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Abstract

Management of diabetic foot remains a major challenge for healthcare system. 
Though wound healing is a multiphase process and involved multiple biomarkers 
that acts in stepwise manner, pathophysiology diabetic foot ulcers is still not much 
clear and need standardization. Matrix metalloproteinases (MMPs) are often linked 
with non-healing characteristic of diabetic foot ulcers. They play vital roles in vari-
ous phases of healing process. Major functions are removal of damaged extracellular 
matrix in inflammatory phase, breakdown of capillary basement membrane prior to 
angiogenesis and facilitation in fibroblast migration during proliferation phase. For 
efficient healing, these enzymes are needed in certain amount only. Imbalance of 
these enzymes leads to excessive degradation which has been linked with the non-
healing nature of diabetic ulcers. This chapter will shed light on the role of MMP’s in 
various phases of wound healing and the inhibitors of MMP’s from natural as well as 
synthetic origin. It would help researchers and physicians to the understand nature 
of diabetic foot more clearly and design of strategies for diabetic foot management.

Keywords: diabetic foot, matrix Metalloproteinases, MMP inhibitors, wound 
healing, inflammation

1. Introduction

Wound healing is a complex mechanism involves cascade of inter-related 
events, i.e., hemostasis, inflammation, proliferation and remodeling [1]. Various 
skin cells including epidermal, dermal, immune and endothelial cells are involved 
in initiating remodeling process. In wounded are, various signaling pathways and 
cellular mechanisms are observed to be active at same time which are responsible 
for ongoing the healing process. Moreover, various cellular events such as blood 
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clotting, fibroplasia, re-epithelization and matrix deposition along with neovascu-
larization are also involved in the process [1–5]. Skin is the largest organ of human 
body and responsible to control thermoregulation, fluid imbalance and protection 
of other internal organs against microbes [6]. In wounds, this barrier gets disrupted 
and become prone to the microbial infections. The bacterial burden invades the 
layers beneath epidermis and also the deeper tissues associated with extracellular 
matrix (ECM) which worsens the wound state [7]. The matrix metalloproteinases 
(MMPs) are the zinc dependent proteolytic enzymes which were firstly discovered 
in the tadpoles having function of collagen degradation [8]. Total 24 MMPs have 
been reported so far having different substrate specificities and functions [9, 10]. 
The MMPs have been reported to be involved in cellular interactions, cell- matrix 
interactions by altering the levels of cytokines, growth factors and various biologi-
cal fragments hidden in ECM [11–15]. MMPs indirectly modulates the cellular 
behavior by altering the cell surface receptors, junctional proteins and various cel-
lular processes such as cell death and inflammation [16, 17]. MMPs play important 
role during microbial infection of wounds, the disrupted fragments of ECM possess 
antimicrobial activity which makes the MMPs to be the major component involved 
in healing process of wounds [18]. However, the bacteria itself are able to produce 
proteolytic enzymes which leads to the accumulation of degraded matrix compo-
nents [19–21]. At the same time in some cases MMPs have been proven to be suitable 
candidate for gearing up the wound healing process [22, 23] but on other hands, 
several investigations reported the deregulation of these enzymes to be responsible 
for worsening the healing process and conversion of acute wounds to chronic 
wounds. This book chapter will focus on the various implications of MMPs in the 
chronic wounds along with their inhibitors of natural as well as synthetic origin.

2. Chronic wounds and infections

The disruption of skin barrier leads to increases susceptibility of bacterial strains to 
invade the wounds. The interaction of various bacteria/microbes has specificity with 
different matrix components turns to bacterial colonization. The bacterial colonization 
increases the bacterial burden in damaged wound site [24, 25]. This microbial coloniza-
tion is the onset to the journey of an acute wound towards chronic wound [26, 27]. The 
minute to higher quantities of bacterial population is found in each and every acute 
wound known as contamination [28]. The quantity and the severity of these bacte-
rial strains vary from wound to wound. If these bacterial population contains some 
pathogenic strains then there is a high risk of contamination turning into infection 
[29, 30]. Bacteria have ability to form biofilm with the help of self-secreting extracel-
lular polymeric substances [31]. Biofilms involves the different layers of bacteria stick 
with each other to form thick films. These biofilms hinder the proper functioning 
of immune system of host [32]. The biofilms make the bacteria hard to evade from 
bacterial bed and delays the healing process [33]. The most prevalent bacteria found in 
the chronic wounds are Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis 
and Escherichia coli which prolongs the healing process [30, 34].

3. Chronic wounds and MMPs

The elevated level of proteolytic activity of MMPs is considered as the major 
factor responsible for impaired wound healing [35, 36]. The MMPs have capa-
bility to degrade ECM, non-ECM components, trans-membrane proteins, cell 
surface receptors and diminishes the function of cytokines and growth factors by 
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decreasing their level [37–43]. The tissue inhibitors of MMPs (TIMPs) are found to 
be decreased in chronic wounds that make the situation more worsen [44–47].

From the exudates of chronic wounds, it has been found that the proteolytic 
activity is surprisingly 116-fold higher than acute wounds. It marks the presence of 
MMPs in high levels [48, 49]. The plethora varies from wound to wound due to the 
specificity of different type of bacteria with ECM structural integrity [50, 51]. The 
Staphylococcus aureus has been found to increase the level of MMP-1 and -9 whereas 
Pseudomonas aeruginosa is known for raising the level of elastases [52, 53]. The bacte-
rial pathogens not only target the host immune cells such as macrophages and neutro-
phils, but also attract the ECM matrix to release proteolytic enzymes which further 
mediates the release of MMPs. As in case of Pseudomonas aeruginosa the proteolytic 
enzyme thermolysin protease activates MMP-1, -8 and -9 [53]. Lipopolysaccharide 
derived serine proteinases activates pro-MMP-9 [54]. Different MMPs are upregu-
lated specifically by various bacterial strains such as Corynebacterium striatum spe-
cifically gave rise to the level of MMP-2 and -9 and so as the other strains are specific 
for the modulation of MMPs [55–57].

4. MMPs and wounds

MMP family consists of 28 members, out of which 26 are expressed in humans 
and their homologs are found in birds, plants as well as algae also [58]. MMPs can 
be divided on the basis of similarity of protein fold- known an ‘Clans’ and on the 
basis of evolutionary relationships- called as ‘Families’. The MMP class consists of 8 
clans and almost 40 families. There are basically, two ways of classifying the MMPs, 
which can be described as following:

I. In accordance to the organization of the substrate specificity and homology:

1. Collagenases (MMP-1, MMP-8, MMP-2)

2. Gelatinases (MMP-2 and MMP-9)

3. Stromelysins (MMP-3, MMP-10, MMP-12)

4. Matrilysins (MMP-7, MMP-26)

5. Membrane Type (MT) MMPs (MT-MMP-14, -15, -16, -17, -24, -25)

6. Other MMPs (MMP-19, -20, -21, -22, -23, -27, -28)

 II. In accordance to the structure of the MMPs:

1. Archetypal MMP (type-1 collagenases)

2. Martilysins: lacks the hemopexin domain

3. Gelatinases: Comprised of three type II fibronectin domains

4. MT-MMPs: Localized at the surface of cell membrane

Table 1 represents the classification of the MMPs based upon their substrate 
and targets. This classification provides wide range of information including their 
distribution in human body [59, 60].
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S. no. Type Class Substrates and targets Distribution

1. MMP-1 Collagenases Collagen (I, II, III, VII, VIII, X), gelatin, aggrecan, nidogen, perlecan, proteoglycan 
link protein, serpins, tenascin C, Versican, casein, α1-antichymotrypsin, 
α1-antitrypsin, α1-proteinase inhibitor, IGF-BP-3 and -5, IL-1β, L-selectin, ovostatin, 
PAR-1, pro-TNF-α and SDF-1.

Endothelium, SMCs, fibroblasts, platelets, 
macrophages and varicose veins (interstitial/
fibroblast collagenase).

2. MMP-2 Gelatinases Collagen (I, II, III, IV, V, VII, X, XI), gelatin, aggrecan, elastin, fibronectin, laminin, 
nidogen, proteoglycan link protein, versican, active MMP-9 and MMP-13, FGF-R1, 
IGFBP-3 and -5, IL-1β, pro-TNF-α and TGF-β.

Endothelium, VSM, Adventitia, platelets, 
leukocytes, aortic aneurysm and varicose veins.

3. MMP-3 Stromelysins Collagen (II, III, IV, IX, X, XI), gelatin, aggrecan, decorin, elastin, fibronectin, 
laminin, nidogen, perlecan, proteoglycan, proteoglycan link protein, versican, 
casein, α1-antichymotrypsin, α1-proteinase inhibitor, antithrombin III, E-cadherin, 
fibrinogen, IGF-BP-3, L-selectin, ovostatin, pro-HB-EGF, pro-IL-1β, proMMP-1, -8, 
and -9, pro-TNF-α and SDF-1

Endothelium, intima, VSM, platelets, coronary 
artery disease, hypertension, varicose veins, 
synovial fibroblasts and tumor invasion.

4. MMP-7 Matrilysins Collagen (IV, X), gelatin, aggrecan, elastin, enactin, fibronectin, laminin, proteoglycan 
link protein, casein, β4 integrin, decorin, defensin, E-cadherin, Fas ligand, 
plasminogen, proMMP-2, -7, and -8, pro-TNF-α, syndecan and transferrin.

Endothelium, intima, VSM, uterus and varicose 
veins (PUMP).

5. MMP-8 Collagenases Collagen (I, II, III, V, VII, VIII, X), gelatin, aggrecan, elastin, fibronectin, laminin, 
Nidogen, α2-Antiplasmin and proMMP-8.

Macrophages and neutrophils (PMNL or 
neutrophil collagenase).

6. MMP-9 Gelatinases Collagen (IV, V, VII, X, XIV), gelatin, aggrecan, elastin, fibronectin, laminin, nidogen, 
proteoglycan link protein, versican, CXCL5, IL-1β, IL2-R, plasminogen, pro-TNF-α, 
SDF-1 and TGF-β.

Endothelium, VSM, adventitia, micro vessels, 
macrophages, aortic aneurysm and varicose veins.

7. MMP-10 Stromelysins Collagen (III, IV, V), gelatin, aggrecan, elastin, fibronectin, laminin, nidogen, Casein, 
proMMP-1, -8, and -10.

Atherosclerosis, uterus, preeclampsia, arthritis 
and carcinoma cells.

8. MMP-11 Stromelysins Aggrecan, fibronectin, laminin, α1-Antitrypsin, α1-proteinase inhibitor and IGF-BP-1. Brain, uterus and angiogenesis.

9. MMP-12 Other enzymes Collagen IV, gelatin, elastin, fibronectin, laminin, casein and plasminogen. SMCs, fibroblasts, macrophages and great 
saphenous vein.

10. MMP-13 Collagenases Collagen (I, II, III, IV), gelatin, aggrecan, fibronectin, laminin, perlecan, tenascin, 
casein, PAR-1, plasminogen activator 2, proMMP-9 and-13, and SDF-1.

SMCs, macrophages, varicose veins, pre-eclampsia 
and breast cancer.

11. MMP-14 MT-MMP Collagen (I, II, III), gelatin, aggrecan, elastin, fibrin, fibronectin, laminin, nidogen, 
perlecan, proteoglycan, tenascin, vitronectin, αvβ3 integrin, CD44, proMMP-2 and 
-13, pro-TNF-α, SDF-1, α1-proteinase inhibitor and tissue transglutaminase.

VSM, fibroblasts, platelets, brain, uterus and 
angiogenesis.
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S. no. Type Class Substrates and targets Distribution

12. MMP-15 MT-MMP Collagen I, gelatin, aggrecan, fibronectin, laminin, nidogen, perlecan, tenascin, 
vitronectin, proMMP-2 and -13, and tissue transglutaminase

Fibroblasts, leukocytes and pre-eclampsia

13. MMP-16 MT-MMP Collagen I, Aggrecan, fibronectin, laminin, perlecan, vitronectin, Casein, proMMP-2 
and -13

Leukocytes and angiogenesis.

14. MMP-17 MT-MMP Gelatin and fibrin Brain and breast cancer.

15. MMP-18 Collagenases Collagen (I, II, III), gelatin and α1-Antitrypsin Xenopus (amphibian, Xenopus collagenase), 
heart, lung and colon.

16. MMP-19 Other enzymes Collagen (I, IV), gelatin, aggrecan, fibronectin, laminin, nidogen, tenascin and casein. Liver

17. MMP-20 Other enzymes Collagen (V), aggrecan, cartilage oligomeric protein and amelogenin Tooth enamel

18. MMP-21 Other enzymes α1-Antitrypsin Fibroblasts, macrophages and placenta

19. MMP-22 Other enzymes Gelatin Chicken fibroblasts.

20. MMP-23 Other enzymes Gelatin Ovary, testis, prostate and Other (type II) 
MT-MMP.

21. MMP-24 MT-MMP Gelatin, Chondroitin sulphate, dermatinsulfate, fibrin, fibronectin, N-cadherin and 
proMMP-2 and -13

Leukocytes, lung, pancreas, kidney, brain, 
astrocytoma and glioblastoma.

22. MMP-25 MT-MMP Collagen IV, gelatin, fibrin, fibronectin, proMMP-2 and α1-proteinase inhibitor Leukocytes (leukolysin), anaplastic astrocytomas 
and glioblastomas.

23. MMP-26 Matrilysins Collagen IV, gelatin, fibrinogen, fibronectin, vitronectin, casein, β1-proteinase 
inhibitor, fibrin, fibronectin and proMMP-2.

Breast cancer and endometrial tumors.

24. MMP-27 Other enzymes — Heart, leukocytes, macrophages, kidney, 
endometrium, menstruation, bone, osteoarthritis 
and breast cancer.

25. MMP-28 Other enzymes Casein Skin and keratinocytes.

Table 1. 
Distribution of MMPs in human body with their substrates and targets.
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4.1 Collagenases

Collagenases are the enzymes known for their cleavage action on the bunch 
of extracellular components, i.e., Collagen, Aggrecan, Versican, Perlecan, etc., 
which are responsible for ECM accumulation. Collagenases activity has been 
found to be higher in chronic wounds with positively alleviated levels of MMP-1 
and MMP-8 whereas the TIMP get downregulated. MMP-1 is known as col-
lagenase-1. After the tissue rupturing, the integral proteins when coordinated 
with the keratinocytes alleviate the level of MMP-1. Furthermore, the MMP-1 
degrades the ECM components and increases the turnover of proliferating 
cells at the other end of keratinocytes [61]. In the proliferation phase of wound 
healing the MMP-1 level is found to be high whereas the TIMPs are lower in the 
initial phases. On reaching the final phase of wound repair, i.e., the remodel-
ing/re-epithelization the situation gets vice n versa. Some laminin isoforms of 
keratinocytes also regulate the MMPs level in various phases of wound repair 
[62]. In recent past several investigations report the dysregulation of MMP-1 
in chronic wounds, i.e., even high level of MMP-1 is found in remodeling phase 
leads to damaged diabetic foot [63, 64]. The MMP/TIMP ratio is a crucial factor 
for repairing wounds [65]. The dermal ulcers also known as lipodermosclerosis 
are enriched with MMP-1 and MMP-2 associated with downregulation of TIMP-2 
[66, 67]. Some immune cells stimulate the production of MMPs, i.e., collage-
nases and gelatinases [57, 68]. Among which the neutrophils derived MMP-8 
(Collagenase-2) has been found to play an important role in pathophysiology 
of wounds. The upregulation of MMP-8 is majorly responsible for non-healing 
of wounds, i.e., for the state of chronic wounds [40, 69, 70]. On the contrary, 
MMP-8 has stronger affinity towards collagen-1 hence provide tensile strength 
to the wound tissues in the re-epithelization phase. Even in some reports MMP-8 
is found to act as pro-enzyme in wound repair [71, 72]. Stromal cells derived 
MMP-13, collagenase-3 is reported to be highly expressed in wound site where as 
absence in the epidermis indicates its pivotal role in the formation of granulation 
tissue and extracellular matrix [63].

4.2 Gelatinases

Gelatinases, i.e., gelatinase A (MMP-2) and gelatinase B (MMP-9) have the 
broader specificity towards the substrates therefore leads to enhanced depletion of 
ECM components and retard the process of angiogenesis [6, 73]. The alleviated level 
of these MMPs has been found in the exudates of chronic wounds [46]. However, 
they possess broad specificity but an excellent substrate specificity exists between 
both the gelatinases. MMP-9 erodes the pro healing and other growth factors that 
leads to delayed in healing process however positively influence the inflammatory 
phase. The upregulation of MMP-9 degrades the specific biomarkers of wound 
healing, i.e., the vascular endothelial growth factor and dermatopontin and makes 
them non-functional. However MMP-2 stimulates the deterioration of laminin 332, 
enhance the keratinocytes migration and promotes the healing process [74–76]. 
The inflammatory cytokines (Interleukins; IL1-α, IL1-β, IL-2, IL-17, C reactive 
protein, Insulin like Growth Factors-1, Transforming Growth Factor-α) stimulates 
the release of protein called Neutrophil gelatinase associated lipocalin (NGAL). 
This NGAL activates the MMP-9 and makes the NGAL-MMP-9 complex which is 
considered as the underlying cause of slow healing in diabetic wounds. Diabetic 
wounds have been reported to be enriched with MMP-9, MMP-9-NGAL complex, 
NGAL and neutrophil. However, the situation gets opposite when given the insulin 
treatment [77–80].
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4.3 Stromelysins and other MMPs

Stromelysin-1 and -2, i.e., MMP-3 and -10, respectively. MMP-3 along with 
collagenase-1 is found in distal end and stimulates the keratinocytes proliferation 
whereas MMP-10 is present in the starting edge of keratinocytes [60, 81]. MMP-3 
regulates the migration of fibroblasts to the wound site resulting in wound contrac-
tion. On other hand, MMP-10 is responsible for the keratinocyte cell death and slow 
down the healing process. MMP-3 is a major activator of MMP-9 hence also con-
tributing to inflammatory phase [82]. Other MMPs such as MMP-12, -7 and -14 are 
activated by stromal macrophages. MMP-7 interact with cyndecans and integrins to 
promote the skin regeneration in remodeling phase [83]. MMP-14 is majorly present 
in the fibroblasts on the wound bed. The level of MMP-12 gets naturally increased 
during inflammatory phase. These MMPs not only contribute in the cellular signal-
ing pathways but also triggers the stimulation of other MMPs [22, 84–86].

5. MMPs in wound healing

5.1 Hemostasis

Followed by the tissue injury, the blood clotting and platelet aggregation is the 
former step in wound healing. The extrinsic and intrinsic system regulates the accu-
mulation of platelets at wound site by means of coagulation factors and thrombocytes 
respectively [87]. The cytokines and other associated growth factors trigger the con-
striction of vessels which fills the voids in the wound area and lead to clot formation. 
The former step is followed by the vasodilation where the thrombocytes and fibro-
blasts like fibronectin, vitronectin and thrombospondin leads to form the provisional 
scaffold like wound matrix which allows the migration of keratinocytes, endothelial 
cells and leukocytes [88]. These platelets and leukocytes stimulate cytokines and 
growth factors which further assists the inflammatory process. The interleukins IL-1α, 
β, IL-6 and TNF-α are engaged in this process. Furthermore, the collagen synthesis 
is mediated by FGF-b, IGF, TGF-β and angiogenesis which get activated by FGF-B, 
VEGF subunit A, TGF-β and HIF-1 [89, 90]. Hemostasis is the initial phase in wound 
healing process and MMPs does not have any significant interference in this phase.

5.2 Proliferation and re-epithelization

The proliferation phase includes the granulation tissue to cover wound area by 
the strong network of vessels. Platelets are shifted to the injury site, to form the clot. 
Besides this, the platelets have another important function to stimulate the movement 
of neutrophils and macrophages to the wound site triggered by the release of platelets 
derived growth factors [91]. This factor is also engaged in mediating the collagenases 
the fibroblastic cells especially MMP-8 which have major role in tissue damage. MMP-8 
are also released by neutrophils during the wound infection and assists the wound 
debridement and rearrangement of damaged collagen-I [92]. The synthesis of another 
MMPs such as MMP-1,2,3,9 are also driven by the platelets. MMP-1 and 2 has important 
function to control the adhesion of platelets and conglomeration [44, 88]. Moreover, 
MMP-9 filters the different collagen types and regulates the release of inflammatory 
cytokines such as IGN-γ and TGF-β. The collagen and fibroblast synthesis which in 
turn form the collective tissue network is also regulated by MMP-9. The new capillary 
formation at the wound site is also associated with movement of fibroblasts within the 
fibrin network which promotes angiogenesis and leads to neovascularization and re-
epithelization [88]. The process of re-epithelization is also get started by the signaling 
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pathways regulated by the endothelial and non-endothelial cells which involve 
various cytokines such as EGF, KGF, IGF-1 and NGF [90]. The basic component of 
the endothelial cells known as laminin exists in various isoforms. Among which the 
laminin isoform-5 have pivotal role in induction of keratinocyte migration and MMP-9 
activation. Cell movement is a major role of MMP-9 hence plays an important role in 
re-epithelization process [93]. Another MMPs such as MMP-14 and MMP-2 breaks 
laminin isoform 5 and release a factor which when interacts with the epidermal growth 
factor (EGF) turns up the movement of cells [94, 95]. One more factor FGF-2 released 
by macrophages when interacts with the heparin sulphate enhances the growth of 
endothelial and fibroblast cells. The vascular endothelial growth factor (VEGF) 
released by macrophages activates the cell migration and proliferation of keratinocytes 
and endothelial cells which include MMP-1, 2, 9 and 13 hence play a major role in 
wound healing [96, 97].

5.3 Matrix formation and remodeling

The final stage of wound healing is remodeling phase. It involves the upregula-
tion of collagen turnover but decline in proliferation of fibroblast [98]. Moreover, 
the keratinocytes reach fibrin clot by crossing granulation tissue matrix [99]. The 
collagen-I replacement with collagen type III indicates the maturation of wound 
[100, 101]. However, in the early phase of remodeling phase fibronectin and 
fibroblasts are get displaced by collagen type I and III and proteoglycans which in 
turn enhances the tensile strength and integrity of wound matrix [102]. The level of 
myofibroblast and blood vessels get increased while reaching the end of this phase 
and high density of these two leads to the closure of wound [63, 103].

5.4 Proteolysis in wound repair

Many processes in wound healing such as keratinocyte migration, angiogenesis 
and re-epithelization are generally followed by the extra cellular matrix (ECM) 
degradation [104]. The MMPs are majorly involved in this proteolytic degradation. 
MMP-19 and 28 are present in keratinocytes of basal stratum and superbasals [105]. 
Moreover, MMP-19 is also found in the hair follicles, endothelial cells, arteries and 
veins [106]. MMP-1 expression is found to be upregulated in dermis part of the 
wounds where basal membrane is destroyed and promotes re-epithelization process 
and triggers the binding of keratinocytes with type-1 collagen [65]. Collagen type I 
is known to upregulate the level of MMP-1 whereas collagen type III and other base-
ment proteins do not promote the MMP-1 synthesis. MMP-1 activates α1β2 integrin 
to synthesize collagen type-1 [16]. The MMP1- α1β2 complex enhances the migra-
tion of keratinocytes therefore boost up the re-epithelization process [107]. During 
the process of basement membrane formation followed by re-epithelization, 
MMP-1 expression gets knockdown by the cellular junctions of basal membrane 
proteins [16, 108]. Moreover, MMP-13 which is mainly present in the dermis along 
with MMP-1 regulates the fibroblast proliferation mediated by matrix shrinkage 
and matrix stiffness [109, 110]. MMP-8 stored in cellular granules are secreted 
when get activated by macrophages [111]. The overexpression of MMP-8 is found 
in the damaged wounds. MMP-13 downregulation is balanced by MMP-8 which 
slow down the healing process by improper infiltration of neutrophils, improper 
re-epithelization and constant inflammatory syndrome [111, 112]. As given in the 
classification section the stromelysins such as MMP-3 and MMP-10 are present in 
the epidermal cells i.e. proliferating keratinocytes. These MMPs especially MMP-3 
has major role in disruption of fibrin containing provisional matrix and formation 
of new basal matrix after remodeling [113]. This process is majorly carried out by 
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cytokines and other growth factors such as FGF-b and HB-EGF [114]. Furthermore, 
the MMP-9 has also an important role in final phase that shaping the epidermal 
layer at the end during wound repair. In addition, MMP-2, -9, -19 and MT1-MMP 
are stored and released by the endothelial cells [115]. Among which MMP-2 and -9 
have pivotal role in degradation of mature blood vessels and sprouting/growth of 
new blood vessels by activating angiogenesis related growth factors and cytokines 
[86, 89, 116, 117]. MT1-MMP possess proteolytic activity against mature collagen 
and fibrin by crossing the thick network of fibrin proteins in stroma of damaged 
tissues [118]. Whereas, MMP-19 is involved in growth process of endothelial cells, 
epithelial cells, fibroblast cells and small vasculature within macrophages [119].

The wounds that persist more than 4–6 weeks are generally recognized as 
chronic wounds [120]. Wounds such as venous leg ulcers [72, 121], diabetic foot 
ulcers [122, 123] and that caused due to pressure [66] are considered as chronic or 
delayed wounds. Some wounds which appears to be acute at initial stages but may 
turns to chronic one while reaching the final phase of healing are also categorized 
under chronic wounds. Main examples of these types of wounds are surgical 
wounds and traumatic wounds. These chronic wounds are specifically characterized 
by the altered levels on MMPs.

Abnormal structural integrity of fibrin network, increased tendon rigidity 
and altered volume and level of biochemical substances indicates the delayed and 
chronic wounds [124]. Proteolytic activity of MMPs has major impact on healing 
process of chronic wounds. Besides this MMP-3 and MMP-13 along with MMP-9 
are actively found in the normal as well as diabetic foot ulcers. Where MMP-3 and 
MMP-9 have been upregulated, MMP-3 has been found to be knockdown in chronic 
wounds. The overexpression of MMP-13 and MMP-9 is associated with high glucose 
concentration at wound site [125]. The imbalance between MMP and TIMP level is a 
major cause of hyperglycemia, hyperlipidemia and hypertension during the condi-
tion of chronic wounds/diabetic ulcers [126, 127]. In the state of chronic wounds, 
the migration of inflammatory cells is followed by imbalanced fibroblast clotting 
which lead to secrete the ECM proteins. Meanwhile, MMPs have been found to 
increase the fibroblast proliferation and collagen degradation via TGF-β1 signal-
ing [127, 128]. Higher production of gelatinases has been observed in the diabetic 
wounds. Conclusively MMPs in this state are associated with degradation of ECM 
components but at the same time are also responsible for the recovery of traumatic 
wounds by regenerating the capillary and blood vessels at the respective site [129].

6. Levels of MMPs in diabetic wounds

In the state of diabetic wounds, the glucose level is significantly higher [130]. 
Elevated levels of MMPs have been found in these wounds because of oxidative 
stress and end products of glycation which may lead to diabetic peripheral arterial 
disease [61, 131]. Degradation of ECM due to MMPs especially MMP-1, -2 and -9 turn 
these diabetic wounds to get more worse [132]. The mismatch between the extent of 
degradation and repairing of ECM is a critical factor to cause delay in wound healing 
process i.e. chronic wounds. Therefore, it necessitates the ECM components to be in 
controlled condition for boosting up the healing process [131]. Any other disease con-
dition in diabetic ulcer may worsen the healing process due to imbalanced availability 
of cytokines and other growth factors needed for the healing of wounds [133, 134]. In 
each phase of diabetic wound repair, i.e., hemostasis, inflammation, proliferation and 
remodeling there has been altered expression of MMPs [135]. Epithelial remodeling 
is associated with raised levels of MMP-1, -8, -9 and downregulation of TIMPs. The 
fibronectin degradation is majorly carried out by MMP-9 which leads to cell migration 
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and proliferation [136]. MMP-1, -8 and -9 have been reported to be upregulated in the 
venous wounds due to absence of TIMP [73, 81]. Patients with metabolic syndrome 
have been found to be overly expressed with MMP-2 and -9 in their serum sample. 
The mutations in the gene expression of MMP-9 can also be a cause for delayed 
healing. Increased expression of MMP-9, TNF-α and other growth factors in diabetic 
foot ulcers has been found and concluded that they could be linked with slow-to-heal 
ulcers in diabetics and therefore a target for new therapeutic management [137].

7. Therapeutical targeting of MMPs

7.1 Synthetic approaches

MMPs has pivotal role in diabetic wounds hence they are the major target for 
the researchers. MMPs possess high resemblance in their structural morphology 
therefore it is difficult to target specifically one MMP at the time especially when they 
fall under same category such as gelatinase-A and gelatinase-B [138, 139]. Moreover, 
MMP-8 has been found to boost up healing in diabetic wounds in absence of MMP-9 
and vice versa which necessitates the specific inhibition of MMP-9 without hav-
ing any interaction with MMP-8. There are many broad spectrum MMP inhibitors 
(MMPI) which have been already investigated for the purpose but we need more 
selective therapeutics over the existing one [140]. Many small structural molecules 
have been discovered yet to target the same. In an investigation, it has been reported 
that the racemic mixture, i.e., (R, S)-ND-336 possess 55-fold more activity than the 
R or S isomer alone to target MMP-9 specifically than MMP-8 [74]. Moreover, based 
upon the Ki values the R isomer has been reported to be 10-fold more potent than 
the S isomer for selective inhibition of MMP-9 [141]. As it has been known that the 
synthetic molecule (R, S)-ND-336 falls under thiirane class, its structural ring gets 
unlatched and produce thiolate which gets interacted with the zinc ion within MMP-9 
and inhibit its function. Reversal of the given process is very slow therefore it shows 
long lasting retention time. R-ND-336 has been investigated to be more effective 
than FDA approved drug becaplermin for the respective purpose [141]. Enhanced 
specificity for inhibition of MMPs can be obtained by using antibody approach. In 
the recent past, GS-5745 is an antibody being investigated for specific inhibition of 
MMP-9. It has dual mechanism to act on i.e. by interacting and hindering the active 
site of MMP-9 and another one is to cleave the MMP-3 zymogen which is involved in 
activation of MMP-9 [142–145]. Moreover, another two antibodies being investigated 
under the clinical trials are SSDS-3 and REGA-3G12 have been observed to possess 
selective inhibition against MMP-9 [146, 147]. Furthermore, the above antibodies 
have been more explored for the cancer targets hence there are many future possibili-
ties to explore the wound healing potential of the above candidates [148]. Wound 
dressings are being commonly used for the purpose of healing and controlling the 
exudate secretion [149]. Many MMP inhibitors have been used to incorporate into 
these wound dressings. But these inhibitors are generally found to be non-specific, 
i.e., the broad-spectrum inhibitors. Most commonly used MMP-inhibitors in wound 
healing are bisphosphonates [150]. Another hypothesis involves the use of atelocol-
lagen type I to be used along with 4-vinyl-benzyl chloride to specifically inhibit 
the MMPs present in wound exudates [151]. In addition, another clinical candidate 
GM-6001 exploited as wound dressing has broad spectrum activity but found to 
be less effecting in healing diabetic wounds than the therapeutics having specific 
inhibitors against MMPs [152]. RNA is a basic nucleotide to synthesize gene encoding 
MMPs [153]. So, the therapies being approached to inhibit RNA which in turn inhibit 
the MMPs at gene level have the high potential to heal the diabetic wounds than 
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other therapeutics [154]. But the major obstacle is to deliver the siRNA to the target 
site [155–157]. Therefore, to overcome this, the star shaped cationic polymer such as 
cyclodextrins have been reported to be used for the purpose as they have very low 
toxicity [158]. Furthermore, β-CD-(D3)7/MMP-9-siRNA has been found in an inves-
tigation to inhibit MMP-9 in the diabetic wounds where MMPs level is quite high due 
to TIMP knockdown which in turn promotes the healing process. These siRNAs are 
supposed to be taken by the fibroblasts on wound site [159, 160]. But when the siRNA 
was used alone in a further study it has been found to cause liver and kidney toxicity 
[161]. In addition, the miRNA-139 and miRNA-335 has been reported to possess an 
excellent potential in healing the diabetic wounds via inhibiting MMP-9 [162].

7.2 MMPs inhibitors of natural origin

Natural products have huge resource of biologically active molecules and 
provided large number of biologically active compounds to clinical practice for 
treatment of wide range of diseases and disorders. Considering capability of 
natural products in drug development, wide range of researchers across the globe 
has screened numerous constituents from natural sources for MMPs modulation 
activity. Major bioactive constituents (Figure 1) from natural sources with MMP 
modulation potential has been discussed below.

Withaferin A (3-azido Withaferin A) a naturally derived steroidal lactone from 
plant Withania somnifera, exhibits various pharmacological activities. In vitro 
studies revealed that withaferin A inhibit MMP-2 by up regulating the expression of 
pro-apoptotic protein par-4. Stimulation of par-4 by withaferin A enhances apop-
tosis by extrinsic pathway of apoptosis by activating FADD-caspase-8-caspase-3 
in dose dependent manner [163]. Cantharidin is a natural compound obtained 
from Mylabris phalerata and showed remarkable inhibition of cell migration and 
invasiveness by suppressing MMP-2 and MMP-9 through affecting their upstream 
markers such as NF-ĸB, c-Jun and AP-1 in A375.S2 cells based wound healing and 
matrigel chamber invasion assays. Cantharidin exerts anti-cell migration and 
anti-invasiveness property by suppressing MMP-2 and MMP-9 via modulating their 
upstream markers such as NF-ĸB, c-Jun and AP-1. Cantharidin also down regulate 
the expression of NF-ĸB, p65 and proteins involved in PI3K-Akt (PI3K, ERK1/2, 
Rock1 and FAK) and MAPK (p38, ERK and JNK) signaling cascade [164]. Celastrol 
is another phytoconstituent of Tripterygium wilfordii having anti-proliferative 
activity. Celastrol inhibit metastasis and invasiveness of ovarian cancer cells 
(SKOV3 and OVCAR-3) by knockdown the expression of NF-κB/MMP-9. NF-κB 
modulates IκBα degradation, p65 translocation blocking and MMP-9 suppression 
[165]. Gallic acid has been proved to inhibit cell metastasis and invasiveness in PC-3 
cells by degrading expressions of MMP-2 and MMP-9 otherwise they degrade the 
ECM and delayed wound healing. Gallic acid has been also observed to activate the 
TIMP-1 which is natural regulator of MMP-2 [166]. Ginsenoside Rd is obtained 
from Panax ginseng leaf which increases proliferation, migration and shows protec-
tive effect in human dermal fibroblast (HDFs) and keratinocyte progenitor cells 
which enhances healing of skin wound. Being a steroidal moiety it easily permeate 
to cell membrane and enhance healing of skin both in laser burn and excision 
wound by increasing expression of CREB, cAMP along with reducing expression 
of MMP-1 [167]. Lycorine a natural compound widely distributed in plant family 
Amaryllidaceae. Lycorine shows antimigratory effect in HepG2 cells by reducing 
the expression of MMP-2 and MMP-9. Lycorine increase polymerized F-actin by 
blocking the normal turnover of the actin cytoskeleton and a loss of depolymer-
ized G-actin. The activation of ROCK1 in cells pre-treated with lycorine shows 
decrease in expression of cofilin, cyclinA, cyclin B1, cdc2, MMP-9 and MMP-2 
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which shows lycorine inhibiting cell proliferation and migration in HepG2 cells via 
inhibition of ROCK1/cofilin-induced actin dynamics [168]. Naringin is a natural 
flavonoid present in citrus fruits. Treatment of naringin reduce the expression of 
p-ERK and p-JNK which are molecular markers involved in MAPK signaling pathway 
in turn reduce the expression of MMP-2 and MMP-9 [169]. Pinosylvin is a natural 
compound present in Pinus species. Pinosylvin downregulate the expressions of MMP-
1, MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells. Quercetin is another 
well-known inhibitor of MMP-2 and MMP-9 [170]. Platycodin D from Platycodon 
grandiflorum exhibit anti-invasive and antimetastatic activity in human breast cancer 
cells (MDA-MB-231). It inhibit cell invasion by down regulating the Mrna expression 
of MMP-9 [171]. Formononetin is a natural compound found in Astragalus membra-
naceus, Trifolium pratense, Glycyrrhiza glabra and Pueraria lobata. It shows inhibitory 
effect on the breast cancer cells progression, migration and invasiveness by suppress-
ing the effect of MMP-2 and MMP-9 along with upregulating the expression of matrix 
metalloproteinase inhibitors such as TIMP-1 and TIMP-2 [172]. Zeylenone is natural 

Figure 1. 
Various MMP inhibitors of natural origin.
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oxide with anticancer activity. In the present study, Zey is reported to have anti-cancer 
activity against prostate cancer. Zeylenone has been reported to suppress the expres-
sion of MMP-2, MMP-9 and upregulate the expression of TIMP-1 and collagen-1 in 
DU145 cells [173]. Curcumin is a natural compound extracted from plant Curcuma 
longa (Zingiberaceae). Curcumin possesses anti-oxidant, anti-inflammatory and anti-
cancer activity and along with wound healing property. The mechanism of curcumin 
behind wound healing is the lowering the expression of TNF-α and increased propor-
tion of α-SMA and collagen in fibroblast. Matrix metalloproteinase especially MMP-9 
helpful in tissue migration and remodeling and someway helpful in normal wound 
healing. Curcumin treated cells negatively regulate the expression of MMP-9 and 
reduced the expression of TNF-α which positively modulate MMP-9. Curcumin also 
regulate the expression of NF-κB induce by TNF-α. Thus curcumin enhances wound 
healing activity by downregulating expression of MMP-9 and increase value of colla-
gen by regulating expression of NF-κB induce by TNF-α in fibroblasts [174]. Shikonin 
is a natural component presents in Lithospermum erythrorhizon which exhibit decent 
wound healing property. Shikonin has been proved for its inhibitory effect on migra-
tion and invasiveness of U87 and U251cells by inhibiting the expression of MMP-2 and 
MMP-9 [175, 176].

8. Conclusion

From the ancient past wound healing has known to be a complicated topic as it 
involves many complex and unclear mechanisms. Moreover, wound healing process 
in diabetes like state get delay and more worsen. In the recent past various MMPs 
have been found to play a key role in the healing of diabetic foot. Structurally, it 
mainly has zinc on its active site. Furthermore, it is categorized in various types 
based upon the different substrate it cleaves, i.e., collagenases, gelatinases, strome-
lysins and various other MMPs. Also, the modulation of expression of various 
MMPs significantly alters the healing process. In addition, TGF-β has been reported 
to be the signaling pathway for MMPs to act upon for healing of chronic wounds. 
Moreover, different phases of wound repair involve alteration in level of various 
MMPs. Among various MMPs, MMP-9 has been widely discussed and investigated 
enzyme in the recent past and has also been considered as major culprit in altering 
the healing rate. The overexpression of various MMPs extends the time of healing 
or may devastate the condition. Therefore, various MMP inhibitors either of natural 
or synthetic origin have been explored for the purpose. Most of these candidates 
are under clinical trial and has proven to be very selective and effective for healing 
chronic wounds. Besides the wound healing MMPs possess therapeutic effectiveness 
for various other diseases. In future, there are various possibilities to explore and 
unlash various mechanisms of MMPs for chronic wound healing.
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