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Chapter

Practical Digital Terrain Model 
Extraction Using Image Inpainting 
Techniques
Chiman Kwan, David Gribben, Bulent Ayhan  

and Jude Larkin

Abstract

In some applications such as construction planning and land surveying, an 
accurate digital terrain model (DTM) is essential. However, in urban and sub-urban 
areas, the terrain may be covered by trees and man-made structures. Although 
digital surface model (DSM) obtained by radar or LiDAR can provide a general 
idea of the terrain, the presence of trees, buildings, etc. conceals the actual ter-
rain elevation. Normally, the process of extracting DTM involves a land cover 
classification followed by a trimming step that removes the elevation due to trees 
and buildings. In this chapter, we assume the land cover types have been classified 
and we focus on the use of image inpainting algorithms for DTM generation. That 
is, for buildings and trees, we remove those pixels from the DSM and then apply 
inpainting techniques to reconstruct the terrain pixels in those areas. A dataset with 
DSM and hyperspectral data near the U. Houston area was used in our study. The 
DTM from United States Geological Survey (USGS) was used as the ground truth. 
Objective evaluation results indicate that some inpainting methods perform better 
than others.

Keywords: digital terrain model (DTM), digital surface model (DSM), image 
inpainting, vegetation extraction, land classification

1. Introduction

There are several ways to obtain DTM. The oldest method is to do this manually 
by measuring the terrain elevations of some selected points of a given area. The 
process is time-consuming, tedious, and prone to human errors. In recent years, 
people have started to use LiDAR to generate DTM. The obtained DTM is in general 
satisfactory even though the point density may not be very dense as compared to 
optical stereo imaging approach [1]. Radar has been used as well. It is well known 
that LiDAR and radar equipment are expensive. Due to availability of low-cost 
drones, stereo imaging has been gaining popularity. Near infrared (NIR) together 
with color imagers have been used in recent years to generate DSM. However, due 
to the presence of vegetation and buildings, some additional processing steps are 
needed in order to obtain DTM from DSM.
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In recent years, hyperspectral images [2–4] are gaining popularity in various 
applications, including anomaly detection [5–7], target classification [8, 9], search 
and rescue operations [10], and many others. Due to the availability of hundreds of 
contiguous spectral bands, accuracies of anomaly detection and target classification 
have been improved quite significantly. Hyperspectral images can also be used for 
accurate land cover classification [11–16]. Many methods have been developed in 
the past [17–19] for target detection in hyperspectral images. It will be ideal that 
hyperspectral images are available for land cover classification so that more accurate 
DTM can be obtained. However, equipment cost, requirement on data storage, and 
computational burden are limiting the widespread usage of hyperspectral imagers.

In contrast, low-cost color and NIR images are relatively inexpensive, have low 
computational cost, and low data storage. If one is given only color (RGB) and near 
infrared (NIR) images, however, it will be difficult to obtain accurate land cover 
classification for the following reasons. First, the accuracy of using only RGB and 
NIR bands for land cover classification is low as compared to that of using hyper-
spectral images. This point will be clear later in Section 3. Improving land cover 
classification using only color and NIR images will be a good contribution to the 
community. In recent years, there are some new developments along this direc-
tion. In particular, people have developed methods to synthesize spectral bands 
from color and NIR images. One technique is known as Extended Morphological 
Attribute Profile (EMAP) [20]. Several notable applications have appeared in the 
literature [16, 17]. Second, even after the pixels related to trees and man-made 
structures are identified and removed from the DSM, we still need to face an impor-
tant practical issue. How can one recover the missing terrain pixels in the DSM to 
build a DTM? Conventional approaches use simple interpolation such as bilinear or 
bicubic interpolations [1]. However, the accuracy of DTM may be compromised. In 
recent years, there have been new developments in interpolation methods, termed 
as image inpainting methods. Those recent methods can be categorized into several 
groups. The first group is similar to bicubic interpolation methods. Some represen-
tative methods include bicubic, Laplacian [21], and inpaint-nans [22]. The second 
group uses nonlocal sparse representation for inpainting. Well-known methods 
include Local Matrix Completion Sparse (LMCS) [23], field of expert (FOE) [24], 
and Transformic [25]. The last group is the deep learning-based methods. One 
representative method is known as generative inpainting (GenIn) [26].

In this chapter, we propose a low-cost and accurate approach to DTM gen-
eration. Suppose we are given a DSM and only the color and NIR images. Our 
approach consists of four steps. First, we perform land cover classification using 
only color and NIR images. Various methods can be applied in this step. The key 
innovation is to apply synthetic spectral bands to enhance the land cover per-
formance. It was demonstrated that the land cover performance using synthetic 
bands can yield performance very close to that of the hyperspectral image. Second, 
since there may be more than 10 types of land covers, we observed that it is more 
accurate to consolidate some of the land cover types into only five groups. Third, 
the trees and man-made structures are then removed from the DSM. Fourth, 
various conventional and deep learning inpainting methods are applied to gener-
ate the DTM. Comparisons show that GenIn has consistent performance in DTM 
construction.

This chapter is organized as follows. In Section 2, we will briefly review the 
methods and data. Section 3 will discuss the land cover classification results and 
how we consolidate 15 land cover types into only five groups. Section 4 focuses on 
the various DTM reconstruction results. Finally, some concluding remarks will be 
given in Section 5.
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2. Methods and data

2.1 Land cover classification methods

In this research, we have used the following nine methods for land cover clas-
sification. We will not go into the details of each method. Instead, we briefly list the 
names and provide some references for their sources.

We categorize the methods into three groups. In the first group are simple and 
efficient methods, including Matched Subspace Detection (MSD) [18], Adaptive 
Subspace Detection (ASD) [18], and Reed-Xiaoli Detection (RXD) [19]. These 
methods have been used in hyperspectral image processing in the past. In the sec-
ond group are kernel versions of the first group and they are: Kernel MSD (KMSD) 
[18], Kernel ASD (KASD) [18], and Kernel RXD (KRXD) [19]. The kernel-based 
algorithms are computationally expensive and may not be suitable for real-time 
applications. The third group contains Sparse Representation (SR) [27] algorithm, 
Joint Sparse Representation (JSR) [27] algorithm, and Support Vector Machine 
(SVM) [28, 29] algorithm. In the past, we have used the above three methods in 
group 3 for soil detection using multispectral images [27].

2.2 Inpainting methods

We have applied seven methods in this project. They are briefly summarized 
below:

Bicubic: in a recent paper by researchers at Cyprus, a bicubic interpolation 
method was used in [1].

Inpaint_nans: we denote this as “inpaint” in our later experiments. This method 
was developed by D’Errico [22]. This is a very simple method that only uses the 
neighboring pixels to estimate the missing pixels, which will be referred as NaNs 
(not a number).

FOE: the Field of Experts method (FOE) was developed by Roth [24]. This 
method uses pre-trained models that are used to filter out noise and obstructions 
in images.

Laplacian: this method [21] fills in each missing pixel using the Laplacian inter-
polation formula by finding the mean of the surrounding known values.

Local Matrix Completion Sparse (LMCS) [23]: in LMCS, which was developed by 
us, a search is performed for each missing pixel to find a pixel with the most similar 
neighbors. After the search, the missing pixel is replaced with the found pixel. This 
method performs very well with images containing repeating patterns.

Transformic: the Transformic method was developed by Mansfield [25]. It is 
similar to the LMCS in that it searches the whole image for a patch that is similar to 
the neighbors of the missing pixel.

Generative Inpainting (GenIn) [26]: a new inpainting method, Generative 
Inpainting (GenIn), which is a deep learning-based method [26], was considered in 
our research. It was developed at the University of Illinois and aims to outperform 
typical deep learning methods that use convolutional neural network (CNN) 
models. GenIn builds on CNN and Generative Adversarial Networks (GANs) in an 
effort to encourage cohesion between created and existing pixels.

2.3 EMAP

In this section, we briefly introduce EMAP, which has been shown to yield good 
classification performance when one only has a few spectral bands available. Given 
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an input grayscale image f and a sequence of threshold levels { }1 2,, ,, nTh Th Th… , the 
attribute profile (AP) of f is obtained by applying a sequence of thinning and 
thickening attribute transformations to every pixel in f as follows:

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }φ φ φ γ γ γ= … …1 2 1 2, , , , , , n nAP f f f f f f f f    (1)

where iφ  and ( )1,,2,,i i nγ = …  are the thickening and thinning operators at 

threshold ,iTh  respectively. The EMAP of f is then acquired by stacking two or  

more APs using any feature reduction technique on multispectral/hyperspectral 
images, such as purely geometric attributes (e.g., area, length of the perimeter, 
image moments, shape factors), or textural attributes (e.g., range, standard  
deviation, entropy).

 ( ) ( ) ( ) ( ){ }= …1 2, mEMAP f AP f AP f AP f  (2)

More technical details about EMAP can be found in [20, 30–32]. In this work, 
the “area (a)” and “length of the diagonal of the bounding box (d)” attributes of 
EMAP [17] were used. The lambda parameters for the area attribute of EMAP, 
which is a sequence of thresholds used by the morphological attribute filters, were 
set to 10 and 15, respectively. The lambda parameters for the length attribute of 
EMAP were set to 50, 100, and 500. With this parameter setting, EMAP creates 11 
synthetic bands for a given single band image. One of the bands comes from the 
original image.

2.4 IEEE dataset

From the IEEE GRSS Data Fusion package [11], we obtained the ground truth 
classification maps, the hyperspectral image of the University of Houston area, 
and the LiDAR data of the same area. The instrument used to collect the dataset is 
simply a hyperspectral and LiDAR sensor. The hyperspectral image contains 144 
bands ranging in wavelength from 380 to 1050 nm with spatial resolution of 0.25 m. 
The LiDAR sensor has the same spatial resolution of 0.25 m.

As shown in Table 1, there are a number of datasets used for analysis. The first 
group is the RGB (band # 60, 30, 22 in the hyperspectral data) and the NIR band 
(band #103). It should be noted that the above selection of bands is not the same as 
band selection in the literature [33]. In band selection, the objective is to select the 
most informative bands out of the available hyperspectral bands. In our case, we 
are restricted to only having a few bands. We call this group Dataset-4 (DS-4). The 
second group is the four band group put through EMAP augmentation to produce 
44 bands as each band produces 10 other bands in addition to the original band 

Dataset label Bands present in the corresponding dataset

Dataset-4 (DS-4) RGB and the NIR bands (respectively bands # 60, # 30, # 22, and # 103 in the 

hyperspectral data)

Dataset-44 (DS-44) RGB and the NIR bands. Forty bands obtained by EMAP augmentation applied to 

RGB and the NIR bands

Dataset-144 (DS-144) Hyperspectral dataset

Table 1. 
Dataset labels and the corresponding bands.



5

DOI: http://dx.doi.org/10.5772/intechopen.93184
Practical Digital Terrain Model Extraction Using Image Inpainting Techniques

[denoted as Dataset-44 (DS-44)]. The third group is the full hyperspectral image of 
144 bands [denoted as Dataset-144 (DS-144)].

3. Consolidation of the number of land cover classes

Before studying the performance of inpainting techniques on the IEEE GRSS 
Data Fusion dataset, in order to create a consensus about the best classification 
method, the number of classes was reduced from 15 to 5. As shown in Table 1, the 
first three grass classes (Healthy, Stressed, and Synthetic) were consolidated into 
simply grass; tree, soil, and water maintained their individual classifications; and 
then all other classes were grouped into one class as man-made structures. This was 
done simply because some of the man-made classes—road, highway, railway, and 
both parking lots—were consistently misclassified and often as the other classes 
in this group. The same is true for the grass classes. By consolidating the classes, 
the classification method selection process was made easier. The averages listed 
in Table 2 are a summation of all non-kernel methods averages. This is shown to 
illustrate how low performing some types are even among the high-performing 
methods.

Table 3, extracted from a recent work [34], corresponds to the accuracy for the 
full 15 class models while Table 4 is for consolidated 5 classes. Comparing the two 
tables, it can be seen that the new class combination results in much improved results 
in all cases. Each method has an overall improvement of at least 13% and most 
methods saw an improvement of over 20%. It is clear from Table 4 that JSR clearly 
stands out as the best performing method. JSR goes from being the best performing 
method in one band case to every band case as well as overall average when using the 
new class arrangement. Yet, every band case of JSR returns over 90% accuracy, when 
previously the smaller number band cases returned results near 50%.

New class # Class type Class # Avg. accuracy (5)

1 Healthy grass 1 72.93

Stressed grass 2 56.67

Synthetic grass 3 91.90

2 Tree 4 70.98

3 Soil 5 82.99

4 Water 6 61.29

5 Residential 7 54.82

Commercial 8 48.16

Road 9 39.23

Highway 10 43.00

Railway 11 45.20

Parking lot 1 12 36.94

Parking lot 2 13 36.69

Tennis court 14 64.03

Running track 15 94.22

Table 2. 
Combining classes down from 15 classes to 5 classes and the average accuracy of each class.
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It should be noted that the results related to the 44-band (DS-44) case are observed 
to perform better than the 4-band (DS-4) and 144-band (DS-144) cases. It may be 
easier to understand why DS-44 is better than DS-4. A simple explanation is that the 
DS-44 data contain some synthetic spectral information, which enriches the spectral 
content. The explanation for why DS-144 case is worse than DS-44 case is because there 
are a lot of redundancies in the various bands in the DS-144 data. The data redundan-
cies appear to cause some conflicts in the classifiers. Other researchers have observed 
similar behaviors [11] before and sometimes they call this the curse of dimension.

4. DTM extraction by removing man-made structures and trees

4.1 Ground truth DTM

The ground truth being used is the 1/9 arc second-resolution Digital Elevation 
map produced by USGS. Additional maps used for comparison in this investigation 
are the Cloth Simulation Filter (CSF) method [35] and the 1 arc second-resolution 
USGS DE map. However, CSF and USGS can only be used for general comparison as 

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 47.17 69.89 65.75 60.94

MSD 63.31 71.32 81.94 72.19

RXD 57.50 68.98 62.29 62.92

KASD 42.67 94.50 82.64 73.27

KMSD 63.53 91.87 75.18 76.86

KRXD 45.62 86.35 88.40 73.46

SR 55.11 90.61 85.50 77.07

JSR 93.15 94.55 93.84 93.85

SVM 91.59 92.25 87.72 90.52

Bold numbers indicate the best performing method of each column.

Table 4. 
Overall accuracies using five classes for the nine classification methods and each band combination.

OA DS-4 (%) DS-44 (%) DS-144 (%) Avg. (%)

ASD 22.59 22.75 21.11 22.15

MSD 0.11 48.65 55.56 34.77

RXD 28.93 46.09 42.69 39.24

KASD 6.16 79.70 53.57 46.48

KMSD 26.32 69.26 53.61 49.73

KRXD 5.72 64.14 71.79 47.22

SR 39.99 64.45 57.46 53.97

JSR 59.83 80.77 72.57 71.06

SVM 70.43 82.64 78.68 77.25

Table 3. 
Overall accuracies using 15 classifications of the 9 classification methods and each band combination.
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their inputs are not dependent on the different numbers of bands. CSF simply uses 
the LiDAR image while USGS is an already completed product. The three DTMs 
are shown in Figure 1. It can be seen that the USGS 1/9 arc second map is more 
accurate.

4.2 Individual inpainting results

The different methods used to compare digital terrain models (DTMs) through 
inpainting were “inpaint_nans,” “LMCS,” “Laplacian,” “Transformic,” and “CSF.” 
However, CSF must be considered separate from others as it is not dependent on the 
same image bands that the other inpainting techniques are dependent on. In this 
study, the best resolution (1/9 arc second) USGS satellite radar imagery was used as 
the ground truth.

With a consistently well-performing method available for the composition of 
DTMs, which is JSR, we now look at the performance of inpainting methods judg-
ing against a general ground truth of the USGS Digital Elevation maps. Our goal 
is to remove Class 2 (trees) and Class 5 (manmade structures) from the DSM. The 
missing pixels will be interpolated by using inpainting techniques. The names of 
the methods tested against this ground truth were: inpaint_nans, LMCS, Laplace, 
Transformic, and FOE. There is also the added variation of downsizing the image 
four times versus maintaining the full-size image to demonstrate affected accuracy 
because the downsized results save considerable time.

After JSR classifier is applied to the EMAP images (DS-44) and the man-made 
objects areas are identified by JSR, these identified man-made and trees areas are 
removed from the LiDAR image (DSM). Inpainting techniques are then applied 
to those missing pixel areas in the LiDAR image. The filled-in LiDAR image with 
inpainting methods corresponds to the estimated DTM. Figure 2 contains the 
DTMs, generated from the four times downsized DS-44 EMAP images for each 
method (excluding CSF). The purpose of downsizing by four times was because of 
computational issues. It took many hours to finish the inpainting for some of the 
methods. The images from Figure 2 can be compared to the ground truth and fully 
produced products of CSF and the lower resolution USGS. The LMCS results have 
issues near the boundary of the image because LMCS cannot handle missing pixels 
near the image boundary.

Figure 1. 
USGS 1/9 arc second resolution (top), CSF (middle), and USGS 1 arc second-resolution (bottom) DTMs.
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Figure 1 displays the full-size ground truth maps. Figure 3 contains the esti-
mated DTMs using full-size DS-44 EMAP images. The inpainting maps in Figure 2 
and Figure 3 can also be compared against Figure 1.

Clearly the lower resolution USGS image is not a great product to use for the 
digital terrain map. However, it is useful to show a low-resolution picture of what 
the Houston area could look like without classification and inpainting.

To find an objective statistical proof of accuracy of the different inpainting 
methods, there are five different metrics that can be used. By taking the differ-
ence between the DTM of a given inpainting method and the ground truth map 
(USGS)—then calculating mean, standard deviation, root mean squared, and the 
min and max of each instance—we can find a general standard of accuracy for each 
method. The visual observation from LMCS shows that performance is poor on 
the edges of each map, as is expected given that it does not calculate any inpainting 
on the edges. The same can also be said to a lesser extent of inpaint_nans. To help 
alleviate that inaccuracy, a cropped comparison of downsized and full-size versions 
is conducted for all methods, which gets rid of these problematic areas on the edges.

The performance metrics for the DS-44 case can be seen in Table 5. In the DS-44 
case, we observe that two techniques, Laplacian and Transformic, performed better 
than the rest. While Transformic’s mean value is the smallest, the other four metrics 
have better values in Laplacian. For comparison purposes, the performance metrics 
for the CSF method and USGS lower resolution elevation map are also included in 
Table 6. Overall, CSF performs pretty well for the mean; however, because of the 
non-removed bridge, all other metrics are relatively poor performing. The 1 arc 
second resolution USGS image performs poorly in all accuracy categories. It can be 

Figure 2. 
DTMs generated from the four times downsized DS-44 EMAP images: first row: Laplace; second row: inpaint_
nans; third row: Transformic; fourth row: FOE; and fifth row: LMCS.
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also noticed from Table 6 that these values for CSF and USGS are worse than the 
best performing individual cases that are shown in Table 5.

4.3 Fusion of different inpainting results

In an effort to improve the inpainting performance metrics, three different 
fusion methods are utilized. The pixel level fusion methods were used in [36]. For 
the first fusion method, alpha trimmed mean filter (ATMF), the worst and best 
performing methods for a given accuracy measurement are removed and then the 
three in-between results are averaged before re-taking the accuracy measurements 
to see how the results were improved. The second fusion method, weighted method, 
weighs each method based on a specific accuracy measurement and averages those 
results. The final fusion method, F3, simply averages the three best performing 
methods for each accuracy measurement.

In order to perform these operations, it was necessary to rank each of the meth-
ods based on the three main accuracy measurements: mean, standard deviation 

Figure 3. 
DTMs generated from the full-size DS-44 EMAP images. We could not generate LMCS, which took many days 
and we stopped the program. First row: Laplace; second row: inpaint_nans; third row: Transformic; fourth 
row: FOE.

Inpaint_nans LMCS Laplacian Transformic FOE

Mean 0.39 0.24 0.34 0.08 0.38

Sigma 0.74 0.82 0.58 0.67 0.64

RMS 0.84 0.85 0.67 0.67 0.74

Min −3.43 −11.87 −3.43 −3.55 −3.43

Max 6.38 18.45 6.30 6.56 6.60

Bold numbers indicate the best performing method of each row.

Table 5. 
Mean, standard deviation (sigma), root mean square (RMS), min, and max accuracy results using five 
inpainting methods for the DS-44 case.
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(STD, also denoted in other tables as sigma), and root mean squared (RMS). This 
was done for exclusively DS-44 results. It includes both the full-sized results and 
the four times down-sampled results. Table 7 shows the performance rankings for 
various combinations of band number with respect to three performance metrics: 
mean, sigma, and root mean squared (RMS). From the results in Table 7, it is clear 
that overall the downsized results return much more accurate values than the full-
sized values in most cases.

Table 8 shows the performance metrics for the DS-44 case when three different 
fusion methods were applied to the best five individual inpainting methods’ results 
where the ranking was conducted with respect to three performance metrics sepa-
rately (mean, STD, and RMS). F3 produces the lowest mean value and relatively 
lower sigma and RMS values in comparison to others.

Table 9 shows the performance metrics for the special case (which we name as 
combo) when three different fusion methods are applied to the best five individual 
inpainting methods’ results from both 44-bands inpainting results where the rank-
ing is conducted with respect to three performance metrics separately (mean, STD, 
and RMS). In this case, F3 method produces lower mean, sigma, and RMS values 
with respect to ranking according to the mean performance metric.

Table 10 shows a summary of the best performing individual cases (no fusion) and 
the best performing cases with fusion for DS-44 case with fusion. From Table 10, it 
can be noticed that the F3 (with respect to ranking according to lowest mean) improves 
the RMS value slightly when compared with the RMS values of the best performing 
individual inpainting method results (Laplacian and Transformic in DS-44). However, 
when all performance metrics are considered as a whole, we cannot clearly state F3 
performs the best in all performance accuracy metrics but improves a few of the 
parameters.

Mean STD RMS

Rank Method Value Rank Method Value Rank Method Value

1 4 × T 0.08 1 4 × LP 0.58 1 4 × LP 0.67

2 4 × LMCS 0.24 2 4 × FOE 0.64 2 4 × T 0.67

3 4 × LP 0.34 3 Full T 0.65 3 4 × FOE 0.74

4 4 × FOE 0.38 4 4 × nans 0.74 4 4 × nans 0.84

5 4 × nans 0.39 5 4 × LMCS 0.82 5 4 × LMCS 0.85

Transformic is T and Laplacian is LP.

Table 7. 
Ranking results for various combinations of band number and accuracy measurement for DS-44 case.

CSF USGS 1 arc second

Mean 0.37 4.70

Sigma 1.02 3.10

RMS 1.08 5.63

Min −5.81 −7.83

Max 15.98 19.04

Table 6. 
Accuracy values for CSF and USGS lower resolution map.
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ATMF Weighted F3

DS-44 Mean STD RMS DS-44 Mean STD RMS DS-44 Mean STD RMS

Mean 0.58 0.64 0.56 Mean 0.29 0.51 0.44 Mean 0.22 0.62 0.53

Sigma 0.68 0.67 0.67 Sigma 0.60 0.60 0.60 Sigma 0.61 0.67 0.67

RMS 0.89 0.93 0.87 RMS 0.67 0.79 0.75 RMS 0.64 0.91 0.86

Min −5.85 −3.47 −3.50 Min −4.46 −4.36 −4.46 Min −5.93 −3.50 −3.54

Max 6.77 6.75 6.68 Max 6.37 6.42 6.36 Max 6.40 6.61 6.61

From left to right, ATMF, weighted, and fusion 3; methods for combining generated DTM maps for DS-44 case.

Table 8. 
Performance metrics based on fusion algorithms.
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ATMF Weighted F3

Combo Mean STD RMS Combo Mean STD RMS Combo Mean STD RMS

Mean 0.61 0.35 0.25 Mean 0.29 0.56 0.73 Mean 0.22 0.66 0.56

Sigma 0.70 0.61 0.63 Sigma 0.60 0.62 0.70 Sigma 0.61 0.68 0.68

RMS 0.93 0.70 0.68 RMS 0.67 0.84 1.01 RMS 0.64 0.95 0.88

Min −5.83 −3.39 −3.45 Min −4.46 −3.42 −4.12 Min −5.93 −3.38 −3.43

Max 7.55 6.62 6.48 Max 6.37 6.85 7.03 Max 6.40 7.55 7.44

From left to right, ATMF, weighted, and fusion 3; methods for combining generated DTM maps for both band instances.

Table 9. 
Accuracy values.
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4.4 Comparison with deep learning inpainting

Using the pre-trained model provided by the GenIn package [26] for an image 
the size of about 350 by 1900 pixels (that covers the University of Houston campus 
and surrounding area), the computation time observed is roughly 2 minutes.

The accuracy of the GenIn model as compared to the other inpainting techniques 
is competitive and, cases, if not overall, is a more accurate result. In Table 11, statistics 
from GenIn together with the statistics from other inpainting techniques for the IEEE 
dataset are provided. In regards to mean, root mean square (RMS), and the maximum 
difference (max), GenIn outperforms all other techniques. For the sigma metric, it is 
the second-best performing method. The minimum difference accuracy measure is the 
only underperforming value coming in as the fourth best performing statistic. However, 
it is still the second-best value available, closely trailing the other three techniques.

It is also helpful to visualize GenIn’s digital terrain map estimation as compared 
to the ground truth. In Figure 4, an image of the U. Houston area can be observed 
after GenIn is applied on that area’s LiDAR data. Figure 5 corresponds to the USGS 
1/9 arc second Digital Elevation map that is used as the ground truth for the area.

The GenIn-generated results are found to be a very close reproduction of the 
ground truth. In some instances, it is observed that it provides more realistic results 
than the ground truth. As an example, in the horizontal right and vertical center 

No fusion With fusion

Metric Best DS-44 (Laplacian) Best DS-44 (Transformic) Best DS-44 (F3-mean)

Mean 0.34 0.08 0.22

Sigma 0.58 0.67 0.61

RMS 0.67 0.67 0.64

Min −3.43 −3.55 −5.93

Max 6.30 6.56 6.40

Bold numbers indicate the best performing method of each row.

Table 10. 
Summary of the best performing individual and fusion cases.

4 × crop Inpaint-nans LMCS Laplacian Transformic FOE GenIn

Mean 0.39 0.24 0.34 0.08 0.38 0.23

Sigma 0.74 0.82 0.58 0.67 0.64 0.59

RMS 0.84 0.85 0.67 0.67 0.74 0.63

Min −3.43 −11.87 −3.43 −3.55 −3.43 −3.50

Max 6.38 18.45 6.30 6.56 6.60 6.29

Bold numbers indicate the best performing method of each row.

Table 11. 
Comparison of GenIn statistics with respect to other inpainting methods’ performances for IEEE dataset.

Figure 4. 
GenIn digital terrain map for the U. Houston (UH) area. Scale is from 8 to 25 m.
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of the plot in Figure 5, there is a deep dark spot that is observed, which is to be 
denoted as a low spot. However, this is caused because of a highway bridge that 
runs over a railway and could be considered a miscalculated section of the Digital 
Elevation map. The GenIn-generated map produces no such deep dark spot and 
instead smoothly removes the bridge and because it does this, it then slightly suffers 
in the resultant accuracy statistics.

5. Conclusions

In this research, we investigated the feasibility of using only color and NIR 
images for accurate DTM extraction. We assume the DSM is also available. Our 
approach involves several steps. The first step is to use color and NIR images for 
land cover classification. After some extensive experiments, it was observed that 
using only four bands cannot achieve accurate land cover classification. A mor-
phological filtering approach was applied to generate synthetic spectral bands. 
Using nine land cover classification algorithms, it was observed that the use of 
synthetic bands significantly improved the land cover classification accuracy for 
the well-known IEEE dataset. The second step is to consolidate the many land cover 
types into only five groups. This was observed to further improve the accuracy. The 
third step is to apply nine inpainting algorithms to recover DTM from DSM. It was 
observed that the deep learning algorithm yielded more consistent performance.

Here, we also briefly mention a few future research directions. One direction is 
to focus on DSM generation using color images. The second direction is to obtain 
ortho-rectified images for the color and NIR images. A third direction is to build a 
software prototype that integrates DSM generation tool, ortho-rectification tool, 
land cover classification tool, and DTM reconstruction tool.
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