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Abstract

Ultrasound (US) technology is already into the research field providing a 
 powerful tool of producing nanomaterials or being implicated in decoration 
procedures of catalyst supports for energy applications and material production. 
Toward this concept, low or/and high-frequency USs are used for the production of 
nanoparticles, the decoration of catalytic supported powders (carbon-based, titania, 
and alumina) with nanoparticles, and the production of metal-organic frameworks 
(MOFs). MOFs are porous, crystalline materials, which consist of metal centers and 
organic linkers. Those structures demonstrate high surface area, open metal sites, 
and large void space. All the above produced materials are used in heterogeneous 
catalysis, electrocatalysis, photocatalysis, and energy storage. Batteries and fuel cells 
are popular systems for electrochemical energy storage, and significant progress 
has been made in nanostructured energy materials in order to improve these storage 
devices. Nanomaterials have shown favorable properties, such as enhanced kinetics 
and better efficiency as catalysts for the oxygen reduction reaction (ORR).

Keywords: ultrasound, sonochemistry, nanomaterials, batteries, fuel cells, 
photocatalysis, metal-organic frameworks

1. Introduction: sonochemistry

Over the last decades, sonochemistry has been a fast developing branch of chem-
istry, which revolves around the ultrasound (US) effect and acoustic cavitation. USs 
include frequencies above the audible limit of human hearing (20 kHz). The effects 
of high-energy US arise from the acoustic cavitation rather than interactions of 
acoustic waves and matter at a molecular or atomic level. The pressure fluctuations 
generated by US in a liquid medium lead to the formation, growth, and implosive 
collapse of bubbles. More specifically, the liquid continuously expands (negative 
pressure) and compresses (positive pressure) until it reaches a critical diameter, 
which depends on the nature of the liquid and the US frequency.

The collapse of the bubble is almost an adiabatic process, and it results in a mas-
sive buildup of energy within the bubble. The microscopic bubbles can also collapse 
near the surface of the solid substrate and activate it, split larger particles to smaller 
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ones or deagglomerate nanoparticles. Other than the elevated temperature and 
pressure, those localized hotspots can result in powerful cavitation-generated shock 
waves and microjets, which can cause effective stirring/mixing of the adjusted layer 
of liquid [1, 2].

The first region is the interior of the bubble itself, which can be visualized as 
a micro-/nano-reactor, dictated by extreme temperature (>5000 K) and pressure 
conditions (>1000 atm) along with rapid heating/cooling rates (1010 K/s). The 
second one is the interface between the bubble and the bulk solvent. The reaction 
efficiency of nonvolatile solutes depends on their hydrophobicity, which determines 
their ability to accumulate at the gas-liquid interface [3]. The third region is the 
vicinity of the bubble, where the bulk solution is at ambient temperature, and free 
radicals can form in the hot regions.

2. Batteries

As the globe encounters constant rise of energy demand to survive, the need to 
exploit efficiently renewable energy sources is vital. Electrochemical energy pro-
duction can be a promising power source, while electrochemical devices constitute 
an energy storage option as well. Among these devices, batteries possess commen-
surate attention the last decades, due to their various applications and potential [4].

A battery cell, regardless its shape and configuration, is a device consisted of 
two electrodes, the anode and the cathode, an electrolyte between them having 
the role of the ionic conductor and a separator positioned between the electrodes 
that converts chemical energy to electricity or the reverse if the cell is rechargeable. 
Thus, the performance of the cell depends on the properties of all the components 
and the consistency of the system [5]. Τhe current challenges are to advance the 
energy density of batteries, extend their conversion efficiency and rechargeability, 
and eliminate the charging time and cost while meeting the safety and environmen-
tal standards [5, 6].

In this direction, research has been emphasized toward developing nano-
structured materials and implementing them in batteries as they deliver enriched 
performance, which is unapproachable by conventional materials. Some crucial 
aspects about nanomaterials are their large electrochemically active surface area, 
their electronic and ionic conductivity, thermal and mechanical endurance, and 
flexibility [7, 8]. In order to ameliorate redox reaction rates and accelerate kinetic 
mechanisms, a wide range of methods have been proposed including the possible 
incorporation of nanomaterials in each component of a cell [9].

Though the effectiveness of nanomaterials remains undisputed, only a minority 
of them is currently commercially utilized apparently as a result of the high cost to 
synthesize and manufacture them [7]. Sonochemistry may provide feasible tools 
to resolve many obstacles concerning the cost, safety, and environmental liability 
while fabricating the nanomaterials for batteries. As an example, we refer to Gu 
et al., who give a nice overview of graphene preparation by exfoliation in liquid 
media by using US as energy source and compared the results with those from other 
methods [10]. Graphene has excellent electrical, chemical, and mechanical proper-
ties and can, for example, boost the activity of electrodes especially of the oxygen 
electrodes in Zn-air batteries [11–13].

2.1 Li-batteries and Li-ion batteries

High intensity USs have been used to prepare iron-graphene hybrid electrodes 
for Li-batteries, whereby it was found that the ultrasonication step is of key 
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importance for obtaining hybrid electrode material with small particle size and 
outstanding capacity and cyclability [14].

Olivine-structured LiFePO4 is a very promising cathode material; has benefits 
such as nontoxicity, low cost of raw materials, and good structural stability at high 
temperature; is safe; and has relatively high-specific capacity (170 mA h g−1) with 
a flat discharge-charge potential (3.45 V vs. Li+/Li) [15, 16]. However, the low dif-
fusion coefficients (10−17 to 10−14 cm2 s−1) of the Li-ions lead to a poor rate perfor-
mance of LiFePO4, and the poor electronic conductivity (10−9 to 10−8 S cm−1) is 
hindering its practical applications and must be tackled [15–17]. The preparation 
of nanomaterials for cathodes in Li-ion batteries (LIBs) has been proved to be one 
of the effective ways to overcome the problem of the slow Li diffusion and facili-
tate the reaction kinetics on the cathode. It is well known that porous structures 
can also increase the electrode/electrolyte interface area ensuring effective electro-
lyte permeation in cathode materials and substantially improve the performance 
of LiFePO4 and thus of the LIBs [17, 18]. It has been demonstrated that the adop-
tion of ultrasonic-assisted impinging stream reaction is an effective method to 
produce positive electrode precursor particles for LIBs with high electrochemical 
performance [19].

(NH4)Fe2(PO4)2(OH)·2H2O has been prepared as positive electrode material for 
LIBs. The ultrasonication step was followed by a hydrothermal treatment step [20].

Apart from LiFePO4, the preparation of Li-Mn-O electrode materials for second-
ary Li-batteries has been examined. Kim et al. fabricated mesoporous LiMn2O4 
nanospheres with upgraded properties and observed their performance in 50 cycles 
[21]. Sonochemical treatment of the surface of a corresponding Li-Mn-O electrode 
by coating particles with a porous film of MgO enhances its electrochemical proper-
ties, especially in high temperatures [22].

Mn3O4 is used as a precursor in the preparation of LiMn2O4 and can be synthe-
sized using US in a direct step. Co3O4 used as key material in energy applications 
can be prepared by the same procedure [23]. Co3O4 nanoparticles (NPs) can be 
obtained by sonochemical synthesis also out of ionic liquids or azo ligands, using 
Co(CH3COO)2·2H2O as starting material [24, 25]. In both reports, the diameter of 
the particle size of Co3O4 could be decreased lower than 50 nm.

A plethora of carbon morphologies has been extensively investigated as poten-
tial material appropriate for anode electrode in LIBs. Carbon spheres constitute an 
example applicable in LIBs [26, 27]. It has been demonstrated that the use of US 
provides an opportunity to prepare the mentioned material in a nontoxic accessible 
manner under mild conditions and competent dimensions (150–400 nm) [28].

Furthermore, recently Kumar et al. [29] outlined the progress in sonochemi-
cal synthesis of carbon dots, while Gedanken et al. [30] presented an advanced 
hybrid electrode of Cu foil coated by a layer of Sn@C-dots@Sn NPs ranging from 
50 to 200 nm. These NPs were formed via sonication and contributed in promising 
cycling endurance of the cell.

A novel approach for the preparation of electrodes is the use of composite mate-
rials based on graphene. Therefore, Fe(III) oxide was sonochemically coprecipitated 
on graphene nanosheets in order to obtain nanocomposites for rechargeable Li 
batteries with stable charge-discharge kinetics for ca. 120 cycles [31]. Wu et al. 
also prepared magnetite NPs on reduced graphene by using a one-pot US-assisted 
method. These nanocomposites allow for high performance lithium ion storage 
devices [32].

Reduced graphene oxide (RGO) nanosheets dispersed under ultrasonic irradia-
tion in NV (Ni3(VO4)2) NPs prove to eliminate their agglomeration; thus, the highly 
conductive electrode fabricated by the composite NV/RGO can preserve 88% of its 
initial capacity (117.22 mA h g−1) after 1000 cycle tests [33].
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Polyacrylonitrile (PAN) can be used as a component of solid composite elec-
trolyte lithium battery [34]. A sonochemical method has been used to prepare 
negative electrode materials containing encapsulated intermetallic NPs in PAN. 
The use of US leads to very small particles of CoSn2, which favors the formation 
of amorphous Li-Co-Sn and CoSn2 alloys, while the carbonaceous matrix helps to 
maintain the small particle size. The resulting CoSn2-carbonaceous phase electrode 
(CoSn2@C) shows improved electrochemical behavior and is stable upon cycling 
(ca. 450 mA h g−1 after 50 cycles) in comparison with reports on pure crystalline 
CoSn2 [35].

Cu2O-based graphene composites have been prepared and tested for use as 
anode materials in lithium ion batteries [36] with superior performance than Cu2O 
and can be used also for photocatalytic applications, sensors, and energy storage, 
especially for supercapacitors [37].

Various reports investigate copper (II) oxide (CuO) and CuO/carbon compos-
ites as a possible anode material for LIBs [38–41]. Studies exploiting sonochemical 
methods for fabricating these materials involve the synthesis of copper complexes 
in an ultrasonic bath and the following calcination of compounds between 
400 and 500°C. In this way, CuO particle size can be decreased until 12.1 nm. 
However, the specific structure and dimensions of particles differ depending on 
the precursor and the treatment conditions [42–44]. Hajnorouzi proposed a new 
method called “direct sonoelectrochemistry” incorporating ultrasonic irradia-
tion in the process of electrolysis of a Cu tip and a physical top-down method, 
“US ablation” with Cu foil as the starting material to produce CuO NPs [45]. In 
comparison with conventional electrochemical methods, the produced amount of 
NPs was increased, and their dimensions were controlled, while the total time of 
 preparation was reduced.

Nanoporous silicon structures are considered to be an attractive material in the 
design of LIBs as they have a large theoretical specific capacity [46–48]. Bedini et al. 
reported the synthesis of hydrogenated amorphous Si NPs under ultrasonic irradia-
tion in mild conditions [49]. The product was highly porous with dimensions of 
particle ranging from 1.5 to 50 nm.

Two-dimensional molybdenum disulfide (MoS2) NPs have high potential 
implementation not only in LIBs but also in sodium-ion [50], Li-sulfur [50], zinc-
ion [50, 51], and Mg batteries [52]. Liquid-phase ultrasonic exfoliation method can 
be an attractive process to disperse nanosheets of MoS2 in various solvents [53]. One 
more layered 2D material that can be obtained with the contribution of US is V2O5 
nanosheets according to Li et al., who fabricated and evaluated the electrochemical 
performance of the respective electrode [54].

Among the oxides of manganese, manganese dioxide (MnO2) finds applica-
tion as energy storage material in alkaline batteries, rechargeable lithium batter-
ies, and dry cells. Highly dispersed and nonagglomerated nano a-MnO2 with a 
needle form of 1–2 nm diameter and up to 50 nm length have been synthesized by 
ultrasonication of an aqueous manganese(ΙΙΙ)acetate solution with pH close to 7 
followed by mild drying [55]. Reduction of KMnO4 has been also investigated as 
an alternative manner to exploit ultrasonic irradiation to prepare MnO2 [56, 57]. 
Okitsu et al. [56] provided useful data in order to comprehend the mechanism of 
basification, assisted by H2O2 molecules formed during sonication, while Gnana 
Sundara Raj et al. [57] used also polyethylene glycol so as to achieve reduction 
and prepare spherical MnO2 particles with dimensions from 10 up to 20 nm. This 
proved to exhibit proper electrochemical endurance (after 500 cycles, 87% of the 
initial capacitance was preserved, while in the end of 1000 cycles, 78% of the initial 
specific capacitance was preserved).
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Not always is it possible to obtain the result one is looking for, during the 
preparation of nanomaterials using US. Ganesh Kumar et al. did not obtain lithi-
ated manganese oxide suitable for lithium batteries by treating Mn(III) salts using 
US and hot-hydrolysis, but the study showed the superiority of the ultrasonication 
regarding the adjustment of particle properties [58]. In another attempt of the same 
group, LiNi0.5Mn1.5O4 was synthesized sonochemically as cathode with high redox 
potential for LIBs with better cyclability [59].

2.2 Zn-air and Zn alkali batteries

Zinc-air batteries (ZABs) exhibit a high energy density being at the same time a 
low-cost product. Therefore, a tremendous interest is present in meeting the demands 
for flexible and portable electronics. A novel porous-structured poly vinyl alcohol 
(PVA)-based nanocomposite gel polymer electrolyte (GPE) with silica (SiO2) was 
synthesized and used as electrolyte in a flexible ZAB. The fabricated porous material 
exhibited a high ionic conductivity (57.3 mS cm−1), excellent water retention capability, 
and improved thermal and mechanical properties under ambient condition, and the 
ZAB showed an excellent cyclability, discharge performance, and power density [60].

It has been reported that cerium metallic particles deposited on Zn anode for 
alkali batteries lead to an improved electrochemical performance, whereby US 
power and sonication time influence strongly the battery efficiency, increase the 
corrosion resistance of the anode, and suppress the Zn-dendrite formation [61].

Regarding the oxygen reduction reaction (ORR), highly efficient cathodes for 
ZABs have been prepared based by decorating Fe2P on 3D N,P-codoped porous 
carbon. The later has been prepared using pore-forming agents [62]. Further, 
bimetallic oxides like perovskites can be immobilized on different substrates and 
used as air electrodes in ZABs. As an example, one can use nafion, which has anti-
fouling properties and is very interesting in electrochemical application owing to 
its interesting electronic and catalytic properties. As an example, we refer to Chen 
et al., who have immobilized SrWO3 on nafion by using US [63].

Nickel-iron layered double hydroxide (NiFe LDH) constitutes one more com-
petitive catalyst with potential use in air cathodes, due to its layered structure. 
Sonication-assisted liquid exfoliation has been proposed to be competent to deliver 
highly functional NiFe LDH/CB nanosheets considering their oxygen evolution 
(OER) catalytic properties and stability [64].

2.3 Other battery systems

Xie et al. prepared active cathodes for Ag2V4O11/Li battery systems through a 
reaction between V2O5 gel and Ag2O powder, which has been accelerated by using 
US [65]. The prepared cathodes (Ag2V4O11 and Ag1.4V3O8) exhibited superior elec-
trochemical properties as compared to the ones prepared by this solid-state method.

In Li-S batteries, the sulfur host plays an important role. With respect to this, 
hierarchically ordered micro/mesoporous carbon (HPC) has been prepared by 
US-assisted spray pyrolysis obtaining HPC-S cathodes, which exhibited an excellent 
cycle retention of 77% in tests with 500 cycles at 2.4°C [66, 67].

3. Fuel cells

An electrochemical mechanism for the direct combustion (chemical oxidation) 
of fuels, which bypasses the intermediate stage of heat generation (so-called “cold 
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combustion”), allows for the direct conversion of chemical energy of a fuel to 
electrical energy without the losses due to the Carnot process. This direct energy 
conversion is possible in devices called fuel cells, and the underlying electrochemi-
cal mechanism has analogies in living beings [68].

There are several types of fuel cells, mostly categorized based on the used 
electrolyte. A second classification is based on the temperature needed by the 
electrolyte to achieve sufficient ionic conductivity and one speaks about low-, 
intermediate-, and high-temperature fuel cells.

3.1 Low-temperature fuel cells

The most important reaction in fuel cells is the provision with enough oxidant in 
order to keep the reaction running and thus the electricity production at the maxi-
mum level. This reaction is the reduction of the oxygen molecule (oxygen reduction 
reaction—ORR) as this is the source of the ions either to be transported through the 
solid electrolyte in solid oxide fuel cells (SOFCs) or to react with the protons arriv-
ing through the electrolyte in polymer electrolyte membrane (PEM) fuel cells.

In PEMs, the operating temperature is low, and therefore, the kinetics of the 
ORR is not high enough without the use of catalysts [69].

We prepared using the sonoelectrochemical method a Pt and carbon black-
based nanocomposite as electrocatalyst for PEM fuel cells. We used pulsed electro-
deposition in combination with pulsed ultrasonication to obtain Pt NPs on carbon 
black substrates, and we have shown the beneficial role of polyvinylpyrrolidone 
(PVP) against the agglomeration of the produced NPs [70].

Despite the reports of many research groups that Pt-based materials are consid-
ered to be the best electrocatalyst for ORR in fuel cells, there is no doubt that their 
reserves in nature are very limited making them expensive. Further, their durabil-
ity is not as high as needed to use them in commercial applications. Therefore, 
reduction of the Pt consumption and most importantly their replacement with 
nonprecious metal catalysts in the ORR are considered essential. Therefore, the 
development of non-Pt or metal-free ORR electrocatalysts is extremely important 
and urgent [71].

Pd-based catalysts are one of the most attractive choices for the replacement of 
Pt catalysts as their cost is significantly lower, and at the same time, they possess a 
high catalytic activity for ORR not only because of the Pd itself but also due to syn-
ergistic effects between the Pd and the other components and supports [72]. Until 
now, different Pd-based composite materials have been proposed and investigated 
as catalysts for ORR [73, 74].

A very useful overview on sonochemically prepared multicomponent electro-
catalytic materials for low-temperature fuel cells is given by Lee and Kwon [75]. 
Most of the efforts are focusing on the partial replacement of Pt by low-cost metals, 
for example, Ni [76], or the Pt replacement by Pd and respective nanoalloys with 
low-cost metals (Mn and Fe as core-shell with Pd) as well [77]. Carbon-supported 
Sn NPs for electrochemical applications and especially for improving the kinetics of 
the ORR have been sonochemically synthesized and showed high reduction over-
potential for the ORR mainly due to the high surface area of the resulting carbon-
supported Sn electrode [78].

Further improvement in the catalytic activity of the developed catalysts is 
expected through core-shell architecture materials and also through the use of 
active supports with high porosity leading to high active centers on the catalyst 
surface. Unique Pd@Pt/C core-shell NPs as methanol-tolerant catalysts have been 
prepared by Zheng et al. in a sonochemical multistep approach [79]. The high 
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performance of the Pd3Pt/C catalyst is ascribed to the unique combination of 
preferable growth of the Pd (1 1 1) plane, small particle size (∼4 nm), unique core/
shell structure, and the electronic effects between Pd and Pt.

Alternative electrocatalytic materials for the ORR have been also prepared 
starting from biomass and turned out to be promising alternatives to noble metal 
catalytic materials. The resulting catalysts exhibit an excellent catalytic activity as 
compared to commercial catalysts with reduced methanol crossover [80].

Also, oxides of transition metals have been sonochemically prepared as elec-
trocatalysts for the ORR. Highly active porous MnO2 with superior electrocatalytic 
activity as compared to commercial Pt/C catalyst has been sonochemically prepared 
and tested by Zuo et al. as a promising catalyst for direct methanol fuel cells [81].

US has been used also for the preparation of electrolyte membranes for PEMs. 
Nanocomposite membranes based on sulfonated polybenzimidazole (PBI) with cel-
lulose and silica precursors have been made with improved mechanical properties 
and decreased methanol permeability [82].

Zuo et al. prepared a composite cathode material for alkaline fuel cells based on 
MoS2 decorated with Pd using a simple sonochemical route [83]. They found that 
the new electrocatalyst has better performance than commercial Pt/C catalysts.

3.2 High-temperature fuel cells

Fuel cells working at temperatures higher than 500°C are referred to as inter-
mediate (<700°C) and high temperature (700–850°C) fuel cells. These are proton 
conducting ceramic fuel cells (PCFCs), molten carbonate fuel cells (MCFCs), and 
solid oxide fuel cells (SOFCs). In all these fuel cells, the ORR is important, but in 
general, the use of catalysts is not necessary on the cathode side because of the high 
service temperatures.

In SOFCs, the ORR is as important as mentioned in the PEM section, but here 
the temperature is high enough to accelerate the ORR without the use of specific 
catalysts [84]. SOFC cathodes must be efficient mixed ionic-electronic conductors 
(MIECs) as they need to transport both electrons and ions especially in intermedi-
ate SOFCs (IT-SOFCs) [85].

Once the cathode reaction is providing a sufficient amount of oxygen ions in 
SOFCs, the anode material is of outmost importance as it has to catalyze the oxida-
tion reaction.

One of the critical components for such a device is hydrogen, which is the fuel 
to be oxidized. Hydrogen can be produced by not only the classical methods such 
as reforming of hydrocarbons, gasification of coal or heavy oil fractions, and 
electrolysis using renewable or nuclear energy sources but also sonochemically 
and sonoelectrochemically, as reported in a recent review [86]. Other groups 
have developed electrocatalysts for hydrogen evolution using US. High intensity 
ultrasonic irradiation of AlNi alloy has led to an electrocatalyst for water splitting 
with high surface area and changes in its composition, which can be controlled 
by the selection of the right fluid during sonication [87]. Nitrogen doped reduced 
graphene oxide supported on N-titania as efficient catalysts for the production of 
hydrogen through water splitting has been prepared in a combined sonochemical/
hydrothermal step [88].

As oil and natural gas supply is well established, feeding SOFCs directly with 
natural gas would be an ideal solution [89]. For natural gas fed SOFCs, the catalytic 
activity of the anode materials is critical as it needs not only to accelerate the oxida-
tion reaction but also to prevent poisoning of the active centers by coking and sulfur 
and to be stable against other components that may be contained in the natural gas.
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In our group, several efforts have been made in order to improve the preparation 
methods of SOFCs [90–94] and SOFC materials [95, 96] with a focus on the anode 
compartment [97–99]. Emphasis was given on the implementation of US in order to 
reduce the preparation time or to follow a facile and/or alternative path for materi-
als with improved properties. In most cases, we prepared nanomaterials because 
they offer special properties to the fuel cells as they are catalytically active to a wide 
range of chemical reactions. One can prepare novel SOFC anodes by decorating 
state-of-the-art anode powder with nanometric metals and metal oxides [100]. 
We decorated anode materials based on GDC/Nickel and YSZ/Nickel cermets with 
molybdenum and tungsten oxide NPs and improved the catalytic activity and sta-
bility of the resulting composite anodes against coking and sulfur poisoning [101].

Not only electrodes for SOFCs have been made using ultrasonication but also 
electrolytes. Okkay et al. prepared samaria doped ceria (SDC—Ce0.8Sm0.2O1.9) 
using an US-assisted coprecipitation method [102]. It has been found that the lattice 
parameter of the produced nanomaterial increased with increasing ultrasonic 
acoustic power and is linearly related to the ionic conductivity of the resulting 
electrolyte after sintering at 1200°C. Pinjari and Pandit prepared sonochemically at 
room temperature ceria nanopowders with particle size less than 30 nm with clear 
benefits regarding energy efficiency and reaction time as compared to the con-
ventional preparation method [103]. Sonochemistry has been also used to prepare 
Ce(III) nano-sized precursors for nanoceria [104].

3.3 Other electrocatalytic applications

USs can be used not only in batteries and fuel cells but also in many other elec-
trochemical and sonoelectrochemical applications. Ultrasonication has been used 
for the preparation of electrocatalysts for the direct electrooxidation of ethanol. A 
facile US-assisted method was proposed to fabricate the Pd-Pt alloy/multiwalled 
carbon nanotube (Pd-Pt/CNTs) nanocomposites for the ethanol and methanol 
electrooxidation reaction in alkaline media [105].

In another attempt, a catalyst made of graphene supported Ag decorated Pd NPs 
with exceptional activity and uniformity. In this respect, it has been shown that 
graphene is very important as substrate as it minimizes the coalescence of the NPs, 
which would decrease both the surface area and the electrocatalytic activity [106]. 
A multifunctional nanostructured electrocatalyst has been prepared by replacing 
carbon copper nanowires by Pd resulting to Pd@CuNWs and supported them 
by multiwalled carbon nanotubes (MWCNTs) using chitosan (CH) as a binder. 
Electrochemical catalytic activity and durability evaluation results proved the 
superiority of the resulting Pd@CuNWs/MWCNTs/CH regarding electrocatalytic 
activity and long-term stability compared to Pd/MWCNTs and commercial Pd/C 
electrocatalysts for ethanol electrooxidation [107].

An overview on fundamental studies of sonochemical and sonoelectrochemical 
nanomaterial preparation is given in recent publications of our group on fuel cells 
[108, 109] and others on nanomaterials [110].

Silica gels have been considered as appropriate matrices for the preparation of 
complex center doped materials for a variety of applications such as controlled-
release carrier implantable materials for low weight drugs in biological systems and 
as substitute materials for membrane processes in fuel cells [111, 112].

Ultrasonication can be used for the atomization of methanol in order to have 
a smooth and continuous feed in direct methanol fuel cells, leading to a high and 
stable open circuit voltage (OCV) [113] or to enable improvement of direct metha-
nol fuel cells using sonication in parallel with a novel cell design with integrated 
ultrasonic transducer [114].
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4. Photocatalysis

Photocatalysis is a phenomenon based on redox reactions, which take place at 
the surface of a semiconductor material under UV or visible light irradiation. The 
photocatalytic activity of the catalyst depends on its ability to create electron-hole 
pairs, which are then taking part in a redox reaction to generate hydroxyl and 
superoxide radicals, which are able to undergo secondary reactions [115].

The improvement of the photocatalytic efficiency is a strategy, which was 
developed to push the absorption onset of TiO2 toward longer wavelengths (ana-
tase band gap, 3.2 eV) by doping TiO2 with anions and/or cations and metal ions 
[116–118]. Zinc oxide can be either a n-type or a p-type semiconductor with a wide 
band gap (Eg ≈ 3.3 eV at 300 K), while its composites are very interesting materi-
als because of possible synergistic effects on photoelectrochemical properties and 
photocatalytic activity [119, 120]. The primary ways to improve the photocatalytic 
effect can incorporate a sonocatalytic technique [121], doping [122], or stratified 
films [123, 124].

4.1 Environmental and energy applications

The photocatalytic degradation of organic pollutants such as dyes, pesticides, 
and pharmaceutical waste is a crucial application for the safety of the ecological sys-
tem, mainly due to their toxicity and degradation complexity. The main application 
areas in catalysis are photocatalytic electrolysis of water, environmental protection, 
and solar cells. The pollutants in wastewater can be roughly divided into organic 
and inorganic pollutants, where organic compounds can be degraded by TiO2 
photocatalytic technology [125].

Converting CO2 waste into valuable carbon fuels is undoubtedly one of the 
most viable and economical alternatives to reduce the CO2 emissions and resolve 
the energy crisis. UV irradiation and visible light have been used as sources of 
excitement for semiconductor catalysts to produce energy-bearing products 
such as methane, methanol, carbon monoxide, formic acid, and formaldehyde. 
Photocatalytic reduction of CO2 can not only reduce the carbon dioxide emissions 
but also solve the energy crisis [126–128]. Some of the catalysts that can be used for 
the photocatalytic reduction of CO2 include WO3 [120], ZnIn2S4 [129], CdS [130], 
Cu2O [117], CuInS2 [131, 132], and BiVO4 [133].

4.2 Sonochemical synthesis of nanocatalysts

Stucchi et al. used sonochemistry to both form NPs from the precursor and 
achieve a good distribution on the TiO2 decoration surface [117]. In fact, US energy 
accelerates the diffusion of the dissolved substance into the reaction system and 
also affects the selective adsorption of the surfactant on copper, causing elongation 
or compression in certain directions, thus affecting the morphology of the particles. 
The utilization of Cu, CuO, and Cu2O NPs on TiO2 surface can greatly enhance the 
photodegradation of acetone and acetaldehyde [118].

CdS/TiO2 can be prepared at a relatively low temperature (70°C) with small 
particle sizes (11 nm) using US in a short time (1.5 h) [130]. On the other hand, the 
use of conventional methods requires at least 20–24 h and elevated temperatures 
(200–400°C). The properties of complex core-shell materials are combinations 
of the properties of both materials in the core and the shell. Those materials can 
be used in photovoltaic cells, optical sensor photocatalysts, and catalysts. In addi-
tion, CdS/TiO2 NPs can selectively bind heavy metal ions, such as Cr (VI), on their 
surface [134].



Nanotechnology and the Environment

10

The irradiation of W(CO)6 in diphenylmethane in the presence of an Ar-O2 
mixture for 3 h can lead to tungsten oxide NPs consisting of both orthomolecular 
and monoclinic WO2, partial oxidation of which produces tricyclic WO3 [135]. 
WO3 acts as a catalyst in reducing CO2 in fuels (CH4 and CH3OH) with significant 
catalytic efficiency [136]. The introduction of CdS on WO3 can enhance carbon 
dioxide adsorption and increase CH4 selectivity, while the existence of two different 
regions can minimize undesirable back reactions of the photocatalytic products 
[137]. Those material CdS/WO3 can also use for the photocatalytic degradation of 
organic dye rhodamine B [138].

Xin et al. synthesized ZnIn2S4 nanosheets with hexagonal and cubic structures. 
The samples were prepared and used to form methyl formate by photochemically 
reducing CO2 to methanol. The efficiency of the hexagonal form was better than 
the cubic one. In addition, both hexagonal and cubic nanosheets exhibited much 
higher activity than ZnIn2S4 microspheres prepared by the hydrothermal method 
[129]. The ZnIn2S4-In2O3 structure is effectively used as a photocatalyst in CO2 
reduction, by offering a large surface area for CO2 adsorption, while it exhibits 
abundant active sites for surface catalysis, leading to significant CO production rate 
and high stability [139].

Copper can also be used to prepare a CuInS2 NP structure. The study of various 
parameters, such as the different crystallographic structures of sulfur, the concen-
tration of precursors, the reaction time, and the power of ultrasonic radiation on 
the morphology and particle size, showed that the crystallinity of sulfur plays an 
important role in the morphology of CuInS2 [131, 132]. Reducing CO2 to solar fuel 
can be essential for both decreasing CO2 emissions and increasing energy produc-
tion. This photoelectrochemical reduction of CO2 to methanol is carried out by 
using p-CuInS2 as a photocathode [140].

BiVO4 NPs can be synthesized sonochemically at room temperature at different 
pH values (3, 5, and 10) of the original precursor without further heat treatment. 
The morphologies of the final samples are different depending on the pH value 
of the original precursor. The BiVO4 sample, which was prepared at a higher pH 
value, has an advantage in photocatalytic performance. The excellent photocatalytic 
efficiency can be attributed to the superior crystallinity and the large active surface 
of the BiVO4 structure [133], while its photocatalytic activity was studied during 
the degradation of organic dyes [134].

5. Metal-organic frameworks

5.1 Properties and applications

Metal-organic frameworks (MOFs) are a new class of porous crystalline hybrid 
materials that have achieved a tremendous growth over the last decades, with atten-
tion not only in chemistry but also in general science and technology. They consist 
of inorganic metal-based centers (ions or clusters) and organic ligands, assembled 
through strong coordination bonds in order to create an open crystalline framework 
with permanent porosity.

These ordered crystalline structures possess physicochemical properties, such 
as high surface area, open metal sites, and large void space. The easy tuning of the 
shape, size, and chemical nature of pores has led to unique chemical versatility 
and various morphologies, such as micro- or nano-spheres, -cubes, -sheets, and 
-rods [141–143]. Furthermore, accessing the molecular adsorption sites has opened 
the way to host-guest interactions and the ability to capture materials in both 
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chemisorption and physisorption states [144]. Due to their controllable composi-
tion and targeted preparation, MOFs can be manipulated, so they can be used in 
specific applications.

MOFs have been very promising in a wide spectrum of applications, ranging 
from the well-known gas storage/adsorption [145] and separation [146], catalysis 
[147], sensing [148], and dye/toxic material removal [149] to recently rising fields, 
such as luminescence [150], membranes [151], and drug delivery [152]. In terms of 
energy-related applications, they have been used for solar energy conversion [153], 
supercapacitors [154], batteries [155], and fuel cells [156].

5.2 Synthesis methods

MOFs have been traditionally synthesized either at room temperature [157] 
or via a hydrothermal/solvothermal approach by using electrical heating, an oil 
bath, or an autoclave at high temperatures, for a prolonged time of hours or even 
days. Recently, new methods have arisen to avoid these conditions. Similar to 
conventional, as a heating-based technique, microwaves (MWs) have lately been 
used widely for the synthesis of MOFs [158, 159], by offering phase selectivity, fast 
crystallization, and control over the crystal morphology. Electrochemical [160] 
and mechanochemical syntheses [161] are alternative methods, which appeared in 
2005 and 2006, respectively. Other than the above popular methods, slow diffusion 
[162], reverse micelle [163], and combinations like sonoelectrochemical [164] have 
been tested as well.

5.3 MOF synthesis via US

This section is focused on the effect that US synthesis conditions have on the 
final product along with the use of sonochemically prepared MOFs in environ-
mental applications with regard to harmful substance removal. (Zn3BTC2)·12H2O 
(BTC = 1,3,5-benzenetricarboxylate) was the first MOF that was successfully 
prepared by applying a sonochemical method in 2008 [165], followed by MOF-5 
[166] and ZnBDC (BDC = 1,4-benzenedicarboxylate) [167] later that year.

In order to reveal the determining factors of the reaction rates, a kinetic study 
was performed in 2010, by comparing conventional, microwave, and US syntheses 
[168]. Fe-MIL-53 was chosen for the comparison due to its mild synthesis condi-
tions. The average reaction time to obtain the product is 1.5–3 days at 70–80°C for 
the conventional synthesis, 1.5–2.5 h at 60–70°C for microwaves, and 0.5–1 h at 
50–70°C for the US, which is a result of increased preexponential factors in the 
sonochemical method.

Synthesis conditions can heavily affect the quality of crystals, the particle size, 
the surface area, and the morphology; thus, various studies have been published in 
an effort to optimize the reaction time, US power, solvent ratios, reagent concentra-
tion, and modulators/additives and achieve the best results in targeted applications 
[169, 170].

5.4 US advantages on MOFs

The contamination of the environment is becoming an aggravating problem 
[171, 172]. As a result of the accelerated expansion of chemical, pharmaceutical, and 
agricultural industries, many hazardous compounds, such as dyes, antibiotics, and 
pesticides, reach the aquatic environment. Therefore, many scientists have dedicated 
their work for the production of materials that can remove harmful substances.
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Abbasi et al. compared the sonochemical synthesis of HKUST-1 with a mechano-
chemical one [173]. The majority of the mechanochemically prepared particles had 
a size of at least 60 nm, while the US led to particles mainly around 35–65 nm. Their 
adsorption efficiency was tested via the removal of two dyes. After 24 h, 19.52% 
of methylene blue and 10.86% of crystal violet had been adsorbed by the mecha-
nochemical MOFs, while the US one had managed to remove 31.91 and 27.43%, 
respectively. The increased adsorption of methylene blue could be explained due to 
its smaller size, so it can be captured more easily than crystal violet.

In order to improve the methylene blue adsorption performance of TMU-23, 
a composite was prepared with graphene oxide (GO) in a US bath within 60 min 
at room temperature [174]. About 30 mg of GO-TMU-23 (10% GO) was added in 
20 mL of 10 ppm aqueous solution, as well as 27 mg TMU-23 and 3 mg GO were 
also examined separately for comparison purposes. After only 2 min, TMU-23, GO, 
and GO-TMU-23 have removed 50, 47, and 89% of MB, respectively, while after 
15 min, they have removed 78, 90, and 97%, respectively. Another GO composite 
is GO-Ni-BTC, which was prepared via an US-assisted ball milling technique [175]. 
Water was used as the only solvent as the coupling effect of mechanical force and 
ultrasonic waves can promote the reaction without an organic solvent. The Ni-BTC 
and GO-Ni-BTC were compared by studying the thermodynamics, along with 
adsorption kinetics by using the congo red dye, resulting in capacities of 2046 and 
2489 mg/g, respectively.

[Zn(ATA)(BPD)]∞ nanoplates (ATA = 2-aminoterephthalic acid, 
BPD = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) were prepared at room tem-
perature in a US bath within the optimized duration of 120 min [176]. The addition 
of triethylamine accelerated the crystal growth, and crystals could get separated 
after 60 min, but 120 min was still needed to receive fully uniform nanoplates. 
The modulator implementation led to an increase in 2,4-dichlorophenol adsorp-
tion from 68 to 91%. Pyridine had also been tested as a modulator agent during the 
synthesis of [Zn(TDC)(4-BPMH)]n·n(H2O) (TDC = 2,5-thiophene dicarboxylic 
acid, 4-BPMH=N,N-bis-pyridin-4-yl-methylene-hydrazine) [177]. Its addition 
led to better morphology of uniform sheet-shaped nanoplates with a thickness of 
20–35 nm instead of NPs without order, while it also increased the removal effi-
ciency of dichlorophenol and amoxicillin from 92.5 to 95% and from 87 to 94.5%, 
respectively, after 3 h.

The adsorption of rifampicin (antibiotic drug) [178] and imatinib (anti-cancer 
drug) [179] was tested as well with HKUST-1. The MOF was prepared by both a 
sonochemical method within 60 min and a conventional one after 24 h at 80°C. The 
US synthesized particles had an average size of 80 nm, while the majority of the 
conventional ones had a size over 150 nm. Regarding the uptake properties, the for-
mer could adsorb 26.6% of rifampicin after 3 h and 98% after 48 h, while the latter 
could reach 19% and 59.6%, respectively. Similarly, although a greater time period 
was needed, after 144 h, 96.7% of imatinib was adsorbed by the US HKUST-1 and 
81.1% by the conventional one.

6. Conclusions

Among the several types of fuel cells, the use of nanoparticles has been imple-
mented for improving the ORR in cathodes and the stability and poisoning of 
the anodic catalysts enhancing mainly the mass transfer phenomena. US-assisted 
preparation methods have been enabling more facile and cost-effective prepara-
tion methods of producing mono- and bimetallic nanoparticles in the absence and 
presence of various surfactants than conventional methods of preparations. The 
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produced nanoparticles were decorated onto cathode surfaces used in low- and 
high-temperature fuel cells acting synergistically with the surface toward an 
enhanced catalytic activity. The use of US and/or sono(electro)chemical methods 
also produces a controllable variety in the shape of the exposed planar sites of the 
moieties onto electrode surfaces and was proven to be a powerful tool for reducing 
metal precursors to mono- or/and bimetallic nanoparticles. Especially, in the case 
of carbon-supported nanocatalysts, the use of US, in general, has been proposed 
toward a high-value product production to meet the needs of energy applications.

US-assisted preparation methods are also a very promising tool in developing 
highly efficient materials for batteries. Significant efforts have been focused on 
creating functional nanomaterials in a variety of morphologies while decreasing the 
time and cost of preparation for meeting the commercial requirements. Substantial 
research has been reported in the field of Li and Li-ion batteries, where certain 
materials were directly tested in custom-made batteries with promising perfor-
mance. Concerning other battery systems such as zinc-based and metal-air batter-
ies, research showed promising results, although various nanomaterial candidates 
for electrodes, electrolytes, or catalysts have been prepared but not thoroughly 
tested. A more focused research trend in implementing the synthesized US-assisted 
nanomaterials in battery applications is currently toward a complete range defini-
tion of characteristics and stability in order to overcome possible failures and 
limitations.

In terms of environmental studies, semiconductor nanoparticles and composites 
prepared via US technology have shown promising results toward photocatalysis. 
Carbon dioxide reduction has achieved great process on both the reaction mecha-
nisms and the pathways; thus, such materials can display better product selectivity.

Finally, USs have opened the way to fast and facile synthesis of metal-organic 
frameworks by further offering smaller particle size and enhanced morphologies. 
Compared to conventional methods, the accelerated nucleation and crystallization 
times have made sonochemistry very attractive over the last few years, although 
proper handling is necessary in regard to synthesis conditions for the acquisition 
and optimization of desired properties.



Nanotechnology and the Environment

14

Author details

Christos Vaitsis1, Maria Mechili1, Nikolaos Argirusis2, Eirini Kanellou1,4, 
Pavlos K. Pandis1, Georgia Sourkouni3, Antonis Zorpas4 and Christos Argirusis1,3*

1 School of Chemical Engineering, National Technical University of Athens, 
Zografou, Greece

2 mat4nrg – Gesellschaft für Materialien und Energieanwendungen mbH, Germany

3 TU Clausthal, Clausthaler Zentrum für Materialtechnologie, Germany

4 Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, 
Cyprus

*Address all correspondence to: amca@chemeng.ntua.gr

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



15

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

References

[1] Mason TJ, Lorimer JP. Applied 
Sonochemistry: The Uses of Power 
Ultrasound in Chemistry and 
Processing. Weinheim: Wiley; 2002.  
p. 303. DOI: 10.1002/352760054X

[2] Suslick KS. Sonochemistry. Science. 
1990;247(4949):1439-1445. DOI: 
10.1126/science.247.4949.1439

[3] Henglein A. Sonochemistry: 
Historical developments and modern 
aspects. Ultrasonics. 1987;25(1):6-16. 
DOI: 10.1016/0041-624x(87)90003-5

[4] Winter M, Brodd R. What are 
batteries, fuel cells, and supercapacitors? 
Chemical Reviews. 2004;104:4245-4269. 
DOI: 10.1021/cr020730k

[5] Linden D, Reddy T. Handbook of 
Batteries. New York: McGraw-Hill 
Education; 2001

[6] Ryu J, Song WJ, Lee S, Choi S, Park S. 
A game changer: Functional nano/
micromaterials for smart rechargeable 
batteries. Advanced Functional 
Materials. 2019;30(2):1902499. DOI: 
10.1002/adfm.201902499

[7] Pomerantseva E, Bonaccorso F, 
Feng X, Cui Y, Gogotsi Y. Energy 
storage: The future enabled 
by nanomaterials. Science. 
2019;366(6468). DOI: 10.1126/science.
aan8285

[8] Ibrahim ID, Sadiku ER, Jamiru T, 
Hamam Y, Alayli Y, Eze AA. Prospects 
of nanostructured composite materials 
for energy harvesting and storage. 
Journal of King Saud University - 
Science. 2020;32(1):758-764. DOI: 
10.1016/j.jksus.2019.01.006

[9] Kumar P, Kim K-H, Bansal V, 
Kumar P. Nanostructured materials: 
A progressive assessment and future 
direction for energy device applications. 
Coordination Chemistry Reviews. 

2017;353:113-141. DOI: 10.1016/j.
ccr.2017.10.005

[10] Gu X, Zhao Y, Sun K, Vieira CLZ, 
Jia Z, Cui C, et al. Method of 
ultrasound-assisted liquid-phase 
exfoliation to prepare graphene. 
Ultrasonics Sonochemistry. 
2019;58:104630. DOI: 10.1016/j.
ultsonch.2019.104630

[11] Bolotin KI, Sikes KJ, Jiang Z, 
Klima M, Fudenberg G, Hone J, 
et al. Ultrahigh electron mobility 
in suspended graphene. Solid State 
Communications. 2008;146(9-10): 
351-355. DOI: 10.1016/j.ssc.2008.02.024

[12] Balandin A, Bao W, Calizo I, 
Teweldebrhan D, Miao F, Lau J. Superior 
thermal conductivity of single-layer 
graphene. Nano Letters. 2008;8:902-907. 
DOI: 10.1021/nl0731872

[13] Lee C, Wei X, Kysar JW, Hone J. 
Measurement of the elastic properties 
and intrinsic strength of monolayer 
graphene. Science. 2008;321(5887): 
385-388. DOI: 10.1126/science.1157996

[14] Gonzalez JR, Menendez R, 
Alcantara R, Nacimiento F, Tirado JL, 
Zhecheva E, et al. High-intensity 
ultrasonication as a way to prepare 
graphene/amorphous iron oxyhydroxide 
hybrid electrode with high capacity 
in lithium battery. Ultrasonics 
Sonochemistry. 2015;24:238-246. DOI: 
10.1016/j.ultsonch.2014.12.001

[15] Padhi AK, Nanjundaswamy KS, 
Masquelier C, Okada S, Goodenough JB. 
Effect of structure on the Fe3/Fe2 redox 
couple. Journal of the Electrochemical 
Society. 1997;144(5):1609-1613. DOI: 
10.1149/1.1837649

[16] Ding Y, Jiang Y, Xu F, Yin J, 
Ren H, Zhuo Q , et al. Preparation of 
nano-structured LiFePO4/graphene 
composites by co-precipitation method. 



Nanotechnology and the Environment

16

Electrochemistry Communications. 
2010;12(1):10-13. DOI: 10.1016/j.
elecom.2009.10.023

[17] Vu A, Qian Y, Stein A. Porous 
electrode materials for lithium-ion 
batteries - How to prepare them and 
what makes them special. Advanced 
Energy Materials. 2012;2(9):1056-1085. 
DOI: 10.1002/aenm.201200320

[18] Wang KX, Li XH, Chen JS. Surface 
and interface engineering of electrode 
materials for lithium-ion batteries. 
Advanced Materials. 2015;27(3): 
527-545. DOI: 10.1002/adma.201402962

[19] Dong B, Huang X, Yang X, Li G, 
Xia L, Chen G. Rapid preparation of 
high electrochemical performance 
LiFePO4/C composite cathode material 
with an ultrasonic-intensified micro-
impinging jetting reactor. Ultrasonics 
Sonochemistry. 2017;39:816-826. DOI: 
10.1016/j.ultsonch.2017.06.010

[20] Dong B, Li G, Yang X, Chen L, 
Chen GZ. Controllable synthesis of 
(NH4)Fe2(PO4)2(OH).2H2O using 
two-step route: Ultrasonic-intensified 
impinging stream pre-treatment 
followed by hydrothermal treatment. 
Ultrasonics Sonochemistry. 
2018;42:452-463. DOI: 10.1016/j.
ultsonch.2017.12.008

[21] Kim JM, Lee G, Kim BH, Huh YS, 
Lee GW, Kim HJ. Ultrasound-assisted 
synthesis of Li-rich mesoporous 
LiMn2O4 nanospheres for enhancing 
the electrochemical performance in 
Li-ion secondary batteries. Ultrasonics 
Sonochemistry. 2012;19(3):627-631. 
DOI: 10.1016/j.ultsonch.2011.10.002

[22] Gnanaraj JS, Pol VG, Gedanken A, 
Aurbach D. Improving the high-
temperature performance of LiMn2O4 
spinel electrodes by coating the active 
mass with MgO via a sonochemical 
method. Electrochemistry 
Communications. 2003;5(11):940-945. 
DOI: 10.1016/j.elecom.2003.08.012

[23] Askarinejad A, Morsali A. Direct 
ultrasonic-assisted synthesis of sphere-
like nanocrystals of spinel Co3O4 and 
Mn3O4. Ultrasonics Sonochemistry. 
2009;16(1):124-131. DOI: 10.1016/j.
ultsonch.2008.05.015

[24] Al-Qirby LM, Radiman S, 
Siong CW, Ali AM. Sonochemical 
synthesis and characterization of Co3O4 
nanocrystals in the presence of the 
ionic liquid [EMIM][BF4]. Ultrasonics 
Sonochemistry. 2017;38:640-651. DOI: 
10.1016/j.ultsonch.2016.08.016

[25] Cheng XX, Hojaghani S, 
Hu ML, Hosaini Sadr M, Morsali A. 
Sonochemical synthesis and 
characterization of new nanostructures 
cobalt(II) metal-organic complexes 
derived from the azo-coupling 
reaction of 4-amino benzoic acid with 
anthranilic acid, salicylaldehyde and 
2-naphtol. Ultrasonics Sonochemistry. 
2017;37:614-622. DOI: 10.1016/j.
ultsonch.2017.02.007

[26] Pol V, Thackeray M. Spherical 
carbon particles and carbon nanotubes 
prepared by autogenic reactions: 
Evaluation as anodes in lithium 
electrochemical cells. Energy & 
Environmental Science. 2011;4:1904-
1912. DOI: 10.1039/c0ee00256a

[27] Roberts AD, Li X, Zhang H. 
Porous carbon spheres and monoliths: 
Morphology control, pore size tuning 
and their applications as Li-ion battery 
anode materials. Chemical Society 
Reviews. 2014;43(13):4341-4356. DOI: 
10.1039/c4cs00071d

[28] Fujita M, Komatsu N, Kimura T. 
Sonochemical preparation of carbon 
spheres. Ultrasonics Sonochemistry. 
2014;21(3):943-945. DOI: 10.1016/j.
ultsonch.2013.11.013

[29] Kumar R, Kumar VB, Gedanken A. 
Sonochemical synthesis of carbon dots, 
mechanism, effect of parameters, and 
catalytic, energy, biomedical and tissue 



17

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

engineering applications. Ultrasonics 
Sonochemistry. 2020;64:105009. DOI: 
10.1016/j.ultsonch.2020.105009

[30] Kumar VB, Tang J, Lee KJ, Pol VG, 
Gedanken A. In situ sonochemical 
synthesis of luminescent Sn@C-dots 
and hybrid Sn@C-dots@Sn anode for 
lithium-ion batteries. RSC Advances. 
2016;6(70):66256-66265. DOI: 10.1039/
C6RA09926B

[31] Deosarkar MP, Pawar SM, 
Bhanvase BA. In situ sonochemical 
synthesis of Fe3O4-graphene 
nanocomposite for lithium rechargeable 
batteries. Chemical Engineering 
and Processing. 2014;83:49-55. DOI: 
10.1016/j.cep.2014.07.004

[32] Wu K, Liu D, Lu W, Zhang K. 
One-pot sonochemical synthesis of 
magnetite@reduced graphene oxide 
nanocomposite for high performance Li 
ion storage. Ultrasonics Sonochemistry. 
2018;45:167-172. DOI: 10.1016/j.
ultsonch.2018.03.015

[33] Hamidi R, Ghasemi S, Hosseini SR. 
Ultrasonic assisted synthesis of Ni3(VO4)2-
reduced graphene oxide nanocomposite 
for potential use in electrochemical energy 
storage. Ultrasonics Sonochemistry. 
2020;62:104869. DOI: 10.1016/j.
ultsonch.2019.104869

[34] Chen Y, Chuang Y, Su JH, Yu HC, 
Chen-Yang YW. High discharge 
capacity solid composite polymer 
electrolyte lithium battery. Lancet. 
2011;196:2802-2809. DOI: 10.1016/j.
jpowsour.2010.11.058

[35] Nacimiento F, Alcantara R, 
Nwokeke UG, Gonzalez JR, Tirado JL. 
Nanocrystalline CoSn2-carbon 
composite electrode prepared by 
using sonochemistry. Ultrasonics 
Sonochemistry. 2012;19(2):352-357. 
DOI: 10.1016/j.ultsonch.2011.06.014

[36] Xu C, Wang X, Yang L, Wu Y. 
Fabrication of a graphene-cuprous 

oxide composite. Journal of Solid State 
Chemistry. 2009;182:2486-2490. DOI: 
10.1016/j.jssc.2009.07.001

[37] Abulizi A, Yang GH, Zhu JJ. One-
step simple sonochemical fabrication 
and photocatalytic properties of 
Cu2O-rGO composites. Ultrasonics 
Sonochemistry. 2014;21(1):129-135. 
DOI: 10.1016/j.ultsonch.2013.07.013

[38] Wang C, Higgins D, Wang F, 
Li D, Liu R, Xia G, et al. Controlled 
synthesis of micro/nanostructured CuO 
anodes for lithium-ion batteries. Nano 
Energy. 2014;9:334-344. DOI: 10.1016/j.
nanoen.2014.08.009

[39] Park JC, Kim J, Kwon H, Song H. 
Gram-scale synthesis of Cu2O 
nanocubes and subsequent oxidation to 
CuO hollow nanostructures for lithium-
ion battery anode materials. Advanced 
Materials. 2009;21(7):803-807. DOI: 
10.1002/adma.200800596

[40] Ko S, Lee JI, Yang HS, Park S, 
Jeong U. Mesoporous CuO particles 
threaded with CNTs for high-
performance lithium-ion battery 
anodes. Advanced Materials. 
2012;24(32):4451-4456. DOI: 10.1002/
adma.201201821

[41] Mai YJ, Wang XL, Xiang JY, Qiao 
YQ , Zhang D, Gu CD, et al. CuO/
graphene composite as anode materials 
for lithium-ion batteries. Electrochimica 
Acta. 2011;56(5):2306-2311. DOI: 
10.1016/j.electacta.2010.11.036

[42] Hojaghani S, Hosaini Sadr M, 
Morsali A. Sonochemical synthesis of 
two new copper(II) complexes with 
azo ligands derived from anthranilic 
acid and beta-naphtol. Ultrasonics 
Sonochemistry. 2015;26:305-311. DOI: 
10.1016/j.ultsonch.2015.02.009

[43] Parsaee Z, Joukar Bahaderani E, 
Afandak A. Sonochemical synthesis, 
in vitro evaluation and DFT study of 
novel phenothiazine base Schiff bases 



Nanotechnology and the Environment

18

and their nano copper complexes as 
the precursors for new shaped CuO-
NPs. Ultrasonics Sonochemistry. 
2018;40(Pt A):629-643. DOI: 10.1016/j.
ultsonch.2017.08.010

[44] Alavi MA, Morsali A, Joo SW, 
Min BK. Ultrasound and modulation 
assisted synthesis of {[Cu2(BDC-
NH2)2(dabco)]DMF.3H2O} 
nanostructures: New precursor to 
prepare nanorods and nanotubes 
of copper(II) oxide. Ultrasonics 
Sonochemistry. 2015;22:349-358. DOI: 
10.1016/j.ultsonch.2014.04.017

[45] Hajnorouzi A. Two ultrasonic 
applications for the synthesis 
of nanostructured copper oxide 
(II). Ultrasonics Sonochemistry. 
2020;64:105020. DOI: 10.1016/j.
ultsonch.2020.105020

[46] Yang Z, Du Y, Hou G, Ouyang Y, 
Ding F, Yuan F. Nanoporous silicon 
spheres preparation via a controllable 
magnesiothermic reduction as anode 
for Li-ion batteries. Electrochimica 
Acta. 2020;329:135141. DOI: 10.1016/j.
electacta.2019.135141

[47] Ge M, Rong J, Fang X, Zhang A, 
Lu Y, Zhou C. Scalable preparation of 
porous silicon nanoparticles and their 
application for lithium-ion battery 
anodes. Nano Research. 2013;6(3): 
174-181. DOI: 10.1007/s12274-013-0293-y

[48] Zhao Y, Liu X, Li H, Zhai T, 
Zhou H. Hierarchical micro/nanoporous 
silicon Li-ion battery anodes. Chemical 
Communications. 2012;48(42): 
5079-5081. DOI: 10.1039/c2cc31476b

[49] Cadiz Bedini AP, Klingebiel B, 
Luysberg M, Carius R. Sonochemical 
synthesis of hydrogenated amorphous 
silicon nanoparticles from liquid 
trisilane at ambient temperature and 
pressure. Ultrasonics Sonochemistry. 
2017;39:883-888. DOI: 10.1016/j.
ultsonch.2017.06.011

[50] Li XL, Li TC, Huang S, Zhang J, 
Pam ME, Yang HY. Controllable 
synthesis of two-dimensional 
molybdenum disulfide (MoS2) 
for energy-storage applications. 
ChemSusChem. 2020;13(6):1379-1391. 
DOI: 10.1002/cssc.201902706

[51] Xu W, Sun C, Zhao K, Cheng X, 
Rawal S, Xu Y, et al. Defect engineering 
activating (boosting) zinc storage 
capacity of MoS2. Energy Storage 
Materials. 2019;16:527-534. DOI: 
10.1016/j.ensm.2018.09.009

[52] Liang Y, Feng R, Yang S, Ma H, 
Liang J, Chen J. Rechargeable Mg 
batteries with graphene-like MoS(2) 
cathode and ultrasmall Mg nanoparticle 
anode. Advanced Materials. 
2011;23(5):640-643. DOI: 10.1002/
adma.201003560

[53] Liu Y, Li R. Study on ultrasound-
assisted liquid-phase exfoliation for 
preparing graphene-like molybdenum 
disulfide nanosheets. Ultrasonics 
Sonochemistry. 2020;63:104923. DOI: 
10.1016/j.ultsonch.2019.104923

[54] Li Y, Yao J, Uchaker E, Yang J, 
Huang Y, Zhang M, et al. Leaf-like V2O5 
nanosheets fabricated by a facile green 
approach as high energy cathode material 
for lithium-ion batteries. Advanced 
Energy Materials. 2013;3(9):1171-1175. 
DOI: 10.1002/aenm.201300188

[55] Kumar VG, Kim KB. Organized and 
highly dispersed growth of MnO2 nano-
rods by sonochemical hydrolysis of Mn3 
acetate. Ultrasonics Sonochemistry. 
2006;13(6):549-556. DOI: 10.1016/j.
ultsonch.2005.09.010

[56] Okitsu K, Iwatani M, Nanzai B, 
Nishimura R, Maeda Y. Sonochemical 
reduction of permanganate to 
manganese dioxide: The effects of 
H2O2 formed in the sonolysis of water 
on the rates of reduction. Ultrasonics 
Sonochemistry. 2009;16(3):387-391. 
DOI: 10.1016/j.ultsonch.2008.10.009



19

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

[57] Gnana Sundara Raj B, Asiri AM, 
Qusti AH, Wu JJ, Anandan S. 
Sonochemically synthesized MnO2 
nanoparticles as electrode material 
for supercapacitors. Ultrasonics 
Sonochemistry. 2014;21(6):1933-1938. 
DOI: 10.1016/j.ultsonch.2013.11.018

[58] Ganesh Kumar V, Aurbuch D, 
Gedanken A. A comparison between 
hot-hydrolysis and sonolysis of 
various Mn(II) salts. Ultrasonics 
Sonochemistry. 2003;10(1):17-23. DOI: 
10.1016/S1350-4177(02)00091-3

[59] Sivakumar P, Nayak PK, 
Markovsky B, Aurbach D, Gedanken A. 
Sonochemical synthesis of 
LiNi0.5Mn1.5O4 and its electrochemical 
performance as a cathode material 
for 5 V Li-ion batteries. Ultrasonics 
Sonochemistry. 2015;26:332-339. DOI: 
10.1016/j.ultsonch.2015.02.007

[60] Fan X, Liu J, Song Z, Han X, 
Deng Y, Zhong C, et al. Porous 
nanocomposite gel polymer electrolyte 
with high ionic conductivity and 
superior electrolyte retention capability 
for long-cycle-life flexible zinc-air 
batteries. Nano Energy. 2019;56:454-462.  
DOI: 10.1016/j.nanoen.2018.11.057

[61] Zhu L, Zhang H. A novel method 
for the modification of zinc powder 
by ultrasonic impregnation in 
cerium nitrate solution. Ultrasonics 
Sonochemistry. 2008;15:393-401. DOI: 
10.1016/j.ultsonch.2007.09.016

[62] Chen L, Zhang Y, Dong L, Liu X, 
Long L, Wang S, et al. Honeycomb-
like 3D N-, P-codoped porous carbon 
anchored with ultrasmall Fe2P 
nanocrystals for efficient Zn-air battery. 
Carbon. 2020;158:885-892. DOI: 
10.1016/j.carbon.2019.11.073

[63] Chen T-W, Chinnapaiyan S, Chen 
S-M, Ali MA, Elshikh MS, Lee S-Y, et al. 
Sonochemical approach to the synthesis 
of metal tungstate/nafion composite 
with electrocatalytic properties and its 

electrochemical sensing performance. 
Ultrasonics Sonochemistry. 
2020;66:104901. DOI: 10.1016/j.
ultsonch.2019.104901

[64] Munonde TS, Zheng H, 
Nomngongo PN. Ultrasonic exfoliation 
of NiFe LDH/CB nanosheets 
for enhanced oxygen evolution 
catalysis. Ultrasonics Sonochemistry. 
2019;59:104716. DOI: 10.1016/j.
ultsonch.2019.104716

[65] Xie J, Cao X, Li J, Zhan H, Xia Y, 
Zhou Y. Application of ultrasonic 
irradiation to the sol-gel synthesis of 
silver vanadium oxides. Ultrasonics 
Sonochemistry. 2005;12(4):289-293. 
DOI: 10.1016/j.ultsonch.2004.01.041

[66] Park J, Yu S-H, Sung Y-E. Design of 
structural and functional nanomaterials 
for lithium-sulfur batteries. Nano 
Today. 2018;18:35-64. DOI: 10.1016/j.
nantod.2017.12.010

[67] Li Z, Jiang Y, Yuan L, Yi Z, Wu C, 
Liu Y, et al. A highly ordered meso@
micro-porous carbon supported 
sulfur@smaller-sulfur core-shell 
structured cathode for Li-S batteries. 
ACS Nano. 2014;8(9):9295-9303. DOI: 
10.1021/nn503220h

[68] Bagotsky VS, Skundin AM, 
Volfkovich MY. Electrochemical Power 
Sources: Batteries, Fuel Cells, and 
Supercapacitors. Hoboken: Wiley; 2015. 
DOI: 10.1002/9781118942857

[69] Sealy C. The problem with 
platinum. Materials Today. 
2008;11(12):65-68. DOI: 10.1016/
s1369-7021(08)70254-2

[70] Karousos DS, Desdenakis KI, 
Sakkas PM, Sourkouni G, Pollet BG, 
Argirusis C. Sonoelectrochemical 
one-pot synthesis of Pt-carbon black 
nanocomposite PEMFC electrocatalyst. 
Ultrasonics Sonochemistry. 
2017;35(Pt B):591-597. DOI: 10.1016/j.
ultsonch.2016.05.023



Nanotechnology and the Environment

20

[71] Gong K, Du F, Xia Z, Durstock M, 
Dai L. Nitrogen-doped carbon nanotube 
arrays with high electrocatalytic 
activity for oxygen reduction. Science. 
2009;323(5915):760-764. DOI: 10.1126/
science.1168049

[72] Mentus S, Abu Rabi A, 
Jašin D. Oxygen reduction on 
potentiodynamically formed Pd/TiO2 
composite electrodes. Electrochimica 
Acta. 2012;69:174-180. DOI: 10.1016/j.
electacta.2012.02.106

[73] Truong-Phuoc L, Pham-Huu C, 
Da Costa V, Janowska I. Few-layered 
graphene-supported palladium as 
a highly efficient catalyst in oxygen 
reduction reaction. Chemical 
Communications. 2014;50(92): 
14433-14435. DOI: 10.1039/c4cc05527f

[74] Padilla RH, Priecel P, Lin M, 
Lopez-Sanchez JA, Zhong Z. 
A versatile sonication-assisted 
deposition-reduction method for 
preparing supported metal catalysts 
for catalytic applications. Ultrasonics 
Sonochemistry. 2017;35(Pt B):631-639. 
DOI: 10.1016/j.ultsonch.2016.01.018

[75] Lee E, Kwon YU. Multi-component 
electrocatalyst for low-temperature 
fuel cells synthesized via sonochemical 
reactions. Ultrasonics Sonochemistry. 
2016;29:401-412. DOI: 10.1016/j.
ultsonch.2015.10.013

[76] Lee E, Jang JH, Matin MA, Kwon YU. 
One-step sonochemical syntheses of 
Ni@Pt core-shell nanoparticles with 
controlled shape and shell thickness 
for fuel cell electrocatalyst. Ultrasonics 
Sonochemistry. 2014;21(1):317-323. 
DOI: 10.1016/j.ultsonch.2013.05.006

[77] Park HU, Park AH, Shi W, Park GG, 
Kwon YU. Ternary core-shell PdM@
Pt (M=Mn and Fe) nanoparticle 
electrocatalysts with enhanced ORR 
catalytic properties. Ultrasonics 
Sonochemistry. 2019;58:104673. DOI: 
10.1016/j.ultsonch.2019.104673

[78] Anandan S, Wu JJ. Sonochemical 
synthesis of carbon supported Sn 
nanoparticles and its electrochemical 
application. Ultrasonics Sonochemistry. 
2014;21(6):1954-1957. DOI: 10.1016/j.
ultsonch.2014.02.018

[79] Zheng H, Matseke MS, 
Munonde TS. The unique Pd@Pt/C 
core-shell nanoparticles as methanol-
tolerant catalysts using sonochemical 
synthesis. Ultrasonics Sonochemistry. 
2019;57:166-171. DOI: 10.1016/j.
ultsonch.2019.05.023

[80] Wang H, Zhang W, Bai P, Xu L. 
Ultrasound-assisted transformation from 
waste biomass to efficient carbon-based 
metal-free pH-universal oxygen reduction 
reaction electrocatalysts. Ultrasonics 
Sonochemistry. 2020;65:105048. DOI: 
10.1016/j.ultsonch.2020.105048

[81] Zuo LX, Jiang LP, Abdel-Halim ES, 
Zhu JJ. Sonochemical preparation of 
stable porous MnO2 and its application 
as an efficient electrocatalyst for 
oxygen reduction reaction. Ultrasonics 
Sonochemistry. 2017;35(Pt A):219-225. 
DOI: 10.1016/j.ultsonch.2016.09.021

[82] Esmaielzadeh S, Ahmadizadegan H. 
Construction of proton exchange 
membranes under ultrasonic irradiation 
based on novel fluorine functionalizing 
sulfonated polybenzimidazole/cellulose/
silica bionanocomposite. Ultrasonics 
Sonochemistry. 2018;41:641-650. DOI: 
10.1016/j.ultsonch.2017.10.029

[83] Zuo LX, Jiang LP, Zhu JJ. A facile 
sonochemical route for the synthesis of 
MoS2/Pd composites for highly efficient 
oxygen reduction reaction. Ultrasonics 
Sonochemistry. 2017;35(Pt B):681-688. 
DOI: 10.1016/j.ultsonch.2016.02.006

[84] Hoogers G. Chapter 4: Fuel cell 
components and their impact on 
performance. In: Hoogers G, editor. Fuel 
Cell Technology Handbook. Boca Raton: 
CRC Press; 2002. pp. 88-114. DOI: 
10.1201/9781420041552



21

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

[85] Carrette L, Friedrich KA, 
Stimming U. Fuel cells – 
Fundamentals and applications. 
Fuel Cells. 2001;1(1):5-39. DOI: 
10.1002/1615-6854(200105)1:1<5::aid-
fuce5>3.0.co;2-g

[86] Islam MH, Burheim OS, Pollet BG. 
Sonochemical and sonoelectrochemical 
production of hydrogen. Ultrasonics 
Sonochemistry. 2019;51:533-555. DOI: 
10.1016/j.ultsonch.2018.08.024

[87] Cherepanov PV, Ashokkumar M, 
Andreeva DV. Ultrasound assisted 
formation of Al-Ni electrocatalyst 
for hydrogen evolution. Ultrasonics 
Sonochemistry. 2015;23:142-147. DOI: 
10.1016/j.ultsonch.2014.10.012

[88] Ida S, Wilson P, Neppolian B, 
Sathish M, Mahammed Shaheer AR, 
Ravi P. Tuning the type of nitrogen on 
N-RGO supported on N-TiO2 under 
ultrasonication/hydrothermal treatment 
for efficient hydrogen evolution - A 
mechanistic overview. Ultrasonics 
Sonochemistry. 2020;64:104866. DOI: 
10.1016/j.ultsonch.2019.104866

[89] Steele B. Fuel-cell technology-
running on natural gas. Nature. 
1999;400:619-621. DOI: 10.1038/23144

[90] Argirusis C, Damjanović T, 
Borchardt G. Electrophoretic deposition 
of thin SOFC-electrolyte films on 
porous La0.75Sr0.2MnO3-δ cathodes. 
Materials Science Forum. 2004;453-
454:335-342. DOI: 10.4028/www.
scientific.net/MSF.453-454.335

[91] Argirusis C, Damjanović T, 
Borchardt G. Preparation of SOFC 
cells by means of electrophoretic 
deposition. Key Engineering Materials. 
2006;314:101-106. DOI: 10.4028/www.
scientific.net/KEM.314.101

[92] Argirusis C, Matić S, Schneider O. 
An EQCM study of ultrasonically 
assisted electrodeposition of Co/CeO2 
and Ni/CeO2 composites for fuel cell 

applications. Physica Status Solidi A: 
Applications and Materials Science. 
2008;205(10):2400-2404. DOI: 10.1002/
pssa.200779409

[93] Argirusis C, Grosse-Brauckmann J, 
Sourkouni G, Taillades G, Roziere J. 
Preparation of thin proton conducting 
membranes by means of EPD. Key 
Engineering Materials. 2009;412: 
125-130. DOI: 10.4028/www.scientific.
net/KEM.412.125

[94] Szepanski C, Grosse-Brauckmann J, 
Argirusis C. Electrophoretic deposition 
as preparation method for intermediate 
temperature SOFC half cells. Key 
Engineering Materials. 2009;412: 
209-214. DOI: 10.4028/www.scientific.
net/KEM.412.209

[95] Kharlamova T, Pavlova S, 
Sadykov V, Krieger T, Batuev L, 
Muzykantov V, et al. Fe- and 
Al-doped apatite-type lanthanum 
silicates: Structure and property 
characterization. Solid State Ionics. 
2009;180(11):796-799. DOI: 10.1016/j.
ssi.2008.12.042

[96] Jothinathan E, Vanmeensel K, 
Vleugels J, Kharlamova T, Sadykov V, 
Pavlova S, et al. Apatite type lanthanum 
silicate and composite anode half cells. 
Solid State Ionics. 2011;192(1):419-423. 
DOI: 10.1016/j.ssi.2010.02.009

[97] Kharlamova T, Pavlova S, 
Sadykov V, Krieger T, Alikina G, 
Frade J, et al. Anode composites based 
on NiO and apatite-type lanthanum 
silicate for intermediate temperature 
solid oxide fuel cells. MRS Proceedings. 
2008;1098:104-109. DOI: 10.1557/
PROC-1098-HH07-02

[98] Kharlamova T, Pavlova S, 
Sadykov V, Krieger T, Mezentseva N, 
Muzykantov V, et al. Perovskite and 
composite materials for intermediate 
temperatures solid oxide fuel cells. MRS 
Proceedings. 2008;1056:102-107. DOI: 
10.1557/PROC-1056-HH03-64



Nanotechnology and the Environment

22

[99] Kharlamova T, Pavlova S, 
Sadykov V, Krieger T, Alikina G, 
Argirusis C. Catalytic properties and 
coking stability of new anode materials 
for internal methane reforming in 
the intermediate temperature solid 
oxide fuel cells. Catalysis Today. 
2009;146(1-2):141-147. DOI: 10.1016/j.
cattod.2009.01.052

[100] Jiang S, Chan SH. A review of 
anode materials development in solid 
oxide fuel cells. Journal of Materials 
Science. 2004;39:4405-4439. DOI: 
10.1023/B:JMSC.0000034135.52164.6b

[101] Sakkas PM, Bozes CY, 
Kanellopoulou DG, Sourkouni G, 
Argirusis C. A study on the synchronous 
decoration of molybdenum oxide or 
tungsten oxide nanoparticles on anode 
materials for natural gas fed solid oxide 
fuel cells using ultrasounds. Ultrasonics 
Sonochemistry. 2019;59:104715. DOI: 
10.1016/j.ultsonch.2019.104715

[102] Okkay H, Bayramoglu M, 
Oksuzomer MF. Ce0.8Sm0.2O1.9 synthesis 
for solid oxide fuel cell electrolyte by 
ultrasound assisted co-precipitation 
method. Ultrasonics Sonochemistry. 
2013;20(3):978-983. DOI: 10.1016/j.
ultsonch.2012.10.013

[103] Pinjari DV, Pandit AB. Room 
temperature synthesis of crystalline 
CeO2 nanopowder: Advantage of 
sonochemical method over conventional 
method. Ultrasonics Sonochemistry. 
2011;18(5):1118-1123. DOI: 10.1016/j.
ultsonch.2011.01.008

[104] Gohari Derakhshandeh P, 
Soleimannejad J. Sonochemical 
synthesis of a new nano-sized 
cerium(III) supramolecular compound; 
precursor for nanoceria. Ultrasonics 
Sonochemistry. 2016;31:122-128. DOI: 
10.1016/j.ultsonch.2015.12.014

[105] Yang G, Zhou Y, Pan HB, Zhu C, 
Fu S, Wai CM, et al. Ultrasonic-assisted 
synthesis of Pd-Pt/carbon nanotubes 

nanocomposites for enhanced electro-
oxidation of ethanol and methanol 
in alkaline medium. Ultrasonics 
Sonochemistry. 2016;28:192-198. DOI: 
10.1016/j.ultsonch.2015.07.021

[106] Douk AS, Saravani H, Farsadrooh M, 
Noroozifar M. An environmentally 
friendly one-pot synthesis method by the 
ultrasound assistance for the decoration 
of ultrasmall Pd-Ag NPs on graphene as 
high active anode catalyst towards ethanol 
oxidation. Ultrasonics Sonochemistry. 
2019;58:104616. DOI: 10.1016/j.
ultsonch.2019.104616

[107] Farsadrooh M, Noroozifar M, 
Modarresi-Alam AR, Saravani H. 
Sonochemical synthesis of high-
performance Pd@CuNWs/
MWCNTs-CH electrocatalyst by 
galvanic replacement toward ethanol 
oxidation in alkaline media. Ultrasonics 
Sonochemistry. 2019;51:478-486. DOI: 
10.1016/j.ultsonch.2018.06.011

[108] Sakkas PM, Schneider O, 
Sourkouni G, Argirusis C. 
Sonochemistry in the service of SOFC 
research. Ultrasonics Sonochemistry. 
2014;21(6):1939-1947. DOI: 10.1016/j.
ultsonch.2014.02.001

[109] Sakkas P, Schneider O, 
Martens S, Thanou P, Sourkouni G, 
Argirusis C. Fundamental studies of 
sonoelectrochemical nanomaterials 
preparation. Journal of Applied 
Electrochemistry. 2012;42(9):763-777. 
DOI: 10.1007/s10800-012-0443-z

[110] Islam MH, Paul MTY, Burheim OS, 
Pollet BG. Recent developments in 
the sonoelectrochemical synthesis 
of nanomaterials. Ultrasonics 
Sonochemistry. 2019;59:104711. DOI: 
10.1016/j.ultsonch.2019.104711

[111] Colomer MT, Anderson MA. 
High porosity silica xerogels prepared 
by a particulate sol-gel route: Pore 
structure and proton conductivity. 
Journal of Non-Crystalline Solids. 



23

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

2001;290(2):93-104. DOI: 10.1016/
S0022-3093(01)00815-8

[112] Cortes AD, Donatti DA, 
Ibanez Ruiz A, Vollet DR. A kinetic 
study of the effect of ultrasound 
power on the sonohydrolysis of 
tetraethyl orthosilicate. Ultrasonics 
Sonochemistry. 2007;14(6):711-716. 
DOI: 10.1016/j.ultsonch.2006.12.002

[113] Wu C, Liu L, Tang K, Chen T. 
Studies on an ultrasonic atomization feed 
direct methanol fuel cell. Ultrasonics 
Sonochemistry. 2017;34:60-66. DOI: 
10.1016/j.ultsonch.2016.05.018

[114] Wu C, Wu J, Luo H, Wang S, 
Chen T. Ultrasonic radiation to enable 
improvement of direct methanol 
fuel cell. Ultrasonics Sonochemistry. 
2016;29:363-370. DOI: 10.1016/j.
ultsonch.2015.10.012

[115] Hunge YM. Basics and advanced 
developments in photocatalysis – A 
review (mini review). International 
Journal of Hydrology. 2018;2(4):539-540. 
DOI: 10.15406/ijh.2018.02.00122

[116] Serpone N, Emeline AV. 
Semiconductor photocatalysis - past, 
present, and future outlook. Journal 
of Physical Chemistry Letters. 
2012;3(5):673-677. DOI: 10.1021/
jz300071j

[117] Stucchi M, Bianchi CL, 
Argirusis C, Pifferi V, Neppolian B, 
Cerrato G, et al. Ultrasound assisted 
synthesis of Ag-decorated TiO2 active in 
visible light. Ultrasonics Sonochemistry. 
2018;40(Pt A):282-288. DOI: 10.1016/j.
ultsonch.2017.07.016

[118] Stucchi M, Bianchi CL, Pirola C, 
Cerrato G, Morandi S, Argirusis C, 
et al. Copper NPs decorated titania: 
A novel synthesis by high energy US 
with a study of the photocatalytic 
activity under visible light. Ultrasonics 
Sonochemistry. 2016;31:295-301. DOI: 
10.1016/j.ultsonch.2016.01.015

[119] Cheng C, Amini A, Zhu C, 
Xu Z, Song H, Wang N. Enhanced 
photocatalytic performance of TiO2-
ZnO hybrid nanostructures. Scientific 
Reports. 2014;4:4181. DOI: 10.1038/
srep04181

[120] Hunge YM, Yadav AA, Mathe VL. 
Ultrasound assisted synthesis of 
WO3-ZnO nanocomposites for brilliant 
blue dye degradation. Ultrasonics 
Sonochemistry. 2018;45:116-122. DOI: 
10.1016/j.ultsonch.2018.02.052

[121] Mohite VS, Mahadik MA, 
Kumbhar SS, Hunge YM, 
Kim JH, Moholkar AV, et al. 
Photoelectrocatalytic degradation of 
benzoic acid using Au doped TiO2 thin 
films. Journal of Photochemistry and 
Photobiology. B. 2015;142:204-211. DOI: 
10.1016/j.jphotobiol.2014.12.004

[122] Hunge YM, Mahadik MA, 
Moholkar AV, Bhosale CH. 
Photoelectrocatalytic degradation of 
oxalic acid using WO3 and stratified 
WO3/TiO2 photocatalysts under 
sunlight illumination. Ultrasonics 
Sonochemistry. 2017;35(Pt A):233-242. 
DOI: 10.1016/j.ultsonch.2016.09.024

[123] Vallejo W, Rueda A, Diaz-Uribe C, 
Grande C, Quintana P. Photocatalytic 
activity of graphene oxide-TiO2 thin 
films sensitized by natural dyes 
extracted from Bactris guineensis. Royal 
Society Open Science. 2019;6(3):181824. 
DOI: 10.1098/rsos.181824

[124] Xie H, Liu B, Zhao X. Facile process 
to greatly improve the photocatalytic 
activity of the TiO2 thin film on 
window glass for the photodegradation 
of acetone and benzene. Chemical 
Engineering Journal. 2016;284:1156-1164.  
DOI: 10.1016/j.cej.2015.09.049

[125] Jiang L, Wang Y, Feng C. 
Application of photocatalytic 
technology in environmental safety. 
Procedia Engineering. 2012;45:993-997. 
DOI: 10.1016/j.proeng.2012.08.271



Nanotechnology and the Environment

24

[126] Qin Z, Su T, Ji H. Photocatalytic 
nanomaterials for the energy and 
environmental application. In: 
Multifunctional Nanocomposites 
for Energy and Environmental 
Applications. Vol. 1. New York: 
Wiley; 2018. pp. 353-401. DOI: 
10.1002/9783527342501.ch13

[127] Muhammad NA, Wang Y, 
Muhammad FE, He T. Photoreduction 
of carbon dioxide using strontium 
zirconate nanoparticles. Science China 
Materials. 2015;58(8):634-639. DOI: 
10.1007/s40843-015-0077-7

[128] Akhter P, Hussain M, Saracco G, 
Russo N. Novel nanostructured-TiO2 
materials for the photocatalytic reduction 
of CO2 greenhouse gas to hydrocarbons 
and syngas. Fuel. 2015;149:55-65. DOI: 
10.1016/j.fuel.2014.09.079

[129] Chen J, Xin F, Yin X, Xiang T, 
Wang Y. Synthesis of hexagonal 
and cubic ZnIn2S4 nanosheets for 
the photocatalytic reduction of CO2 
with methanol. RSC Advances. 
2015;5(5):3833-3839. DOI: 10.1039/
c4ra13191f

[130] Ghows N, Entezari MH. Sono-
synthesis of core-shell nanocrystal 
(CdS/TiO2) without surfactant. 
Ultrasonics Sonochemistry. 
2012;19(5):1070-1078. DOI: 10.1016/j.
ultsonch.2012.01.009

[131] Mousavi-Kamazani M, Salavati-
Niasari M, Emadi H. Preparation of 
stochiometric CuInS2 nanostructures 
by ultrasonic method. Micro & Nano 
Letters. 2012;7(9):896-900. DOI: 
10.1049/mnl.2012.0393

[132] Kolny-Olesiak J, Weller H. Synthesis 
and application of colloidal CuInS2 
semiconductor nanocrystals. ACS Applied 
Materials & Interfaces. 2013;5(23): 
12221-12237. DOI: 10.1021/am404084d

[133] Kansaard T, Pecharapa W. 
Characterization of BiVO4 nanoparticles 

prepared by sonochemical process. 
Ferroelectrics. 2019;552(1):140-147. 
DOI: 10.1080/00150193.2019.1653090

[134] Liu S, Zhang N, Tang ZR, Xu YJ. 
Synthesis of one-dimensional CdS@
TiO(2) core-shell nanocomposites 
photocatalyst for selective redox: The 
dual role of TiO(2) shell. ACS Applied 
Materials & Interfaces. 2012;4(11): 
6378-6385. DOI: 10.1021/am302074p

[135] Koltypin Y, Nikitenko SI, 
Gedanken A. The sonochemical 
preparation of tungsten oxide 
nanoparticles. Journal of Materials 
Chemistry. 2002;12(4):1107-1110. DOI: 
10.1039/b106036h

[136] Wang L, Wang Y, Cheng Y, Liu Z, 
Guo Q , Ha MN, et al. Hydrogen-treated 
mesoporous WO3 as a reducing agent 
of CO2 to fuels (CH4 and CH3OH) 
with enhanced photothermal catalytic 
performance. Journal of Materials 
Chemistry A. 2016;4(14):5314-5322. 
DOI: 10.1039/c5ta10180h

[137] Jin J, Yu J, Guo D, Cui C, Ho W. 
A hierarchical Z-scheme CdS-WO3 
photocatalyst with enhanced 
CO2 reduction activity. Small. 
2015;11(39):5262-5271. DOI: 10.1002/
smll.201500926

[138] Dong Y-z, Xue Y-s, Yang W-w, You 
H-m, Su Y. Visible light driven CdS/
WO3 inverse opals with enhanced RhB 
degradation activity. Colloids and 
Surfaces A. 2019;561:381-387. DOI: 
10.1016/j.colsurfa.2018.10.033

[139] Wang S, Guan BY, Lou XWD. 
Construction of ZnIn2S4-In2O3 
hierarchical tubular heterostructures for 
efficient CO2 photoreduction. Journal 
of the American Chemical Society. 
2018;140(15):5037-5040. DOI: 10.1021/
jacs.8b02200

[140] Yuan J, Hao C. Solar-driven 
photoelectrochemical reduction of 
carbon dioxide to methanol at CuInS2 



25

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

thin film photocathode. Solar Energy 
Materials and Solar Cells. 2013;108:170-
174. DOI: 10.1016/j.solmat.2012.09.024

[141] Paz FA, Klinowski J, Vilela SM, 
Tome JP, Cavaleiro JA, Rocha J. Ligand 
design for functional metal-organic 
frameworks. Chemical Society Reviews. 
2012;41(3):1088-1110. DOI: 10.1039/
c1cs15055c

[142] Yaghi OM, O’Keeffe M, 
Ockwig NW, Chae HK, Eddaoudi M, 
Kim J. Reticular synthesis and the 
design of new materials. Nature. 
2003;423(6941):705-714. DOI: 10.1038/
nature01650

[143] Zhao D, Timmons DJ, Yuan D, 
Zhou HC. Tuning the topology 
and functionality of metal-organic 
frameworks by ligand design. Accounts 
of Chemical Research. 2011;44(2): 
123-133. DOI: 10.1021/ar100112y

[144] Ma S, Zhou HC. A metal-organic 
framework with entatic metal centers 
exhibiting high gas adsorption affinity. 
Journal of the American Chemical 
Society. 2006;128(36):11734-11735. 
DOI: 10.1021/ja063538z

[145] González-Zamora E, Ibarra IA. 
CO2 capture under humid conditions in 
metal-organic frameworks. Materials 
Chemistry Frontiers. 2017;1(8): 
1471-1484. DOI: 10.1039/c6qm00301j

[146] Li JR, Sculley J, Zhou HC. Metal-
organic frameworks for separations. 
Chemical Reviews. 2012;112(2):869-932. 
DOI: 10.1021/cr200190s

[147] Liu J, Chen L, Cui H, Zhang J, 
Zhang L, Su CY. Applications of metal-
organic frameworks in heterogeneous 
supramolecular catalysis. Chemical 
Society Reviews. 2014;43(16):6011-6061. 
DOI: 10.1039/c4cs00094c

[148] Zhu Q , Chen Y, Wang W, 
Zhang H, Ren C, Chen H, et al. A 
sensitive biosensor for dopamine 

determination based on the unique 
catalytic chemiluminescence of metal-
organic framework HKUST-1. Sensors 
and Actuators B: Chemical. 2015;210: 
500-507. DOI: 10.1016/j.snb.2015.01.012

[149] Bobbitt NS, Mendonca ML, 
Howarth AJ, Islamoglu T, Hupp JT, 
Farha OK, et al. Metal-organic 
frameworks for the removal of toxic 
industrial chemicals and chemical 
warfare agents. Chemical Society 
Reviews. 2017;46(11):3357-3385. DOI: 
10.1039/c7cs00108h

[150] Hu Z, Deibert BJ, Li J. Luminescent 
metal-organic frameworks for 
chemical sensing and explosive 
detection. Chemical Society Reviews. 
2014;43(16):5815-5840. DOI: 10.1039/
c4cs00010b

[151] Li X, Liu Y, Wang J, Gascon J, 
Li J, Van der Bruggen B. Metal-organic 
frameworks based membranes for liquid 
separation. Chemical Society Reviews. 
2017;46(23):7124-7144. DOI: 10.1039/
c7cs00575j

[152] Abazari R, Reza Mahjoub A, 
Slawin AMZ, Carpenter-Warren CL. 
Morphology- and size-controlled 
synthesis of a metal-organic framework 
under ultrasound irradiation: An 
efficient carrier for pH responsive 
release of anti-cancer drugs and 
their applicability for adsorption of 
amoxicillin from aqueous solution. 
Ultrasonics Sonochemistry. 
2018;42:594-608. DOI: 10.1016/j.
ultsonch.2017.12.032

[153] Fang Y, Ma Y, Zheng M, Yang P, 
Asiri AM, Wang X. Metal-organic 
frameworks for solar energy conversion 
by photoredox catalysis. Coordination 
Chemistry Reviews. 2018;373:83-115. 
DOI: 10.1016/j.ccr.2017.09.013

[154] Rajpurohit AS, Punde NS, 
Srivastava AK. A dual metal organic 
framework based on copper-iron 
clusters integrated sulphur doped 



Nanotechnology and the Environment

26

graphene as a porous material for 
supercapacitor with remarkable 
performance characteristics. Journal 
of Colloid and Interface Science. 
2019;553:328-340. DOI: 10.1016/j.
jcis.2019.06.031

[155] Vayenas M, Vaitsis C, Sourkouni G, 
Pandis PK, Argirusis C. Investigation 
of alternative materials as bifunctional 
catalysts for electrochemical 
applications. Chimica Techno Acta. 
2019;6(4):120-129. DOI: 10.15826/
chimtech.2019.6.4.01

[156] Ren Y, Chia GH, Gao Z. 
Metal-organic frameworks in fuel 
cell technologies. Nano Today. 
2013;8(6):577-597. DOI: 10.1016/j.
nantod.2013.11.004

[157] Tranchemontagne DJ, Hunt JR, 
Yaghi OM. Room temperature 
synthesis of metal-organic frameworks: 
MOF-5, MOF-74, MOF-177, MOF-
199, and IRMOF-0. Tetrahedron. 
2008;64(36):8553-8557. DOI: 10.1016/j.
tet.2008.06.036

[158] Choi J-S, Son W-J, Kim J, Ahn 
W-S. Metal-organic framework 
MOF-5 prepared by microwave 
heating: Factors to be considered. 
Microporous and Mesoporous Materials. 
2008;116(1-3):727-731. DOI: 10.1016/j.
micromeso.2008.04.033

[159] Wu X, Bao Z, Yuan B, Wang J, 
Sun Y, Luo H, et al. Microwave 
synthesis and characterization of 
MOF-74 (M=Ni, Mg) for gas separation. 
Microporous and Mesoporous Materials. 
2013;180:114-122. DOI: 10.1016/j.
micromeso.2013.06.023

[160] Martinez Joaristi A, Juan-Alcañiz J, 
Serra-Crespo P, Kapteijn F, Gascon J. 
Electrochemical synthesis of some 
archetypical Zn2+, Cu2+, and Al3+ metal 
organic frameworks. Crystal Growth 
& Design. 2012;12(7):3489-3498. DOI: 
10.1021/cg300552w

[161] Klimakow M, Klobes P, 
Thünemann AF, Rademann K, 
Emmerling F. Mechanochemical 
synthesis of metal-organic frameworks: 
A fast and facile approach toward 
quantitative yields and high specific 
surface areas. Chemistry of Materials. 
2010;22(18):5216-5221. DOI: 10.1021/
cm1012119

[162] Kleist W, Maciejewski M, Baiker A. 
MOF-5 based mixed-linker metal-
organic frameworks: Synthesis, thermal 
stability and catalytic application. 
Thermochimica Acta. 2010;499(1-2): 
71-78. DOI: 10.1016/j.tca.2009.11.004

[163] Sun W, Zhai X, Zhao L. Synthesis of 
ZIF-8 and ZIF-67 nanocrystals with well-
controllable size distribution through 
reverse microemulsions. Chemical 
Engineering Journal. 2016;289:59-64. 
DOI: 10.1016/j.cej.2015.12.076

[164] da Silva GG, Silva CS, Ribeiro RT, 
Ronconi CM, Barros BS, Neves JL, et al. 
Sonoelectrochemical synthesis of metal-
organic frameworks. Synthetic Metals. 
2016;220:369-373. DOI: 10.1016/j.
synthmet.2016.07.003

[165] Qiu LG, Li ZQ , Wu Y, Wang W, 
Xu T, Jiang X. Facile synthesis of 
nanocrystals of a microporous 
metal-organic framework by an 
ultrasonic method and selective 
sensing of organoamines. Chemical 
Communications. 2008;31:3642-3644. 
DOI: 10.1039/b804126a

[166] Son WJ, Kim J, Kim J, Ahn WS. 
Sonochemical synthesis of MOF-
5. Chemical Communications. 
2008;47:6336-6338. DOI: 10.1039/
b814740j

[167] Li Z-Q , Qiu L-G, Wang W, 
Xu T, Wu Y, Jiang X. Fabrication of 
nanosheets of a fluorescent metal-
organic framework [Zn(BDC)(H2O)]
n (BDC=1,4-benzenedicarboxylate): 
Ultrasonic synthesis and sensing of 
ethylamine. Inorganic Chemistry 



27

Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications
DOI: http://dx.doi.org/10.5772/intechopen.92802

Communications. 2008;11(11):1375-1377. 
DOI: 10.1016/j.inoche.2008.09.010

[168] Haque E, Khan NA, Park JH, 
Jhung SH. Synthesis of a metal-organic 
framework material, iron terephthalate, 
by ultrasound, microwave, and 
conventional electric heating: A kinetic 
study. Chemistry - A European Journal. 
2010;16(3):1046-1052. DOI: 10.1002/
chem.200902382

[169] Vaitsis C, Sourkouni G, Argirusis C. 
Metal organic frameworks (MOFs) 
and ultrasound: A review. Ultrasonics 
Sonochemistry. 2019;52:106-119. DOI: 
10.1016/j.ultsonch.2018.11.004

[170] Vaitsis C, Sourkouni G, 
Argirusis C. Sonochemical synthesis of 
MOFs. In: Mozafari M, editor. Metal-
Organic Frameworks for Biomedical 
Applications. Cambridge: Woodhead 
Publishing; 2020. pp. 223-244. DOI: 
10.1016/B978-0-12-816984-1.00013-5

[171] Zorpas AA. Strategy development 
in the framework of waste management. 
Science of the Total Environment. 
2020;716:137088. DOI: 10.1016/j.
scitotenv.2020.137088

[172] Loizia P, Neofytou N, Zorpas AA. 
The concept of circular economy 
strategy in food waste management 
for the optimization of energy 
production through anaerobic 
digestion. Environmental Science 
and Pollution Research International. 
2019;26(15):14766-14773. DOI: 10.1007/
s11356-018-3519-4

[173] Abbasi AR, Karimi M, Daasbjerg K. 
Efficient removal of crystal violet and 
methylene blue from wastewater by 
ultrasound nanoparticles Cu-MOF in 
comparison with mechanosynthesis 
method. Ultrasonics Sonochemistry. 
2017;37:182-191. DOI: 10.1016/j.
ultsonch.2017.01.007

[174] Tanhaei M, Mahjoub AR, 
Safarifard V. Sonochemical synthesis 

of amide-functionalized metal-
organic framework/graphene oxide 
nanocomposite for the adsorption 
of methylene blue from aqueous 
solution. Ultrasonics Sonochemistry. 
2018;41:189-195. DOI: 10.1016/j.
ultsonch.2017.09.030

[175] Zhao S, Chen D, Wei F, Chen N, 
Liang Z, Luo Y. Removal of Congo 
red dye from aqueous solution with 
nickel-based metal-organic framework/
graphene oxide composites prepared 
by ultrasonic wave-assisted ball 
milling. Ultrasonics Sonochemistry. 
2017;39:845-852. DOI: 10.1016/j.
ultsonch.2017.06.013

[176] Abazari R, Salehi G, Mahjoub AR. 
Ultrasound-assisted preparation 
of a nanostructured zinc(II) amine 
pillar metal-organic framework as a 
potential sorbent for 2,4-dichlorophenol 
adsorption from aqueous solution. 
Ultrasonics Sonochemistry. 2018;46:59-
67. DOI: 10.1016/j.ultsonch.2018.02.001

[177] Abazari R, Mahjoub AR. 
Ultrasound-assisted synthesis 
of zinc(II)-based metal organic 
framework nanoparticles in the 
presence of modulator for adsorption 
enhancement of 2,4-dichlorophenol and 
amoxicillin. Ultrasonics Sonochemistry. 
2018;42:577-584. DOI: 10.1016/j.
ultsonch.2017.12.027

[178] Abbasi AR, Rizvandi M. Influence 
of the ultrasound-assisted synthesis 
of Cu-BTC metal-organic frameworks 
nanoparticles on uptake and release 
properties of rifampicin. Ultrasonics 
Sonochemistry. 2018;40(Pt A):465-471. 
DOI: 10.1016/j.ultsonch.2017.07.041

[179] Abbasi AR, Rizvandi M, 
Azadbakht A, Rostamnia S. Controlled 
uptake and release of imatinib from 
ultrasound nanoparticles Cu3(BTC)2 
metal-organic framework in comparison 
with bulk structure. Journal of Colloid 
and Interface Science. 2016;471:112-117. 
DOI: 10.1016/j.jcis.2016.03.018


