
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

Petri Nets for Component-Based Software
Systems Development

Leandro Dias da Silva1, Kyller Gorgônio 2 and Angelo Perkusich2

1Paraiba State University, 2Federal University of Campina Grande
Brazil

1. Introduction

The Software Engineering discipline was created to try to apply techniques and methods of
others engineering disciplines to software systems development. To achieve this goal it was
necessary to change the way software was developed, not only at code level, but also at the
process level. Like in other engineering disciplines, one of the major objectives of software
engineering is to develop artifacts in a systematic way. Several building block approaches
were proposed and developed along the years. Nowadays one of the most researched and
used approach are software components (Crnkovic and Grunske, 2007. Nierstrasz et al.,
2002). Components are autonomous units with independent life cycle that represent an
specific functionality. A component consists of functionality, interface and possibly other
non functional characteristics.
The development of bigger systems with components as building blocks is called
Component Based Development (CBD). To make this possible it is necessary to adapt the
traditional software engineering techniques and methods, or even defined new ones, to
attend to specific CBD requirements. In the context of Component Based Software
Engineering (CBSE) the objective is to define a set of practices that promotes the CBD.
Formal methods improve the development process of software and hardware systems by
helping designers to achieve dependability at different levels of abstractions such as
requirements, specification, modeling and design. This is mainly due to the fact that the
application of formal methods helps discovering and removing errors by performing
automatic analysis and verification (Clarke and Wing, 1996). Petri nets (Murata, 1989), and
more specifically Hierarchical Coloured Petri Nets (HCPN) (Jensen, 1992. Jensen, 1997) are a
very powerful tool that has been widely studied and applied for the specification and
analysis of complex concurrent systems (Donatelli and Thiagarajan, 2006. Kleijn and
Yakovlev, 2007. Jensen, 2005. Jensen, 2006). It has a graphical representation that helps the
design of complex software systems. There are several advantages of using a formal method
in systems design such as, automatic simulation, proof of properties and unambiguous
documentation.
In the context of software engineering, the reuse of artifacts in the development of new
software systems increases the productivity. Also, the reuse of artifacts that are well known
to be correct is an effective way to increase the dependability on the system under
development. Reuse is not restricted to pieces of source code, but it can be also be applied to

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 472

requirements, documentation, project decisions and specifications. During the last few
years, component based software engineering has been applied to promote the development
of software systems based on reuse (Szyperski, 1999. Crnkovic , 2001. Crnkovic et al., 2002.
Crnkovic and Grunske, 2007. Nierstrasz et al., 1992. van Steen et al., 1998).
The basic premise during the reuse process is that the designer should observe that in
specific application domains, different software systems share some common characteristics.
These characteristics can be represented by any kind of artifact, such as source code or a
model described using some formal language, HCPN in the context of this chapter.
Therefore, the identification of such common characteristics is a very important task. Firstly,
when an artifact that has been already modeled is identified, it is possible to search for it in a
repository and reuse it with some adaptations, instead of modeling it from scratch.
Secondly, after an artifact is modeled and verified, it can be made available to be reused in
the future.
The main goal of this chapter is to introduce a systematic and automatic approach to the
reuse of HCPN models in the specification and verification of complex software systems.
The focus is on the study and development of techniques that help the automation of the
modeling phase, reducing time and money costs of the project. This approach is an
alternative to ad-hoc reuse practices in which the reuse process is of the entire responsibility
of the developer. In order to achieve this goal the approach for the specification and analysis
of components, frameworks for components composition, and component-based software
systems is presented. The proposed approach is guided by a reuse process and software
tools for automatic manipulation of the models. Moreover, a case study is used to illustrate
its application. The work presented in this chapter is based on the use of temporal logic
(Emerson, 1990), model checking (Clarke et al., 1999. McMillan, 1993) and supervisory
control theory (Ramadge & Wonham, 1989) in order to support: adaptation, integration and
use verification of HCPN models. It is fully implemented in CPN/ML language
(Christensen & Haagh, 1996) for a well known set of tools for HCPN models called
Design/CPN (Des, 2006). From the application point of view, the introduced approach is
used to develop models in the context of complex embedded software systems. Embedded
systems have been applied in several kinds of computing devices (Nierstrasz et al., 2002)
such as automobiles, cellular phones and control and automation devices. Due to the
evolution of the technology, more complex devices executing more complex tasks are being
developed, making it difficult to deal with the increasing complexity from the software
point of view (Lee, 1999. Lee, 2002). As discussed by Knight (Knight, 2001. Knight, 2002.
Knight, 2004), two major problems that must be tackled in this domain are specification and
verification. The first one is mainly related to the need to build models that are more
dependable. The later one is related to the difficulty in performing tests on embedded
software systems. Therefore techniques such as model checking can help to early detect
design errors. The approach introduced in this chapter is an effective approach to deal with
these two problems.
The rest of the chapter is organized as follows. In section 2 the basics of the formal tools
used in the present work are introduced, including a discussion about Coloured Petri nets,
temporal logic and model checking. The application of reuse techniques to build formal
models is discussed in Section 3. In Section 4 an example of an embedded system to
illustrate the reuse process is presented. The adaptation, integration, and use verification

Petri Nets for Component-Based Software Systems Development 473

steps are described in Sections 5, 6, and 7, respectively. Finally, in Section 8 the chapter is
concluded with suggestions for future work.

2. Preliminaries

2.1 Petri nets

Petri nets are a formal method with strong mathematical foundation and a graphical
representation. The mathematical foundation promotes the use of automatic analysis and
verification techniques. On the other hand the graphical notation avoids the use of possibly
ambiguous textual notations or hard to understand mathematical notations. Petri nets can
be used in the design of complex systems, expressing properties such as precedence
relationships, conflicts, concurrency, synchronization, deadlocks, and resource sharing
among others. Also, the state and action locality characteristic allow the modeling of
complex systems using either bottom-up or top-down approaches. Therefore, it promotes
modularity and reusability that are important characteristics for the modeling solution
presented in this work.
As mentioned in the introduction, in the context of this chapter an extension of Petri nets
called Hierarchical Coloured Petri Nets (HCPN) is used as a description language. This
extension incorporates complex data types and hierarchy concepts to Petri nets. An HCPN is
a set of non-hierarchical CPN models, and each CPN model is called a CPN page. Therefore,
an HCPN is an extension of the concept of CPN that allows the modeling in hierarchical
levels. This is possible due to the inclusion of two mechanisms: substitution transition and
fusion places. A substitution transition is a transition that represents a CPN page. The page
in which the substitution transition belongs to is called superpage and the page represented
by that transition is called subpage. The association between subpages and superpages is
done by means of sockets and ports. Sockets are all the input and output places of the
substitution transition in the superpage. Ports are the places in the subpage associated to the
sockets. The ports can be of input, output, or input-output type. For simulation and state
space calculation, sockets and ports are glued together and the resulting model is a flat CPN
model.
The fusion places are physically different but logically only one, defined by means of a
fusion set. Therefore, all the places belonging to a fusion set have always the same marking.
A marking of a place is the set of tokens in that place in a given moment. And the marking
of a net is the set of markings of all places in the net, in a given moment. When a marking of
a place belonging to a fusion set changes, the marking of all places belonging to that set also
changes.
Indeed, these two additional mechanisms, substitution transition and fusion places, are only
a graphical notation that promotes the organization and visualization of a CPN model more
efficiently. They favor the modeling of larger and more complex systems because the
designer can obtain a model by either abstraction or composition, or even both. In order to
manipulate tokens in a CPN, it is defined the concept of multi-set, that is, a set where it is
possible to have several occurrences of the same element. This concept allows similar parts
of the model to be modeled as token information instead of structure replication.
In the following, the definition of CPN according to (Jensen, 1992) is presented.
Definition 1: A Coloured Petri net is a tuple CPN = (, P, T, A, N, C, G, E, I) satisfying the
requirements below:
1. is a finite set of non-empty types, called colour sets.

Petri Net: Theory and Applications 474

2. P is a finite set of places,
3. T is a finite set of transitions,
4. A is a finite set of arcs such that:

P T=P A=T A=0

5. N is a node function defined from A into (P x T) U (T x P).
6. C is a colour function defined from P into S.
7. G is a guard function defined from T into expressions such that:

8. E is an arc expression function defined from A into expressions such that:

9. I is an initialization function defined from P into closed expressions such that:

The definition of HCPN according to (Jensen, 1992) is presented as follows.
Definition 2: A Hierarchical CPN is a tuple HCPN = (S, SN, SA, PN, PT, PA, FS, FT, PP)
satisfying the following requirements:
1. S is a finite set of pages such that:

Each page s S is a CPN:

(S, PS,Ts, As, Ns, Cs, Gs, Es, Is)
The set of net elements are pair wise disjoint:

2. SN T is a set of substitution nodes,
3. A is a page assignment function defined from SN into S such that:

No page is subpage of itself:

4. PN P is a set of port nodes.
5. PT is a port type function defined from PN into {in, out, i/o, general},
6. PA is a port assignment function defined from SN into binary relations such that:

Socket nodes are related to port nodes:

Socket nodes are of the correct type:

Related nodes have identical colour sets and equivalent initialization
expressions:

7. FS Ps is a finite set of fusion sets such that:

Members of a fusion set have identical colour sets and equivalent initialization
expressions:

8. FT is a fusion type function defined from fusion sets into {global, page, instance} such
that:

page and instance fusion sets belong to a single page:

Petri Nets for Component-Based Software Systems Development 475

9. PP Sms is a multi-set of prime pages.
Based on Definitions 1 and 2 several activities are defined to manipulate nets using the
Design/CPN tool in order to develop and maintain a reuse-based modeling process for
complex software system, as detailed in the following sections. Detailed explanations for
these definitions, as well as the dynamic behavior of CPN and HCPN are omitted. For more
information the reader can see the references (Jensen, 1992. Jensen, 1997).

2.2 Temporal logic

Temporal logic is a modal logic that can be used to describe how events occur over the time.
There are operators to describe safety, liveness and precedence properties, providing a
framework to specify software systems, particularly concurrent systems (Pnueli, 1977).
Temporal logics are used to predicate over the behavior of a system defined by a Kripke
structure. This behavior is obtained starting from an initial state and then repeatedly
moving from one state to another following the transition relation. It means that such
relation should be total, and as consequence all the behaviors of the system are infinite.
Since a state can have more than one successor, the structure can be thought of as
unwinding into an infinite tree, representing all the possible executions of the system
starting from its initial states.
Two useful temporal logics are Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL). They differ in how they handle branching in the underlying computation tree. The
CTL operators permit to quantify over the paths departing from a given state. In LTL,
operators are intended to describe properties of all possible computation paths. It is an
agreement that the temporal logic provides a good framework to describe and to reason
about the behavior of concurrent systems. However, it is not the case when the question is
which one is more appropriate, linear or branching time logic, to do it. But this is a question
that is outside of the scope of this chapter. Along this chapter, we use a Computation Tree
Logic (CTL) (Clarke et al., 1999) defined for Coloured Petri Nets named ASK-CTL
(Christensen and Haagh, 1996). In what follows the basic concepts of both logics are
introduced.
The CTL temporal logic combines path quantifiers with linear time temporal logic
operators. The path quantifiers A ("for all paths") and E ("for some paths") should be used
as a prefix of one of the operators G ("globally"), F ("sometimes"), X ("nexttime") and U
("until"). Let AP be set of atomic propositions, then the syntax of CTL is given by the
following rules:

The others CTL operators are expressed using the three operators EX, EG and E[U].
Therefore:

Petri Net: Theory and Applications 476

The semantic of CTL is defined with respect to paths in a Kripke structure. A path is an
infinite sequence of states (s0, s1,...) such that si+1 is reached from si for all i 0. So, if is a
CTL formula M, s is used to denote that holds for s0 of M.
The four most used CTL operators are EF, AF, EG, and AG. In Fig. 1 the interpretation for
such operators is illustrated in an intuitive way, and they are interpreted as follows.

Fig. 1. Basic CTL operators.

EF E[true U] means that exists a path starting from s0 in which holds at some state
along this path.

AF A[true U] means that for all paths starting from s0, holds at some state along
the path. In other words, is inevitable.

EG ¬AF¬ means that exists a path starting from s0 in which holds at every state
along this path.

AG ¬EF¬ means that for all paths starting from s0, holds at every state along that
paths. In other words, holds globally.

2.3 ASK-CTL
ASK-CTL is a CTL-like logic useful to specify properties for CPNs (Coloured Petri Nets)
state spaces, represented by occurrence graphs. Occurrence graphs carry information on
both nodes and edges. Hence, a natural extension for CTL is to include the possibility to

Petri Nets for Component-Based Software Systems Development 477

express properties about the information labeling for the edges (e.g., edge information is
needed when expressing liveness properties since liveness is expressed by means of
transition occurrence information). For this purpose two mutually recursively defined
syntactic categories of formulae are defined: state and transition formulae, which are
interpreted over the state space for states and transitions respectively (Cheng et al., 1997).
As in CTL, quantified state formulae and transition formulae are interpreted over paths.
Path quantification is used in combination with the until operator to express temporal
properties.
The ASK-CTL library has two parts: one which implements the ASK-CTL logic language
and another one which implements the model checker (Christensen and Haagh, 1996). The
syntax of ASK-CTL is minimal and in order to increase the readability of the formulae we
make use of syntactic sugar, e.g., POS() means that it is possible to reach a state where
holds, INV() means that holds in every reachable state, and EV() means that for all paths

 holds within a finite number of steps.

2.4 Model Checking
The need to increase the dependability of software systems motivates the definition and
application of more dependable developing methods and techniques. This need is more
evident when dealing with critical real-time systems. With the increasing complexity of the
systems the traditional methods based on tests, for example, are not enough anymore to
guarantee dependability.
The use of formal methods can increase the confidence in the behavior of the system. In the
specification, formal methods can be used to find difficult errors before developing the real
system. Traditional methods based on tests and simulation can detect initial errors. But after
the simplest errors are fixed, more rigorous methods are needed.
Model checking is used to verify specifications (Clarke et al., 1999) in an exhaustive way.
That is, where tests and simulations analyze some possibilities, formal methods analyze all
possible behaviors.
One great advantage of model checking is that it is fully automatic. Moreover, the model
checking algorithms generate a counter-example generation in case of negation of a
property indicating a path where the property is false.
The disadvantage of model checking is the state explosion problem. That occurs when the
system has several concurrent components, or when it manipulates complex data types.
Some techniques have been researched and developed to deal with this problem such as
symbolic model checking (McMillan, 1993) and partial order reduction (Peled, 1994.
Valmari, 1991).
The verification activity consists in checking if a property is satisfied by a model or not. The
properties are described in temporal logic, and the models can be described as a finite
automaton or as a Petri net, for instance. Let M be a model and f be a temporal logic formula
that express some property of M. The model checking consists in verify if M models f, which
is noted by M f.
The model checking consists of the following three activities:
Modeling: The modeling consists in describing the system in some formalism. The
formalism to be used depends on the tool to be used in the verification, the designer
knowledge, or the culture in the institution that is developing the project. It is still possible
to transform a given formalism into another to perform the verification.
Specification: The specification is usually done in temporal logic that is used to specify how
a system's behavior evolves over time. It is not possible to guarantee the completeness of
the specification, that is, it is not possible to guarantee that all the properties to be verified

Petri Net: Theory and Applications 478

are specified. But once a property is specified it can be checked against the model for all its
possible behaviors.
Verification: Given a model and a specification the verification is fully automatic. In the case
of a property is negated the designer must analyze the counter-example to solve possible
modeling errors, or to reformulate the specification. Moreover, abstraction and modular
techniques depend on the designer to allow that the verification can be performed
dealing with the state explosion problem.

3. Reuse based software modeling

Fig. 2. Diagram for the systematic reuse solution.

Petri Nets for Component-Based Software Systems Development 479

When using a reuse based modeling method it is not always necessary to build the hole
system from the scratch, it is possible that some of the required models of the system are
already modeled. The reuse process defined in this chapter is illustrated by Fig. 2. The main
reuse activities are recovery, adaptation, integration and use verification. A detailed
discussion of the repository management activity, recovery and insertion of models, can be
found in (Lemos & Perkusich, 2001). In this work the adaptation of a recovered model
(Gorgdnio & Perkusich, 2002) and the integration of such model into an architectural
framework are detailed. The functionality of the reuse process as a whole, unifying all the
activities in a systematic modeling method is also discussed.
Besides the reuse activities, a use verification step is taken into account. This step consists in
performing model checking in the integrated models in order to verify whether the specific
use case is correct, that is, to verify if they were correctly used.
As pointed out in the introduction, an embedded system is used to illustrate the process as
well as to guide the definition of the activities.
The designer must think on how and where to search for models that can be directly reused,
and adapted if necessary, while building a new system. Moreover, the designer must try to
identify potential candidates for reuse and store them in a repository of models. The
following reuse activities are identified during the formal modeling of systems:

Identification of the parts of the new model;

Definition of a framework;

Detection of the parts that need to be constructed and those that can be reused;

Description and recovery of the models that can be reused;

Adaptation of the recovered models;

Integration of the recovered/adapted/constructed models;

Identification of new reusable models and storing them in the repository
It is important to point out that, besides the fact that this technique is fully supported by a
set of tools the methodology itself is not completely automatic. The designer plays an
important role and is required to create the framework on which the recovered and adapted
models are integrated. Moreover, she is required to write down a set of temporal logic
formulae describing the behavior of the models to be recovered and adapted.

4. Case study: A component-based embedded system

The application domain considered in the scope of this work is an embedded transducer
network control system (Silva & Perkusich, 2005). As shown in Fig. 3, this system is
composed by a set of transducers, a controller, named the communication server, and a real-
time server.
The environment signals acquired by the sensors are transformed and controlled in a way
that the real-time server can access and modify the information to control the actuators
according to the application requirements. Observe that the transducers are connected to a
controller and that besides control functions it also acts as a front end communication
server. Therefore, different applications can be specified and verified by changing the
components. Several different applications may access the real-time server to acquire data
and to control devices. For instance, it is possible to have temperature, ventilation and
humidity sensors. The signals that are acquired and processed can be used to control an
HVAC (Heating, Ventilation and Air Conditioning) system in an intelligent building.

Petri Net: Theory and Applications 480

It is important to note that a system defined as shown in Fig. 2 is very common in many
other kinds of command and control systems and therefore it is possible to define a software
architecture that can be reused in other applications.

Fig. 3. System structure.

Fig. 4. Communication server

According to the requirements of the applications, defined based on the command and
control problem, and the transducers used, different systems can be built. Based on the

Petri Nets for Component-Based Software Systems Development 481

approach introduced in this work a system does not need to be specified and verified
always from the scratch. What is necessary to do is to recover a model from a repository,
modify it to satisfy the new requirements and integrate it on the new project. Only in the
case that no model can be found, the designer must specify a new one. To promote this
approach, a product line to this specific domain using some specific software architecture to
reuse common components is defined. The main advantages are time and money savings,
and the reduction or even elimination of errors, and therefore, faults can be avoided. Also, it
is possible to maintain and evolve a repository of reusable components for a given domain
improving the dependability on the models.
An important observation s that the details related to specific technologies to implement the
components are abstracted. The focus is on the specification and analysis of the architecture
of a target system. Therefore, properties for the interfaces and architectural level of the
components are verified regardless internal details of them. For instance, the protocol used
by the communication server to communicate with the control system running in the real-
time server is abstracted.
In Figs. 4 and 5 is illustrated the component diagrams for the communication server and the
real-time server, respectively. The communication server consists of four components. The
IO Interpreter instantiates raw data from sensors to objects. The Data Converter transforms
the data to an specific format. Device Controller is used to calibration, initialization and
other control tasks. The Synchronizer is the communication channel with the real-time
server. The real-time server is composed by three components. The data controller is used to
control data flow among several applications accessing the server. The access to the server is
available through the UI component. The real-time server Synchronizer is the counterpart to
the communication server Synchronizer.

Fig. 5. Real-time server

4.1 Framework
In Fig. 6 the HCPN framework that specifies the architecture of the system is illustrated.
There, it is possible to identify how the entities communicate with each other. The System
page models the sensors and actuators. They communicate only with the communication
server represented by the CommServer page.
There are several components defined for the communication server page. Data from the
devices to the embedded system and output data to devices are communicated using a
blackboard mechanism. The input and output interpreter, lOlnterpreter, is used to instantiate
the data written in the blackboard as objects. Also, this component receives objects from the
system and translates them to the data format used by the devices. This component is fixed
in the architecture. That is, it is not necessary to change it from one project to another.

Petri Net: Theory and Applications 482

The next component is the data converter, DataConvert. This component transforms data
from the I/O interpreter to a format used by the real-time server, according to the
requirements of the applications. Since data formats are dependent of the applications that
access the server this component must be changed to satisfy the requirements of each
project. The data converter decides the data flow. If data in the data converter is a control
requisition, such as an initialization or calibration request, that data is sent to the device
controller. If data is an information signal it is sent to the synchronizer, EmbChannel, to be
transmitted to the realtime server.
The device controller component, DeviceControl, is used to control devices, that is, as said
before to perform calibration and initialization tasks. Moreover an application can request
changes in the attributes for a device, such as, the sampling time. This is done also by the
device controller. The synchronizer is a realization of the communication between the
communication server and the real-time server. When a sensor sends an information signal
and not a control signal, it must be transmitted to the real-time server through the
synchronizer. Thus, there is a synchronizer for the communication server and another one
for the real-time server. Since this communication does not change, the synchronizer is fixed
in the architecture.

Fig. 6. Model hierarchy (framework).

The real-time server, RealTime, intermediates the communication between the
communication server and the applications. A database with information about the net and
the applications is used to promote this communication. The applications can read or write

Petri Nets for Component-Based Software Systems Development 483

information to control the system. In the real-time server we have several components also.
The synchronizer, RTCHannel, is identical to the one in the embedded system. The data
controller, DataContoller, is used to control data flow from and to the applications. The user
interface module component, UIModule, is used to make services available. The applications
use this component to access the system.

Fig. 7. Embedded system.

Petri Net: Theory and Applications 484

In Fig. 7 the dashed lines define components that must be replaced, or hot spots, based on
the application, and the continuous lines define components that do not need to be changed
or frozen spots. It is possible to see all the components for the communication server. The
top part is the blackboard where messages are exchanged between the sensors and actuators
and the server. The first component is the I/O interpreter. After this component the signal is
sent to the Data Converter and at this point it can take two different destinations, the Device
Controller, or the Synchronizer.
Using this architecture, it is possible to specify any control system as defined here,
promoting a product line evolution based on the reuse of component models. Moreover, this
strategy allows the practice of refactoring at a model level.
The specification described in this section is a general explanation of the model. This model
was constructed using the reuse process described in Section 3.

5. Model adaptation

Once a model, that is a candidate to be reused, is identified and recovered from the
repository, it is necessary to verify if it is ready to be integrated on the system framework.
Usually it is necessary to adapt the recovered model to satisfy some special conditions that
holds in the new system. The adaptation technique presented here is based on the use of
temporal logic, model checking and supervisory control theory. The basic idea is that for a
given CPN model that satisfies some properties, it should be possible to refine it in order to
obtain a new model whose behavior is a refinement of the behavior of the original one. Note
that on the context of this work, adaptation is a refinement relation. Basically, it means that
all the possible behaviors of the adapted model are also allowed in the original model, and
in some sense, the models can be related trough a preorder relation (Long, 1993).
In (Ramadge and Wonham, 1987) an algorithm to obtain the supremal controllable sub-
language for a given language is described. They assumed that a system, described as a
finite automaton, is composed of some events that can be controlled and others that cannot.
If the occurrence of a controllable event leads to an undesired situation, it is possible to
disable it. However, if the event is not controllable, then it is not possible to do it. For
example, in the case of the environmental controller the changes in the temperature of the
room, i.e. the data received by the sensors, are not an event that can be controlled by the
system. And it makes no sense to change the behavior of the model by avoiding the
occurrence of an event that cannot be controlled.
The supremal controllable sub-language algorithm receives as input two finite automata.
One modeling the system, m1 and other modeling the desired behavior of the system, m2,
and the set of events is divided into controllable and uncontrollable. The algorithm returns
an automata m3 that is the maximal, with respect to the behavior allowed by m2, automata
that can be controlled without reaching any undesirable state. In general terms, the
algorithm works by removing the undesired states from m1 until a fix point is reached.
The problem with this direct approach is that it is not possible to know in advance if such
m3 exists or not. It may be the case that it is not possible to refine m1 until the resulting
model satisfies the properties specified by m2. This is known only after the execution of the
algorithm when it returns an empty model. Since it is executed over the state space of the
models, if such state space is too large, it is possible that the entire process takes a long time
to be executed without generating any useful output.

Petri Nets for Component-Based Software Systems Development 485

Model checking techniques can be used to avoid this problem. The idea is to model the
automata m2 as set of temporal logic formulae, more specifically CTL, and use them to
check if m1 can be refined to satisfy the CTL properties or not. Note that it is necessary to
determine if there is a subset of m1 that satisfies the properties. If the model checker outputs
a positive result, the synthesis procedure is executed.
Observe that the models to be adapted are given as CPN models. So, the first step in the
adaptation procedure is the generation of its state space. Then, it is possible to verify and
refine it as described above.
After the execution of the supremal controllable sub-language algorithm, an occurrence
graph that is isomorphic to the original one is obtained. The only difference is that the states
that should not be reached are marked as undesirables. They are not removed from the
occurrence graph of the Petri net.
Next it is necessary to modify the input CPN model in such a way that the state graph of the
new model will be isomorphic, considering the label of each arc, to a sub-graph of the
original state graph of the input model. Once it is done, the new CPN model is generated.

Fig. 8. Adaptation of reusable models.

The adaptation technique introduced here is illustrated in Fig. 8 and the steps required to
perform the adaptation are:
1. Generate the occurrence graph of the CPN model;
2. Verify if the CPN model may satisfy the new specification by applying model checking

techniques;

In the negative case, ask for human intervention and terminate;
3. Execute the supremal controllable sub-language algorithm;
4. Adapt CPN model to generate the new occurrence graph.
Adapting the CPN model consists in adding some control information on it in such a way

that the states marked as undesirables are not reached in the new model. In the

Design/CPN, each state of the occurrence graph of a model has a unique label. Taking this

into consideration, control can be added to the CPN model by creating a new place, called

control place, which should be input and output place of all transitions of the CPN model.

The initial marking of this control place will be the label of the initial state of the adapted

Petri Net: Theory and Applications 486

occurrence graph. Every time a transition occurs, it removes the token on the control place

and puts a new one with the label of the new reached state.

The value of the new state is determined by a function that is constructed from the adapted

occurrence graph. This function receives as input the value of the token in the control place

that represents a state s in the adapted graph and the label t of the transition being executed.

The output is the label of the state s' in the adapted graph that is reached from s through the

occurrence of t. This control function should be attached to all transitions in the model, i.e.

every time a transition occurs the function is executed and the value of the token in the

control place is updated.

Finally, it is necessary to add guards to some transitions of the CPN model in order to
disable them if its execution in the current state leads to an undesirable state. Note that a
transition may be enabled or disabled depending on the value of the marking of the control

place. Therefore, if si sj belongs to the adapted state graph, sj is marked as an undesirable

state, and t models a controlled event defined for the system, a guard is added to transition t

to disable it whenever the marking of the control place is the label of si. Observe that if t

models an uncontrollable event, no guard can be added to it. However, t should always be

connect to the control place due to the fact that even if t cannot be controllable, it should be

observable.

5.1 Implementation

Before presenting the algorithm, the adaptation problem can be stated as follows:
"Given a CPN model, called CPN, and a set of behavioral restrictions described as CTL formulae, the
adaptation problem consists in the synthesis of a new CPN model, called CPNadp, that satisfies these
new restrictions taking CPN as the starting point."

Petri Nets for Component-Based Software Systems Development 487

The adaptation strategy described above is defined by Algorithm 1, which is implemented
in CPN/ML (Christensen and Haagh, 1996. Ullman, 1998), and it is executed inside the
Design/CPN tool as a loadable module.
Lines 1 and 2 define the computation of the occurrence graph (OCCGRAPH) and the
strongly connected components graph (SCCGRAPH) of the CPN model. Lines 3 and 4
define the invocations of the ASKCTL model checker and to the implementation of the
Ramadge and Wonham algorithm respectively. The other functions are defined to
manipulate the internal structures of the Design/CPN models to add the objects used to add
control to the model. In Fig. 9 it is illustrated how the adaptation can be performed for the
specification of a system.

Fig. 9. Adapted CPN model.

For this example, the component DataController (see framework on Fig. 2) is adapted in
order to limit the capacity of the output buffers, DIntBP and DlntP, in such a way that each
of them never store more than one token at a given time. This property is expressed in the
ASKCTL language by formula:

POS(NOT(MoreThanOne));

Petri Net: Theory and Applications 488

Such formula captures the notion that there is a path in the OCC graph for which the
evaluation of the function MoreThanOne is false. Such function receives as input a node of
the OCC graph and checks if the number of tokens in the places DIntBP and DlntP are greater
than one. MoreThanOne is also written in CPN/ML, and it makes explicit references to the
elements of the component DataController. This means the designer does not see the
component as a black box, and she should have some acknowledgment of the model
candidate to be reused.
The code bellow is part of the control function generated by the adaptation procedure. This
function takes the label of the current state of the CPN model as input and returns the label
of the next state. This information is used to decide whether a transition can be allowed to
fire or not.

And finally the guards of transitions DataContB and ToDataCont are added in order to
disable them when necessary. Observe that there are no guards on transitions DContOutBP
and DContOutP. This is due to the fact that there no situation in which their occurrence
leads to an undesirable state, i.e. they cannot increase the amount of tokens in places DlntBP
and DlntP.

6. Model integration

After a model is recovered from the repository, and possibly adapted, it has to be integrated
into the framework. The integration, as well as the other activities, are fully implemented
using the CPN/ML language (Christensen and Haagh, 1996) for the Design/CPN tool set.
First, the designer is asked the name of the file with the CPN model to be integrated into the

framework. Then, some functions are automatically executed to build the integration

environment, that is, the places, transitions, arcs, and its respective names, color sets, and

inscriptions. The next step executed by the algorithm is the definition of the input and

output ports in the diagram being integrated. After this step, the substitution transition is

defined, and the sockets in the superpage are associated to its respective ports, previously

defined in the subpage. The last step is to select the box with the model declarations, in the

model page, to define the color set of the ports based on the sockets colors, and to append

this information in the global declaration node.

The file selection needs the user interaction, while all other steps are fully automatic

executed. To define the algorithm some restrictions are considered. They are:

Petri Nets for Component-Based Software Systems Development 489

Unique page name;

Prefix in the color sets names indicates the page name;

Suffix in the place names indicates whether it is a port or not;

Dot-dashed line patter for the auxiliary box with model declarations;

Model declarations box must to be unique;

Declarations of the port places must be the first ones in the model declarations box.
The first restriction to be considered ensures that the page name of the integrated model is
unique, and it is the responsibility of the designer. The model being integrated must have a
prefix in its color set names with the page name. Another restriction is about port places.

The places that are ports must have a suffix IN or OUT, to input and output ports,

respectively, in its names. This restriction is to allow the algorithm to recognize which places

are ports and which type of port they are.

The last integration restriction is that in the model being integrated there must exist an

auxiliary box with dot-dashed line pattern. This box must contain all the declarations for

this page. The declaration of the ports color set must be the first ones in this box. This is

necessary to the algorithm be able to adapt correctly the color set to successfully integrate

the model.

It is important to note that it is the responsibility of the designer to ensure that the

restrictions are satisfied in order to the algorithm works properly.

6.1 Implementation

Before presenting the algorithm, the integration problem can be stated as follows:
"Given a CPN model called CPN, and a Framework called CPNFramework, the integration
problem consists in creating places, transitions, arcs, and their respective inscriptions, as well as the
hierarchy and append the declarations of CPN to the global declarations of CPNFramework to have
a new integrated model taking CPN and CPNFramework as the starting point."
The integration is implemented as defined by the Algorithm 2. Steps 2 to 7 are fully

automatic. Step 1 needs the user interaction to select the file name of the model to be

integrated.

The integration depends on the framework. Therefore, for each application domain it is

necessary to define the architecture of the system and to model it as a CPN framework. For

each domain and framework, it is necessary to implement specific functions for the

integration step of the reuse process. But this implementation has to be done just one time,

and it is used throughout the evolution of the product line in the specific domain with the

framework.

Petri Net: Theory and Applications 490

Now, it is illustrated how the integration phase of the process is performed. In Fig. 10 it is
shown an example where the DataController is integrated into the CommunicationServer model. In
this example it is possible to see part of the integration phase, because some parts are
internal to the algorithm and to the global declaration node. It is possible to see, for
example, how the sockets in the superpage are associated to the ports in the subpage, and
how a substitution transition in the superpage represents another CPN model, the page of
the component model.

Fig. 10. Integration example.

7. Use verification

Besides adaptation and integration, the specific use case of recovered models performing an
use verification step is also considered. This activity is defined in the context of this work
because when modeling based on reuse it is necessary to guarantee that the semantic of the
resulting model respects the semantics of the reused models. Some parts of the resulting
model can lead a reused model to behave in a different way than expected. This problem
can compromise the modeling activity and the facility, and flexibility that the reuse process
promotes.
The use case verification activity consists in performing model checking for the framework
with the individual models to be verified already integrated on it. To do this, the temporal
logic formulae for the properties of an individual model is specified in a file,. The model
checking is then performed in the whole model to ensure that the integrated models were
correctly used. The idea is to use the same specifications used in the recovering step, or the
specification supplied together with the model.

Petri Nets for Component-Based Software Systems Development 491

Considering that it is necessary to define a new framework for each modeling domain. The
framework can be developed without any considerations, or even violations, to the specific
functionalities of the individual models to be integrated following the reuse process.
Moreover, the models can be reused in several different domains. The interface between the
framework and the models can be changed to reflect the needs of each domain and to satisfy
the specific use alternatives of each model. Therefore, as the framework is being built the
changes in the interface can result in a wrong use case of the integrated models. Because of
the problems discussed above, it is necessary to define the use verification activity for the
reuse process. Indeed, the use verification activity is essential when building models from a
new framework.
Another justification for the definition of the use verification activity is that in the case that
no reuse candidate is found in the repository, a new model has to be built. The use
verification is also performed to validate a new model to be inserted in the repository.

7.1 Implementation

Before presenting the algorithm, the use verification problem can be stated as follows:
"Given a CPN model, called CPNFramework, and some properties of an individual component
model integrated on CPNFramework, described as temporal logic formulae, the use verification
problem consists in performing model checking to verify if the new integrated model respects the
individual properties of the integrated component taking CPNFramework and the properties as the
starting point."
In Algorithm 3 the use verification is defined. Initially, the designer must execute the
occurrence graph tool in the Design/CPN. The next step is to select the file that has the
properties specifications for the model to be verified. The algorithm executes at this point
the model checking in the framework including all the models already integrated on it. If the
properties hold in the resulting model the use verification is successful. In the opposed case
the designer receives a warning that there exist errors in this specific use case.
The steps 1 to 3 must be done by the user. All other steps are automatically executed. After
the execution, a message is shown saying whether the properties are satisfied or not.

When the SCC graph is generated and the ASK-CTL library loaded, the use verification is
performed. To do this, it is necessary to specify the properties we want to prove. At this
moment the designer is asked for the file name with the specifications. After the designer
indicates this file name, the model checking is performed.
An important task in verifying systems is to identify and define properties to be proved. As
the goal is to prove properties for the architecture and for the interface of the components,
the framework model should be used regardless the internal component details to prove
properties about the whole system. In order to do that, a technique to identify functional
system scenarios is used to define interesting properties to prove. To illustrate the scenarios

Petri Net: Theory and Applications 492

Message Sequence Charts (MSC) are used. MSCs are automatically generated during the
simulation of the HCPN model. The verification strategy defined in this work consists of the
following steps:
1. Identification of scenarios;
2. Automatic MSC generation for each scenario based on simulation;
3. Properties identification based on the MSCs and scenarios;
4. Atomic propositions and formula specifications in temporal logic;
5. Model checking.
When performing the use verification activity of the reuse process described in Section 3,
only steps 4 and 5 are done. The strategy above is a more generic approach to verify models
of systems, specifically for planning and flow properties. In the rest of this section the
verification is considered as the more general approach, but the reader must have in mind
that the use verification activity for reused models of specific components are captured by
steps 4 and 5.
Suppose that the devices send an initial signal when the system is turned on or a new device
is plugged in. Also, suppose that the system perform some task when it receives this kind of
message and send back to the device an acknowledgement, calibration, or even an
initialization message. Such scenario is illustrated in Fig. 11.

Fig. 11. Data converter flow to control signal.

When a device sends an initialization signal, the data converter sends it to the device
controller to perform the associated control tasks. Since a MSC diagram is generated based
on simulation it captures only a single execution sequence for the information flow in the
model. It might be the case that there is some situation where this expected sequence or flow
is violated. Therefore, the scenario for all possible model behavior must be verified
performing model checking to guarantee that the expected flow is always respected.
Considering again the scenario shown in Fig. 10, the property that when an initialization
message is sent by some device the flow should be through the device controller must be
provedL The following ML code fragment specifies atomic propositions and the temporal
formula to prove this property.

Petri Nets for Component-Based Software Systems Development 493

The proposition PA is true if there is a token in place lODConln of page CommServer. The

proposition PB is to true if there is a token in place DConOutDevC of page CommServer.

Therefore, the formula is true if PA is true and eventually PB is true. It means that if there is

a token in the data converter input, this token is sent to device controller input, which is the

component that implements control tasks such as initialization, calibration, and changing

devices working parameters. The evaluation of this formula to true means that this part of

the model behaves as expected for all possibilities of model execution. We can proceed with

the same reasoning to prove that the flow of information back to device also behaves as

expected for all possibilities.

The strategy illustrated above can be used for several different properties. It is used together

with the framework, and the reuse of CPN models process to promote a formal and

systematic approach for the specification and verification of systems.

8. Concluding remarks

In this chapter a component-based software development approach using Coloured Petri

Nets (CPN) was presented. Components promote the software development using building

blocks as in other engineering disciplines. In order to develop component-based systems it

is necessary to define a process.

The implementation of a reuse-based modeling process for CPN, including all the activities

in a fully automatic way was introduced. The model reuse activities considered were

adaptation, integration and use verification. For different application domains only the

integration step is affected because of the need to define different integration strategies and

a specific framework. Due to the use of the framework concept, the designer does not need

to explicitly care about the model structure.

The application of the introduced methodology for the design of dependable software is

natural in a context in which adaptation means refinement. The introduced approach is very

useful whenever the CPN model is used in order to provide control information to some

other system. The approach introduced in this work has been applied to the embedded

systems domain. The adaptability is achieved in a controlled, formal and systematic way.

Therefore, the process can be used in the context of critical and dependable systems, such as

embedded systems. The two major problems related to the software development for

embedded systems, namely specification and verification, can be effectively tackled based

on the approach introduced in this chapter.

One extension of this work is to diversify the repository. This can be done in several ways.

One way is to have several models for a domain and even several domains. Examples of

other possible domains are communication systems, and integrated circuits. Another way is

to put in the repository other kinds of artifacts like code segments, and other modeling

formalisms. Furthermore, it is also needed to be able to derive source code from the CPN

models. One possible idea to do this is to associate pieces of code (in C or Java) to the

transitions of the models. Also, distributed repositories can be considered.

Petri Net: Theory and Applications 494

10. References

[Cheng et al., 1997] Cheng, A., Christensen, S., and Mortensen, K. H. (1997). Model checking
Coloured Petri Nets exploiting strongly connected components. Technical
report, Computer Science Department, Aarhus University, Aarhus (Denmark).

[Christensen and Haagh, 1996] Christensen, S. and Haagh, T. B. (1996). Design/CPN
Overview of CPN ML Syntax. University of Aarhus, 3.0 edition.

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The
MIT Press, Cambridge, MA, USA.

[Clarke and Wing, 1996] Clarke, E. M. and Wing, J. M. (1996). Formal methods: State of the art
and future directions. ACM Computing Surveys, 28.

[Crnkovic, 2001] Crnkovic, I. (2001). Component-based software engineering - new
challenges in software development. Software Focus, 2(4):127-133.

[Crnkovic and Grunske, 2007] Crnkovic, I. and Grunske, L. (2007). Evaluating dependability
attributes of component-based specifications. In ICSE Companion, pages 157-158.

[Crnkovic et al., 2002] Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z. (2002).
Specification, implementation, and deployment of components. Communications of
the ACM, 45(10):35-40.

[Des, 2006] Design/CPN 4.0. Meta Software Corporation and Department of Computer
Science, University of Aarhus, Aarhus, Denmark. On-line version:
http://www.daimi.aau.dk/ designCPN/.

[Donatelli and Thiagarajan, 2006] Donatelli, S. and Thiagarajan, P. S., editors (2006). Petri
Nets and Other Models of Concurrency - ICATPN 2006, 27th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency,
Turku, Finland, June 26-30, 2006, Proceedings, volume 4024 of Lecture Notes in
Computer Science. Springer.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. In Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995-1072. Elsevier Science
Publisher B.V.

[Gorgônio and Perkusich, 2002] Gorgônio, K. C. and Perkusich, A. (2002). Adaptation of
Coloured Petri Nets models of software artifacts for reuse. In Gacek, C.,
Software Reuse: Methods, Techniques and Tools. VII International Conference
on Software Reuse, number 2319 in Lecture Notes in Computer Science, pages 240-
254, Austin, Texas (USA). Springer-Verlag.

[Gorton et al., 2006] Gorton, I., Heineman, G. T., Crnkovic, I., Schmidt, H. W., Stafford, J. A.,
Szyperski, C. A., and Wallnau, K. C, editors (2006). Component-Based
Software Engineering, 9th International Symposium, CBSE 2006, V"aster°as,
Sweden, June 29 - July 1, 2006, Proceedings, volume 4063 of Lecture Notes in
Computer Science. Springer.

[Jensen, 1992] Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1 of EACTS - Monographs on Theoretical Computer Science.
Springer-Verlag.

[Jensen, 1997] Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 2 of EACTS - Monographs on Theoretical Computer Science.
Springer-Verlag.

[Jensen, 2005] Jensen, K., editor (2005). Sixth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, volume PB-576, Aarhus (Denmark). DAIMI.

Petri Nets for Component-Based Software Systems Development 495

[Jensen, 2006] Jensen, K., editor (2006). Seventh Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, volume PB-579, Aarhus (Denmark). DAIMI.

[Kleijn and Yakovlev, 2007] Kleijn, J. and Yakovlev, A., editors (2007). Petri Nets and Other
Models of Concurrency - ICATPN 2007, 28th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, ICATPN
2007, Siedlce, Poland, June 25-29, 2007, Proceedings, volume 4546 of Lecture Notes
in Computer Science. Springer.

[Knight, 2001] Knight, J. C. (2001). Dependability of embedded systems. In Proceedings of the
23rd International Conference on Software Engineering, page 688.4. IEEE
Computer Society.

[Knight, 2002] Knight, J. C. (2002). Dependability of embedded systems. In Proceedings of the
24th International Conference on Software Engineering, pages 685-686. ACM
Press.

[Knight, 2004] Knight, J. C. (2004). An introduction to computing system dependability. In
Proceedings of the 26th International Conference on Software Engineering, pages
730-731. IEEE Computer Society.

[Land and Crnkovic, 2007] Land, R. and Crnkovic, I. (2007). Software systems in-house
integration: Architecture, process practices, and strategy selection. Information
& Software Technology, 49(5):419-444.

[Lee, 1999] Lee, E. A. (1999). Embedded software - an agenda for research. Technical Report
UCB/ERL No. M99/63, University of California at Berkeley.

[Lee, 2002] Lee, E. A. (2002). Embedded software. In Zelkowitz, M., editor, Advances in
Computers, volume 56. Academic Press, London (UK).

[Lemos and Perkusich, 2001] Lemos, A. J. P. and Perkusich, A. (2001). Reuse of Coloured
Petri Nets software models. In Proc. of The Eighth International Conference
on Software Engineering and Knowledge Engineering, SEKE'Ol, pages 145-152,
Buenos Aires (Argentina).

[Long, 1993] Long, D. L. (1993). Model Checking, Abstraction, and Compositional
Reasoning. PhD thesis, Carnegie Mellon University.

[McMillan, 1993] McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic
Publishers, Boston/ Dordrecht/ London.

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541-580.

[Nierstrasz et al., 2002] Nierstrasz, O., Arevalo, G., Ducasse, S., Wuyts, R., Black, A. P.,
Miiller, P. O., Zeidler, C, Genssler, T., and van den Born, R. (2002). A component
model for field devices. Lectures Notes in Computer Science, 2370:200-216.

[Nierstrasz et al., 1992] Nierstrasz, O., Gibbs, S., and Tsichritzis, D. (1992). Component-
oriented software development. Communications of the ACM, 35(9):160-165.

[Peled, 1994] Peled, D. (1994). Combining partial order reductions with on the fly model
checking. In CAV '94: Proceedings of the 6th International Conference on Computer
Aided Verification, pages 377-390, London, UK. Springer-Verlag.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57,
Providence, Rhode Island. IEEE, IEEE Computer Society.

Petri Net: Theory and Applications 496

[Ramadge and Wonham, 1987] Ramadge, P. J. G. and Wonham, W. M. (1987). On the
supremal controllable sublanguage of a given language. SLAM Journal on Control
and Optimization, 25(3):637-659.

[Ramadge and Wonham, 1989] Ramadge, P. J. G. and Wonham, W. M. (1989). The control os
discrete event systems. Proceedings of the IEEE, 77(l):81-97.

[Silva and Perkusich, 2005] Silva, L. D. and Perkusich, A. (2005). A Model-Based Approach to
Formal Specification and Verification for Embedded Systems Using Coloured Petri
Nets. In: Colin Atkinson; Christian Bunse; Hans-Gerhard Gross; Christian Peper.
(Org.). Component-Based Software Development for Embedded Systems: An
Overview on Current Research Trends. Berlin: Springer-Verlag, v. 3778, p. 35-58.

[Szyperski, 1999] Szyperski, C. (1999). Component Software: Beyond Object-Oriented
Programming. Addison-Wesley.

[Ullman, 1998] Ullman, J. D. (1998). Elements of ML Programming. Prentice Hall, 2 edition.
[Valmari, 1991] Valmari, A. (1991). A stubborn attack on state explosion. In CAV '90:

Proceedings of the 2nd International Workshop on Computer Aided
Verification, pages 156-165, London, UK. Springer-Verlag.

[van Steen et al., 1998] van Steen, M., van der Zijden, S., and Sips, H. (1998). A view on
components. In Proceedings of the 9th International DEXA Workshop on Database
and Expert Systems Applications, IEEE Computer Society, Los Alamitos, California.

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Leandro Dias da Silva, Kyller Gorgonio, and Angelo Perkusich (2008). Petri Nets for Component-Based

Software Systems Development, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN: 978-3-

902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/petri_nets_for_component-

based_software_systems_development

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

