fiber, MI results from the interac-
tion between the nonlinear and dispersive effects [20] characterized by the insta-
bility undergone by a continuous wave (cw) or quasi-cw when it propagates inside a
nonlinear dispersive system with low noise [21]. Modulation instability has been
studied for waves in fluids dynamics [22], plasmas physic [23], dielectric media
[24], electrodynamics [25], and atomic Bose-Einstein condensates [26, 27] and was
first analyzed theoretically in glass fiber by Hasegawa and Brinkman [28] in 1984 to
study the generation of ultrashort optical beams. This phenomenon is generally
studied in the anomalous dispersion regime, but it can also be observed in normal
dispersion regime when the pumping is carried out close to the zero dispersion
subject to certain conditions on the higher order dispersion (HOD) coefficients
[29, 30]. Cavalcanti et al. [31] predicted the possibility of MI to occur even in
normal group velocity dispersion regime due to the negative values of fourth-order
dispersion (FOD). The effects of FOD was also been investigated by many authors
who show their inclusion leads to generation of new spectral window. Tchofo et al.
have analytically and numerically investigated the behavior of MI under the com-
bined effects of HOD and delayed Raman response [5, 6]. In Ref. [7], the authors
shown that FOD shifts the MI peak gain to the higher frequency side and also
increases the instability region. Nithyanandan et al. [8] analyzed that the cumula-
tive effect of HOD and walk-off brings new characteristic spectral bands at a
definite frequency window.

Wang et al. have shown in their work that the distribution of speed of system
flow and the speed of sound determining the occurrence of the sonic horizon is in
agreement with the corresponding quantities obtained from a pure numerical eval-
uation for quantum system incorporating septic nonlinearity modeled by NLS
equation [32]. An essential manifestation of the intensity dependence of the refrac-
tive index in nonlinear optical media rises through self-phase modulation (SPM)
[33], which leads to spectral spreading of optical pulses. It is well known that the co-
propagation of two optical waves in nonlinear Kerr media is coupled due to refrac-
tive index of the media through the nonlinear phenomenon called cross-phase
modulation (XPM) [29, 34].

In this paper, we study the MI in non-instantaneous Kerr media with cubic-
quintic-septic nonlinearity, described by a system of two-coupled NLS equation.
We mainly focus on revealing the contribution of group velocity mismatch δ,
relaxing Kerr nonlinearity, delay response time, cross-phase modulation, and
higher-order terms. Analyzing the interplay between instantaneous and non-
instantaneous Kerr response for the case of the beams is experiencing normal GVD,
and the order beams undergo anomalous GVD. In Section 2, we present the model
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equation and the linear stability analysis approach; Section 3 features the investiga-
tion of MI in the case of weak dispersion regime with the effects of HON. Section 4
is devoted to the analysis of MI gain spectrum by considering the relation between
higher-order effects and delay response time. And finally, the conclusion is given in
Section 5.

2. Model equations and linear stability analysis

The optical electromagnetic field propagations are described, under a slowly
varying amplitude approximation by a coupled nonlinear Schrödinger equation
(CNLSE) with higher order dispersion [8] in a single-mode optical Kerr media
where higher-order nonlinearities [16] are taken into account. These equations
result from two optical beams at different frequencies and the same polarizations
where time-dependent nonlinear response is incorporated in the system. The
governing systems are read as:

i
∂A1

∂z
þ δ

2

∂A1

∂t

� �

¼ β21

2

∂
2A1

∂t2
þ i

β31

6

∂
3A1

∂t3
� β41

24

∂
4A1

∂t4
� γ1N1A1, (1)

i
∂A2

∂z
� δ

2

∂A2

∂t

� �

¼ β22

2

∂
2A2

∂t2
þ i

β32

6

∂
3A2

∂t3
� β42

24

∂
4A2

∂t4
� γ2N2A2: (2)

∂N1

∂t
¼ 1

τ
½�N1 þ κ1 A1j j2 þ 2 A2j j2

� �

þ κ2 A1j j4 þ 6 A1j j2 A2j j2 þ 3 A2j j4
� �

þκ3 A1j j6 þ 18 A1j j2 A2j j4 þ 12 A1j j4 A2j j2 þ 4 A2j j6
� �

�,
(3)

∂N2

∂t
¼ 1

τ
½�N2 þ κ4 2 A1j j2 þ A2j j2

� �

þ κ5 3 A1j j4 þ 6 A1j j2 A2j j2 þ A2j j4
� �

þκ6 4 A1j j6 þ 12 A1j j2 A2j j4 þ 18 A1j j4 A2j j2 þ A2j j6
� �

�
(4)

κ1, κ4ð Þ, κ2, κ5ð Þ, and κ3, κ6ð Þ are respectively cubic, quintic, and septic
nonlinearities parameters.

The nonlinear Kerr parameters γi can be expressed as γ1 ¼ γ2 ¼ n2=n0, the cubic
parameters κi defined by κ1 ¼ κ4 ¼ 1 are control parameters and the quintic-septic
parameters can be given, respectively, by κ2 ¼ κ5 ¼ n4=n2 and κ3 ¼ κ6 ¼ n6=n2.
Where k ¼ 2πn0=λ with λ being the wavelength of the laser pump, n0 is the linear
refractive index of the host medium, n2, n4, and n6 are, respectively, the character-
istic nonlinear coefficients of the material related to third, fifth and seventh-order
susceptibility.

Reyna et al. [16] have proposed this class of HON to study the spatial phase
modulation induced by quintic and septic nonlinearities for optical beams propaga-
tion in metal colloids, where septic nonlinearity arises from the development up to
seventh-order susceptibility of theoretical treatment of Maxwell-Garnett model.
Quintic nonlinearity has been considered by Kumar [35] to show the influence of
spatial delay on the modulational instability in a composite system with a
controllable nonlinearity.

We extend the previous works on MI taking into account the CNLS with
higher-order effects and using the linear stability approach. Therefore, we study the
stability of the steady-state solution of the above dynamical equations against the
small harmonic perturbations; the steady-state solution of the continuous wave
(cw) is obtained by setting the time derivative in Eqs. (1)–(4) to zero. This leads the
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exacts solution in the form: A1 ¼ A0
1 e

iγ1N
cw
1 z½ �, A2 ¼ A0

2 e
iγ2N

cw
2 z½ �, where Ncw

1 and Ncw
2

reads as: Ncw
1 ¼ κ1 A0

1

�

�

�

�

2 þ 2 A0
2

�

�

�

�

2
� �

þ κ2 A0
1

�

�

�

�

4 þ 6 A0
1

�

�

�

�

2
A0

2

�

�

�

�

2 þ 3 A0
2

�

�

�

�

4
� �

þ

κ3 A0
1

�

�

�

�

6 þ 18 A0
1

�

�

�

�

2
A0

2

�

�

�

�

4 þ 12 A0
2

�

�

�

�

4
A0

2

�

�

�

�

2 þ 4 A0
2

�

�

�

�

6
� �

, Ncw
1 ¼ κ4 2 A0

1

�

�

�

�

2 þ A0
2

�

�

�

�

2
� �

þκ5 3 A0
1

�

�

�

�

4 þ 6 A0
1

�

�

�

�

2
A0

2

�

�

�

�

2 þ A0
2

�

�

�

�

4
� �

þ κ6 4 A0
1

�

�

�

�

6 þ 12 A0
1

�

�

�

�

2
A0

2

�

�

�

�

4 þ 18 A0
1

�

�

�

�

4
�

A0
2

�

�

�

�

2 þ

A0
2

�

�

�

�

6Þ and corresponding to nonlinear phase shift. The dynamic of the system is

studied by taking into account the small perturbation using the linear stability
analysis theory. Hence, we impose a slight modulation on plane wave as:

A1 ¼ A0
1 þ a1 z, tð Þ

� �

e iγ1N
cw
1 z½ �, (5)

A2 ¼ A0
2 þ a2 z, tð Þ

� �

e iγ2N
cw
2 z½ �: (6)

and

N1 ¼ n1 z, tð Þ þNcw
1 , (7)

N2 ¼ n2 z, tð Þ þNcw
2 : (8)

where a j z, tð Þ are the complex functions and assumed to be small in comparison

with the amplitude of the carrier wave ( a j z, tð Þ
�

�

�

�

2
≪ A0

j

�

�

�

�

�

�

2
), and n j z, tð Þ are a small

deviation from the stationary solution of the nonlinear index. Then inserting
Eqs. (5)–(8) in Eqs. (1)–(4), we obtain a set of coupled complex linearized
nonlinear Schrödinger equations satisfying the perturbation a j z, tð Þ and n j z, tð Þ as
follows:

i
∂a1
∂z

þ i

vg1

∂a1
∂t

¼ 1

2
β21

∂
2a1
∂t2

þ i
1

6
β31

∂
3a1
∂t3

� 1

24
β41

∂
4a1
∂t4

� γ1n1A
0
1 , (9)

i
∂a2
∂z

þ i

vg2

∂a2
∂t

¼ 1

2
β22

∂
2a2
∂t2

þ i
1

6
β32

∂
3a2
∂t3

� 1

24
β42

∂
4a2
∂t4

� γ2n2A
0
2 : (10)

∂n1
∂t

¼ 1

τ
�n1 þ κ1 A0

1 a1 þ a ∗
1

	 


þ 2A0
2 a2 þ a ∗

2

	 
� �

þ κ2½2 A0
1

�

�

�

�

3
a1 þ a ∗

1

	 


h

þ6 A0
1

�

�

�

�

2
A0

2 a2 þ a ∗
2

	 


þ6 A0
2

�

�

�

�

2
A0

1 a1 þ a ∗
1

	 


þ 6 A0
2

�

�

�

�

3
a2 þ a ∗

2

	 


� þ X1

i

,

(11)

∂n2
∂t

¼ 1

τ
�n2 þ κ4 2A0

1 a1 þ a ∗
1

	 


þ A0
2 a2 þ a ∗

2

	 
� �

þ κ5½6 A0
1

�

�

�

�

3
a1 þ a ∗

1

	 


h

þ6 A0
1

�

�

�

�

2
A0

2 a2 þ a ∗
2

	 


þ6 A0
2

�

�

�

�

2
A0

1 a1 þ a ∗
1

	 


þ 2 A0
2

�

�

�

�

3
a2 þ a ∗

2

	 


� þ X2

i

(12)

with X1 and X2 given by:

X1 ¼ κ3½3 A0
1

�

�

�

�

5
a1 þ a ∗

1

	 


þ 36 A0
1

�

�

�

�

3
A0

2

�

�

�

�

2
a2 þ a ∗

2

	 


þ 18 A0
2

�

�

�

�

4
A0

1 a1 þ a ∗
1

	 


þ12 A0
1

�

�

�

�

4
A0

2 a2 þ a ∗
2

	 


þ 24 A0
1

�

�

�

�

3
A0

2

�

�

�

�

2
a1 þ a ∗

1

	 


þ 12 A0
2

�

�

�

�

5
a2 þ a ∗

2

	 


�
,

X2 ¼ κ6½12 A0
1

�

�

�

�

5
a1 þ a ∗

1

	 


þ 24 A0
2

�

�

�

�

3
A0

1

�

�

�

�

2
a2 þ a ∗

2

	 


þþ12 A0
2

�

�

�

�

4
A0

1 a1 þ a ∗
1

	 


þ18 A0
1

�

�

�

�

4
A0

2 a2 þ a ∗
2

	 


þ 36 A0
1

�

�

�

�

3
A0

2

�

�

�

�

2
a1 þ a ∗

1

	 


þ 3 A0
2

�

�

�

�

5
a2 þ a ∗

2

	 


�
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where a ∗
j is the complex conjugate of a j. At this step, to study the stability of the

above set of linear equations, we used the Fourier and Laplace transform of the
perturbation as follows:

a j z, tð Þ ¼ 1
ffiffiffiffiffi

2π
p

ð

a�ikzaiΩtâ j Ω, kð ÞdkdΩ, (13)

n j z, tð Þ ¼ 1
ffiffiffiffiffi

2π
p

ð

a�ikzaiΩtn̂ j Ω, kð ÞdkdΩ, (14)

where â j Ω, kð Þ and n̂ j Ω, kð Þ stands as Fourier transform in time and Laplace
transform in space, Ω and k are, respectively, the frequency pump and wave
number of perturbation. Putting Eq. (13) in the previous set of equations (Eqs.
(9)–(12)) and after eliminating (n̂ j Ω, kð Þ), we obtain a set of two homogeneous
equations for a1, a ∗

1 , a2, and a ∗
2 . Then by considering their conjugates, we obtain a

set of four homogeneous equations. The resulting matrix presents a nontrivial
solution only when the dispersion relation satisfies the following relation:

k� Ω

vg1

� �2

� f 1

" #

k� Ω

vg2

� �2

� f 2

" #

¼ CXPM, (15)

where the parameters of this equation are defined by the following relation:

f 1 ¼ B1 Ωð Þ½B1 Ωð Þ þ 2~γ1κ1 A
0
1

�

�

�

�

2 þ 4~γ1κ2 A0
1

�

�

�

�

4 þ 3 A0
1

�

�

�

�

2
A0

2

�

�

�

�

2
� �
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�

�
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1

�

�

�

�
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A0

2

�

�

�

�

2
� �

�,
(16)

f 2 ¼ B2 Ωð Þ½B2 Ωð Þ þ 2~γ2κ4 A0
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2 þ 4~γ2κ5 A0
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�
(17)

CXPM ¼ 16B1 Ωð ÞB2 Ωð Þ~γ1κ1~γ2κ4 A0
1

�

�

�

�

2
A0

2

�

�

�

�

2

þ16B1 Ωð ÞB2 Ωð Þ½9~γ1κ2~γ2κ5 A0
1

�

�

�

�

2
A0

2

�

�

�

�

6 þ A0
1

�

�

�

�

6
A0

2

�

�

�

�

2 þ 2 A0
1

�

�

�

�

4
A0

2

�

�

�

�

4
� �

þ3~γ1κ1~γ2κ5 A0
1

�

�

�

�

2
A0

2

�

�

�

�

4 þ A0
1

�

�

�

�

4
A0

2

�

�

�

�

2
� �

þ 3~γ1κ2~γ2κ4 A0
1

�

�

�

�

4
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

4
� �

þ6~γ1κ1~γ2κ6 A0
1

�

�

�

�

6
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

6 þ 3 A0
1

�

�

�

�

4
A0

2

�

�

�

�

4
� �

þ 6~γ1κ3~γ2κ4ð A0
1

�

�

�

�

6
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

6

þ3 A0
1

�

�

�

�

4
A0

2

�

�

�

�

4Þ þ 18~γ2κ2~γ2κ6 A0
1

�

�

�

�

8
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

8 þ 4 A0
1

�

�

�

�

4
A0

2

�

�

�

�

6 þ 4 A0
1

�

�

�

�

6
A0

2

�

�

�

�

4
� �

þ18~γ1κ3~γ2κ5 A0
1

�

�

�

�

8
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

8 þ 4 A0
1

�

�

�

�

6
A0

2

�

�

�

�

4 þ 4 A0
1

�

�

�

�

4
A0

2

�

�

�

�

6
� �

þ36~γ1κ3~γ2κ6 6 A0
1

�

�

�

�

8
A0

2

�

�

�

�

4 þ 6 A0
1

�

�

�

�

4
A0

2

�

�

�

�

8 þ A0
1

�

�

�

�

10
A0

2

�

�

�

�

2 þ A0
1

�

�

�

�

2
A0

2

�

�

�

�

10 þ 11 A0
1

�

�

�

�

6
A0

2

�

�

�

�

6
� �

�

(18)

With the parameters B1 Ωð Þ ¼ β21
Ω

2

2 � β31
Ω

3

6 þ β41
Ω

4

24 and B2 Ωð Þ ¼ β22
Ω

2

2 �
β32

Ω
3

6 þ β42
Ω

4

24. Eq. (15) looks similar to the case of dispersion relation obtained from

nonlinear Schrödinger equation with second order dispersion. However, the differ-
ence here arising from the definition of the parameters f 1, f 2, and CXPM. Hence, the
dispersion relation obtained above [Eqs. (15)–(18)] regulates the stability condition
for the steady-state solution against harmonic perturbations. This stability condi-
tion depends on XPM, HOD, and HON. The perturbations grow exponentially if the
wave vector k acquires an imaginary part, along the medium with the MI gain given
by the relation g Ωð Þ ¼ 2Im kð Þ. Consequently, we can examine qualitatively and
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quantitatively the role played by the delayed nonlinear response τð Þ and the group
velocity mismatch δð Þ.

Hence, for usual Kerr approach τ ¼ 0 psð Þ and for non null XPM CXPM 6¼ 0ð Þ, it is
straightforward to notice that the dispersion relation is fourth order polynomial
with real coefficients in k which yields four solutions. From these four solutions,
two are always real and thus, irrelevant to investigations of MI. However, the two
other can probably be a complex conjugate pair, thereby could affect the MI
dynamics and leading to only one unstable gain sideband in the case of cubic
nonlinearity as extensively studied in diverse previous works [8, 20, 29, 33,
34, 36–38]. On the other hand, all the four solutions are complex conjugate pairs as
far as higher-order effects are concerned and therefore can participate in the MI
dynamics; this feature leads to the possibility of two unstable gain sidebands [9]. As
the GVM is defined by δ ¼ ∣v�1

g1 � v�1
g2 ∣, then while considering that the two optical

beams are so close to each other by assuming vg1 ≈ vg2, that is, the GVM is negligible
[29], these four solutions are given by:

k ¼ Ω

vg1
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1 þ f 2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2 þ 4 CXPM � f 1 f 2

	 


q

r

, (19)

The condition so that MI can occur read as: CXPM > f 1 f 2. Thus using Eqs. (16),
(17), and (18), this condition reads as:
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This condition shows that MI depends on the sign of βji and there is a range of

frequency Ωð Þ over which the MI gain can exist. Thus at these frequencies, the
steady-state solution becomes unstable to perturbations. Then, irrespective of the
sign of dispersion parameters, this condition can lead to instability because of the
presence of XPM that enhanced the MI.

By considering the effects of relaxation time τ 6¼ 0ð Þ, from dispersion relation
[Eqs. (15)–(18)], one can observe that the terms CXPM and f j are complex and

consequently produce an imaginary part to the wave number k at any frequency,
despite the sign of dispersion parameters. The dispersion relation [Eq. (15)] gives
rise to fourth-order polynomial equation with complex coefficients for any finite
value of delay response time τð Þ. Due to the fact that the complex roots do not really
appear in conjugate pairs, one has the possibility to obtain until four unstable modes
for a given frequency Ω [38]. Therefore, the combine effect of relaxation time and
XPM gives rise to four unstable modes contrarily to the case of an instantaneous
system. Hence, the role of septic nonlinearity inducing MI is illustrated taking into
consideration the effects of walk-off and delay response time for the case in which
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one of the beams is experiencing normal GVD ðβij >0Þ and the other beam

undergoes anomalous GVD β21 <0, β22 <0ð Þ as well as mixed GVD β21 <0, β22 >0ð Þ
and “total mixed” GVD βi1 <0, βi2 >0ð Þ, i ¼ 2, 3, 4; j ¼ 1, 2ð Þ. We will separately
discuss these cases. Firstly, we illustrate directly the effect of septic nonlinearity on
MI gain spectrum for low dispersion and discuss the role of walk-off, the delay
response time, and the combine effect of these two parameters. Secondly, we
investigate the impact of HOD and HON as well as the nonlinear response time on
MI gain spectrum. We end our analysis with the investigation of the septic param-
eters κ3. In numerical calculation, we use the following value parameters: the non-

linear terms are given by γ1 ¼ γ2 ¼ 0:015 W�1m�1, the dispersion parameters are
β21 ¼ β22 ¼ �0:060 ps2m�1, β41 ¼ β42 ¼ �0:00010 ps4m�1, the TOD is giving in the

range δ1 ¼ 0� 8ð Þ � 10�4 ps3m�1, and the input power is given by E0
j

�

�

�

�

�

�

2
¼ 100 V:m�1.

3. Effects of weak dispersion on XPM-induced modulation instability

We investigate the effect of HON on MI gain in the case of low dispersion
regime (β31 ¼ β32 ¼ β41 ¼ β42 ¼ 0), considering the effects of walk-off, nonlinear
response time, and their combination. In this regime, several studies have been
conducted and authors have shown the interplay between walk-off and delay
response time [8, 9, 13, 34, 38, 39].

3.1 Roles of walk-off and relaxation of nonlinear response on modulation
instability gain spectra

First, let us briefly consider the case of instantaneous response time τ ¼ 0ð Þ. In
this case, Eq. (15) gives rise to four roots as defined by Eq. (19) which turns to two
for null GVM δ ¼ 0ð Þ in normal dispersion regime and to one for mixed dispersion
regime, while these equations also turn to two for non null GVM and as GVM
reaches certain values, these two roots turned to one. This feature is given in
Figure 1(a) where one can note different MI gain spectra. Obviously, we noted
from this figure that, for null GVM in normal and mixed GVD, the behavior of MI

Figure 1.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz): (a) for different value of GVMwith τ ¼ 0 and
(b) in non-instantaneous response time τ 6¼ 0ð Þ system with null GVM.
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gain spectrum is as described in Ref. [39]. Its mean that, taking into account the
effect of GVM, the description remain; however, we showed that, as GVM increases
the MI gain increase till reach certain values δ ¼ 7ð Þ and started decrease. We also
got two gain maxima for more value of delta than in [39] (see blue to magenta
curves). This aspect is due to septic nonlinearity.

Now, considering the effect of delay response time by setting GVM null, Eq. (15)
leads to four unstable modes which turns to two as given in Figure 1(b). We note
from this figure that, for ultra-fast response time, the behavior is as for fast
response time for cubic nonlinearity, and the rest of the curves is as described in
quintic nonlinearity [39]. As already mentioned, the non-instantaneous response
time brings new bands attributed to Raman effect involves in the fibers.

3.2 Combined effects of walk-off and delay response time on modulation
instability gain spectra

Taking into account the combined effects of delay response time and GVM,
Eq. (15) leads to four unstable modes that turns to two for response time reaching
certain value τ ¼ 1ð Þ and coalesce into one at high frequencies. This is given in
Figure 2 where we have fixed the value of δ and varied the nonlinear response time.
For mixed GVD, our results shows that, for fast response time (τ ¼ 0:01ps, see blue
curve), the conventional band increases when GVM increases, while the Raman
band decreases and their width shift toward lower frequencies. The spectra seem
the same as in the case of quintic nonlinearity [39].

Now considering that GVM varies with fixed nonlinear response time, we have
observed that when the GVM increases, the behavior of the MI gain spectra changes
drastically as given in Figure 3 for mixed GVD. In this figure, the four unstable
modes coalesce into one at high frequencies.

Figure 2.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for non null GVM and nonlinear response
time.
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However, for fast response time gives in Figure 3(a), we observe that for
conventional and Raman band, the magnitude increases when δ increases; it is the
inverse for the sporadic band while their width slightly enlarge and shift toward
higher frequencies. The situation is different in the case of slow response time
τ ¼ 0:1psð Þ as given in Figure 3(b). We observe that as δ increases, the magnitude
of conventional MI gain decreases with the appearance of the Raman peaks that
shift toward higher frequencies as GVM increases. The behavior of the Raman band
remains as in panel (a). However for the sporadic band, their magnitude increases
as δ increases and their width enlarges with the appearance of the sporadic peaks
that shift toward higher frequencies. These Raman and sporadic peaks are probably
brought by the combined effect of delay response time and opposite sign of SOD.

In the case of anomalous dispersion regime, the four unstable mode turns to two
modes as given in Figure 4. One can observe from this figure that, for conventional
spectral band, as GVM increases, the MI gain decreases, while for Raman band
(second spectral band), it is inverted. However, the behavior of the MI gain spectra
is different from these panels and we can see that as nonlinear response time
increases, the magnitude of the gain decreases. In panel (a), we note that before
extended in all frequencies, the curves are neutralized at a given frequency and

Figure 3.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in mixed GVD.
(a) for τ = 0.01ps, (b) for τ = 0.1ps.

Figure 4.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in anomalous GVD.
(a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.
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move slowly toward high frequencies while in panel (b), they move rapidly as GVM
increases.

In the case of normal dispersion regime, for slow response time [panel (a)], the
two unstable modes turn to one for lower frequencies and to two at characteristic
frequency until colliding to one at high frequencies. The previous description in
anomalous case remains the same. Meanwhile for fast response time [panel (b)], the
situation is slightly different where one can observe two unstable modes that collid
to one as GVM increases. Figure 5 portrays this feature. The Raman and sporadic
peaks observed previously in Figure 3 disappeared in these figures due probably to
the sign of SOD (they have the same sign).

4. Impact of higher-order dispersion and septic nonlinearity on
XPM-induced modulation instability

It has been shown that HOD effects such as FOD and TOD are most essential and
give rise to a wide diversity of information concerning the MI dynamics.

4.1 Effect of fourth-order dispersion on modulation instability

The inclusion of FOD brings a great change to the MI spectrum and we obtain
for each GVM value four gain spectra. In the case of mixed dispersion regime, from
Figure 6 we note that, the spectrum presents two regions of instability which are
connected to each other. The first one at the pump frequency is separated to the
second one due to the effect of FOD. Thus in the case of fast delay response time
gives in panel (a), one can observe that for the first instability region, the primary
band remains unchanged for all GVM values; while for the Raman band as GVM
increases, the MI gain spectra increase. For the second instability region, the
situation remains the same as in the mixed case for weak dispersion regime
(Figure 3(a)). In panel (b), our work unveiled that for first instability region, the
conventional spectral MI gain decreases as GVM increases, while it is inverted for
Raman bands. According to the second instability region, we revealed the presence
of Raman and sporadic peaks that magnitude and width decrease as GVM increases
and they move toward high frequencies. The fourth unstable mode turns to one at
high frequencies. In addition at around Ω ¼ 15Thz, we observe a singularity brought
by FOD. In panel (a), this effect neutralized the spectra at this point.

Figure 5.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in normal GVD.
(a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.
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Taking into account the propagation with anomalous GVM qualitatively changes
the MI spectrum, like shape as in Figure 7 that for the primary spectral band as
GVM increases, the MI gain spectra decrease, contrarily to the Raman bands which
increase as GVM increases. In addition, when increasing the delay response time,
the magnitude and the width of MI gain spectra decrease considerably with a
singularity around Ω ¼ 14Thz brought by the effect of FOD. Meanwhile in the case
of normal GVD as in Figure 8, contrarily to what are observed in previous figures,
the inclusion of FOD hardly brings any changes to the MI spectrum due mainly to
the dominance of normal GVD over FOD. However, the magnitude of the MI gain
has considerably increases precisely for the second spectral band.

4.2 Effect of third-order dispersion on modulation instability

We now shift our analysis to the effect of walk-off and delay response time in
virtue of TOD. In the case of mixed GVD as seen in Figure 9, the spectra hardly

Figure 7.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in anomalous GVD
with the inclusion of FOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in
Figure 3.

Figure 6.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in mixed GVD with the
inclusion of FOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.
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change for τ ¼ 0:01 [panel (a)] in comparison to Figure 6 where we considered
FOD effect. However, for first instability region, concerning the primary spectral
band the magnitude of MI gain slowly increases when GVM increases and their
width slightly shifts toward higher frequencies, whereas it is the reverse for second
spectral band in this region. In addition, in the case of quintic nonlinearity as done
in Ref. [39], the spectrum extended over all frequencies while in this case, we find
that the gain spectrum is neutralized three times before extend over all frequencies.
The second instability region remains as described in Figure 6. Then at high fre-
quencies, the four gain spectra coalesce into one. For slow response time τ ¼ 0:1ð Þ in
panel (b), the first instability region remains unchanged, whereas for the second
instability region, we note that as GVM increases, the MI gain spectra increase until
it reaches a value δ ¼ 8 before it starts decreasing.

In the case of anomalous dispersion regime, the four obtained solution leads to
four unstable modes that coalesce to one at higher frequencies. Figure 10 depicts

Figure 9.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in mixed GVD with the
inclusion of TOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.

Figure 8.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in normal GVD with
the inclusion of FOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.
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the MI gain spectrum for some GVM value. One observed two singularities due
certainly by HOD effects. In the case of fast response time, for first spectral region in
panel (a), the primary and Raman bands decrease as GVM increases while for
spectra obtained at low MI gain in this region the situation is inverted. In the second
region, the inclusion of TOD brings Raman and sporadic peaks that shifted toward
higher frequencies due to GVM effect. For slow response time given in panel (b), the
situation is almost different as earlier. The sporadic and Raman peaks get shrink and
still move toward higher frequencies. It is to explain the behavior of the obtained
modes at lower frequencies coalesce to two at middle frequencies and to one at high
frequencies. Contrarily to what observed in the case of quintic nonlinearity, in these
figures (Figure 10), HOD acts in the case of septic nonlinearity.

We now turn our attention to the case of normal dispersion regime as given in
Figure 11. We note that, the second spectral region remains almost the same as
described in previous figure. However, in the first spectral region, the four solution

Figure 10.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in anomalous GVD
with the inclusion of TOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in
Figure 3.

Figure 11.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in normal GVD with
the inclusion of TOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in Figure 3.
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leads to two unstable modes in panel (a) and to one in panel (b) for lower frequen-
cies. The effect of FOD vanishes due probably to the dominance of SOD and HON.
Obviously, we note that as response time increases, the Raman and sporadic peaks
get shrink.

Figure 12 depicts the evolution of MI gain spectra in the case of “total mixed”
GVD. It is obvious to see from panel (a) (fast response time) that as GVM increases,
the conventional bands decrease while it is inverted for Raman bands. The effects of
TOD is visible around Ω ¼ 60Thz where the spectra are neutralized before
extended over all frequencies. According to panel (b) for slow response time, we
observe the appearance of Raman peaks in conventional bands brought by the effect
of SOD that magnitude decreases as GVM increases and they shifted toward high
frequencies however their width get shrink over what observe in Figure 12(a). Also
we note the existence of non-conventional bands between Ω ¼ 11� 14ð ÞThz due to
the effect of FOD that decreases and shift toward high frequencies when GVM
increases while is it inverted for the other bands between Ω ¼ 2� 13ð ÞThz as the
magnitude increases, the width widens toward both the low and high frequencies.
The effect of TOD is visible around Ω ¼ 60Thz with the appearance of singularity.
It is important to note from this figure that the Raman peaks observe at higher
frequencies in previous figures vanish due probably to the sign of used value.

We generally note from these different figures that, the inclusion of TOD and
FOD increases considerably the MI gain spectrum and their width. In addition, the
formation of Raman and sporadic peaks observed is due on the one hand to the
combined effect of SOD and relaxation time and on the other hand due to the
combined effect of TOD. They move toward high frequencies due to the effect of
GVM. From fast to slow response time, we note that the magnitude of MI gain spectra
decreases considerably. TheMI occurs in the case of HOD and septic nonlinearity only
when the interactions between beams are less (gives here by walk-off parameter δ).

4.3 Effect of septic nonlinearity parameter κ3 on modulation instability gain

To better appreciate the effect of septic nonlinearity on MI gain, we portrayed
the latter versus κ6 in different cases above. In other to do this, the solution of
Eq. (15) gives rise to four roots that turn to two pairs of roots due to HON effect.

Figure 12.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) for different values of δ in “total mixed” GVD
with the inclusion of TOD. (a) for τ = 0.01ps, (b) for τ = 0.1ps. The colors and the δ values are the same in
Figure 3.
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Figure 14.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) and the nonlinear parameter κ3 in the case of
anomalous GVD for null GVM δ ¼ 0ð Þ. (a) τ = 0.0ps, (b) τ = 0.01ps, (c) τ = 0.1ps, (d) τ = 1ps.

Figure 13.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) and the nonlinear parameter κ3 in the case of
normal GVD for null GVM δ ¼ 0ð Þ. (a) τ = 0.0ps, (b) τ = 0.01ps, (c) τ = 0.1ps, (d) τ = 1ps.
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We have plotted the behavior of the MI gain in Figure 13 for normal GVD. We
observe from this figure that MI appears on both side of κ3. Each panel shows that
the distinct side bands are antisymmetric. As κ3 increases, the MI gain increases and
the bandwidth enlarges. The high value of MI gain is obtained for κ3 >0 and the
bandwidth increases when delay response time increases for Ω<0, while it is
inverted for Ω>0. For instantaneous response time [see panel (a)], we note the
appearance of two high side bands for κ3 >0 due to the effect of SOD, while there
are three side bands for κ3 <0 brought by TOD around Ω ¼ �500 Thz and by FOD
around Ω ¼ 0 Thz that slowly increases for negative value of κ3. Considering non-
instantaneous response time [see panels (b), (c), and (d)], we note that the side
bands are unstable for Ω<0, while it is slightly unstable for Ω>0. In addition, as
delay response time increases, we note more side bands. The latter information
remains in the case of “total mixed” dispersion regime; however, the bandwidth is
reversed due probably to opposite signs of the dispersion parameter.

In the case of anomalous dispersion regime plotted in Figure 14, we notice that
the side bands brought by FOD are suppressed due to their opposite sign with the
sign of SOD, the latter dominates and leads to the observed spectrum. Apart from
this difference, the information obtained in the normal case remains almost the
same. We now turns our attention in the case of mixed dispersion regime gives in
Figure 15. Our results show that contrarily to what are observed in previous figures,
the bandwidth is clearly visible for κ3 >0 where the band rapidly increases as κ
increases by enlarging their bandwidth meanwhile for κ3 <0, we notice that the
bandwidth progressively appears as delay response time increases. In each panels,
the effect of TOD is suppressed due probably to the opposite sign of SOD; this leads
to symmetric bandwidth observed. For instantaneous response time in panel (a),
the MI gain spectrum appears only for κ3 <0. For non-instantaneous response time,

Figure 15.
MI gain spectra g m�1ð Þ as a function of the frequency Ω (THz) and the nonlinear parameter κ3 in the case of
mixed GVD for null GVM δ ¼ 0ð Þ. (a) τ = 0.0ps, (b) τ = 0.01ps, (c) τ = 0.1ps, (d) τ = 1ps.
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we observe that for κ3 <0, the band slightly appears due to the effect of FOD that
bandwidth decreases as delay response time increases.

5. Conclusion

In this work, we have investigated analytically and numerically the MI process in
nonlinear Kerr media with delayed Kerr nonlinearity and subjected to XPM,
described by a system of two coupled NLS equation with cubic-quintic-septic non-
linearities, experiencing diverse GVD regime. The system is considered by incorpo-
rating the Debye relaxational time-dependent nonlinearities in NLS equation with
combined high-order effects modeling the propagation of ultrashort optical pulses in
highly nonlinear Kerr media. By considering a small harmonic perturbations to the
stationary solutions, we derive the exact dispersion relation for the components of the
perturbation fields that include both the XPM and relaxation effects. Our study
revealed the effects of septic nonlinearity in the case of the pulses co-propagating in
diverse GVD regime. Obviously from our work, the incorporation of septic
nonlinearity increases considerably the MI gain spectrum with the emergence of
new instabilities frequencies contrarily to that was observed in Ref. [8, 9, 38, 39],
while the increase of delay response time decreases the magnitude and the width of
the MI gain.

Our study unveiled in the case of weak dispersion regime that, in instantaneous
Kerr media, the typical frequency converges to finite value for mixed GVD regime
with two gain maxima for certain GVM, meanwhile the MI gain continuously grows
with the GVM until it reaches certain values before decays. In non-instantaneous
Kerr media, we note the appearance of Raman band with the emergence of Raman
peaks for slow response time τ ¼ 0:1psð Þ in the case of mixed dispersion regime
contrarily to what was done in [39]. We note that, these emerged Raman peaks
decrease in width and magnitude when the GVM increases and shifts toward higher
frequencies.

Now considering the effect of HOD, we observed that their incorporation hardly
change the spectrum. The inclusion of FOD does’t affect the MI gain in normal
dispersion regime contrarily to the works done in the case of cubic and quintic
nonlinearities [8, 9, 39] where the effect of FOD vanishes in the case of anomalous
GVD. The effects of TOD vanish in the case of mixed dispersion regime. However,
in the case of anomalous and normal dispersion regime, we note the appearance of
Raman peaks that width and magnitude decrease as GVM increases and get shrink
as response time increases. In addition, the four unstable modes observed in fast
response time leads to two unstable modes for slow response time. For “total
mixed” dispersion regime, we also note the appearance of Raman peaks that slightly
shifted toward higher frequencies due to the effects of GVM. The effects of septic
nonlinearity was also portrayed and our results unveil the appearance of instability
in both side of septic nonlinearity parameter. This aspect shows that MI can be
investigated as well as in focusing nonlinearity as in defocusing nonlinearity.

Due to the fact that the MI gain increases when taking into account the effect of
HON, we can conclude that the system is more stable against harmonic perturba-
tions. In addition, the incorporation of higher order effects lead to the emergence of
Raman peaks on the Raman bands. This means that the incident particles after
collision with the molecules of the medium, diffuse with a new energy thus creating
the Raman peaks observed resulting to the generation of new frequencies range.
The study of MI gain has aroused great enthusiasm within the scientific community,
motivated in large part by their potential in innovative applications in information
technology and telecommunications.
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