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Chapter

CUDA Accelerated 2-OPT Local
Search for the Traveling Salesman
Problem
Donald Davendra, Magdalena Metlicka

and Magdalena Bialic-Davendra

Abstract

This research involves the development of a compute unified device architecture
(CUDA) accelerated 2-opt local search algorithm for the traveling salesman prob-
lem (TSP). As one of the fundamental mathematical approaches to solving the TSP
problem, the time complexity has generally reduced its efficiency, especially for
large problem instances. Graphic processing unit (GPU) programming, especially
CUDA has become more mainstream in high-performance computing (HPC)
approaches and has made many intractable problems at least reasonably solvable in
acceptable time. This chapter describes two CUDA accelerated 2-opt algorithms
developed to solve the asymmetric TSP problem. Three separate hardware configu-
rations were used to test the developed algorithms, and the results validate that the
execution time decreased significantly, especially for the large problem instances
when deployed on the GPU.

Keywords: traveling salesman problem, CUDA, 2-opt, local search,
GPU programming

1. Introduction

This research addresses two very important aspects of computational
intelligence, algorithm design, and high-performance computing. One of the
fundamental problems in this field is the TSP, which has been used as a poster child
for the notorious P ¼ N P assertion in theoretical computer science.

TSP in nominal form is considered NP-Complete, when attempted using exact
deterministic heuristics. The time complexity when solving it using the Held-Karp
algorithm is O n22nð Þ and the space complexity is O n2nð Þ. When solving the problem
using optimization algorithms and approximation, then problem tends to beNP-Hard.

2-opt is considered the simplest local search for the TSP problem. Theoretical
knowledge about this heuristic is still very limited [1]; however, simple euclidean
distance variants have been shown to have complexity of O n3ð Þ [2]. Generally, the
computed solution has been shown to be within a few percentage points of the
global optimal [3].

One of the empirical approaches of improving the execution of the algorithm
is applying high performance computing (HPC) paradigm to the problem.
This is generally possible if the problem is deducible to a parallel form.
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A number of different HPC approaches exist, namely, threads, OpenMP, MPI and
CUDA. CUDA is by far the most complex and accelerated approach, as it requires
programming on the GPU instead of the central processing unit (CPU).

Since its inception, CUDA has been widely used to solve a large number of
computational problems [4]. This research looks to harness this approach to
implement the 2-opt approach to the TSP problem.

The outline of the chapter follows with the introduction of the mathematical
background of the TSP problem followed by the 2-opt algorithm. CUDA is
subsequently discussed and the two CUDA developed 2-opt algorithm variants are
described. The experimentation design discusses the hardware specifications of the
three different architectures and then the obtained results are discussed and
analyzed in respect to the execution time.

2. Traveling salesman problem

The TSP is a well-studied problem in literature [5, 6], which in essence tries to
find the shortest path that visits a set of customers and returns to the first. A
number of studies have been done using both approximation-based approaches [7]
and metaheuristics. Metaheuritics are generally based on evolutionary approaches.
A brief outline of different approaches can be obtained from:

1.Tabu Search: [8]

2.Simulated Annealing: [9]

3.Genetic Algorithm: [10, 11]

4.Ant Colony Optimization: [12]

5.Particle Swarm Optimization: [13]

6.Cuckoo Search: [14]

7.Firefly Algorithm: [15]

8.Water Cycle Algorithm: [16]

9.Differential Evolution Algorithm: [17]

10.Artificial Bee Colony: [18]

11.Self Organizing Migrating Algorithm: [19]

The TSP function can be expressed as shown in Eq. (1).

xij ¼
1 the path goes from city i to city j

0 otherwise

�

(1)

where xij ¼ 1 if city i is connected with city j, and xij ¼ 0 otherwise. For
i ¼ 0, … , n, let ui be an artificial variable and finally take cij to be the distance from
city i to city j. The objective function can be then formulated as Eq. (2):
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min
X

n

i¼0

X

n

j 6¼i, j¼0

cij xij

0≤ xij ≤ 1 i, j ¼ 0, … , n

ui ∈Z i ¼ 0, … , n

X

n

i¼0, i 6¼j

xij ¼ 1 j ¼ 0, … , n

X

n

j¼0, j 6¼i

xij ¼ 1 i ¼ 0, … , n

ui � uj þ nxij ≤ n� 1 1≤ i 6¼ j≤ n

(2)

3. 2-OPT algorithm

The 2-opt algorithm is one of the most famous heuristics developed originally for
solving the TSP problem. It was first proposed by Croes [20]. Along with 3-opt,
generalized as k-opt [21], these heuristics are based on exchange of up to k edges in
a TSP tour (more information on application of k-opt local search techniques to TSP
problems can be obtained from [22]). Together they are called exchange or local
improvement heuristics. The exchange is considered to be a single move, from this
point of view, such heuristics search the neighborhood of the current solution, that
is, perform a local search and provide a locally optimal solution (k-optimal) to the
problem [23].

The 2-opt procedure requires a starting feasible solution. It then proceeds by
replacing the two non-adjacent edges, vi, viþð Þ and v j, v jþ

� �

by vi, v j

� �

and

viþ, v jþ

� �

, and reversing one of the subpaths produced by dropping of edges, in
order to maintain the consistent orientation of the tour. For example, the subpath

vi, viþ, … , v j, v jþ

� �

is replaced by vi, v j, … , viþ, v jþ

� �

. The solution cost change

produced in this way can be expressed as Δij ¼ c vi, v j

� �

þ c viþ, v jþ

� �

� c vi, viþð Þ �

c v j, v jþ

� �

. If Δij <0, the solution produced by the move improves upon its prede-

cessor. The procedure iterates until no move where Δij <0 (no improving move)
can be found [24].

The 2-opt local search was described by Kim et al. [25] as follows:
Step 1: Let S be the initial solution, f Sð Þ its objective function value. Set S ∗ ¼

S, i ¼ 1, j ¼ iþ 1 ¼ 2.
Step 2: Consider exchange result S0 such that f S0ð Þ< f S ∗ð Þ. Set S ∗ ¼ S0. if j< n

repeat step 2. Otherwise set i ¼ iþ 1 and j ¼ iþ 1. if i< n repeat step 2, otherwise go
to step 3.

Step 3: if S 6¼ S ∗ set S ¼ S ∗ , i ¼ 1, j ¼ iþ 1 and go to step 2. Otherwise output
best solution S and terminate the process.

4. CUDA

General purpose GPU computing (GPGPU) programming was introduced by
Apple Cooperation, which created the Kronos Group [26] to further develop and
promote this new approach to accelerate scientific computing paradigms.
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GPU’s offer significantly faster acceleration due to their uniquer hardware archi-
tecture. GPGPU’s started to increase in application from 2006. At this point
NVIDIA decided to create its propriety unique architecture called Compute Unified
Device Architecture (CUDA), specific for their Tesla generation GPU cards. In
order to support this architect, specific API primitive extensions of C, C++ and
Fortran extensions has been developed [27, 28].

The specific C/C++ language extension for the C language is called the
CUDA-C. This contains a number of accelerated libraries, extensions, and APIs.
These are scalable and freely available without professional license. The main
computational bottleneck is the splitting of the task between GPU and CPU tasks,
where CPU handles better memory management and memory checking and GPU
handles the data acceleration using parallization. It is considered heterogenous
programming, where compute intensive data parallel tasks are offloaded on to
the GPU.

CUDA contains three specific paradigms, thread hierarchy, memory hierarchy and
synchronization. These can be further divided into coarse-grained parallelism on the
blocks in grid parallization and fine-grain parallization in the threads in block, which
requires low-level synchronization.

4.1 Thread hierarchy

CUDA kernels are special function calls, which is used for data parallization.
Each kernel launches threads which are grouped into blocks which are then grouped
into grids. Communication is done synchronously by threads in a block, whereas
blocks are independent. Certain programming techniques needs to be undertaken to
ensure data synchronization and validity between blocks. Threads in different blocks
are not able to communicate with each other.

Threads are distinguished by their unique threadId in their respective blockId,
which allows operating on specific data in the global and shared memory.

4.2 Memory hierarchy

There are different memory types in the GPU, which CUDA can utilize. Some
memory structures are based on cache, some are read-only, etc. The first higher
level memory structure is called the global memory, which can be accessed by all
memory blocks. Due to its size and access level, it is the slowest memory on the
GPU. The second memory level is the shared memory, which is shared by blocks,
which threads within blocks can access. The third memory is the register memory,
which are only accessible by threads, and can be used to local variables. This is the
smallest and fastest memory in the GPU. If there are larger memory structures, and
when registers are not sufficient, local memory can be then utilized. Another mem-
ory is constant memory which cannot be changed by the kernel code. The final
memory is the texture memory, which is a read-only cache that provides a speed-up
for locality in data access by threads [29].

4.3 Synchronization

Blocks in grids are used in coarse-grained parallelism and threads in a specific
block are used in fine-grained parallelism. Data sharing in the scope of a kernel is
done by threads in the block. The number of threads are limited by the device
architecture design (max. 1024) and also by thread memory resource consumption.
There is a level of scalability as the blocks are scheduled independently. Each block is
assigned to a streaming multiprocessor (MS) in the GPU [29, 30].
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5. CUDA-based 2-opt algorithm

This section presents the parallel CUDA-based version of 2-opt algorithm. This is
a modification of the local search for permutative flowshop with makespan crite-
rion problem [31] and its NEH variant [32]. Before coming to the parallel imple-
mentation description, however, the more detailed pseudocode of sequential
version is provided in Algorithm 5, in order to enable better understanding of the
CUDA algorithm design.

Algorithm 1: 2-opt sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

As can be seen already from the analysis of description of 2-opt, the task that can
be done in parallel is the exploration of neighborhood of the current solution. This is
divided between individual CUDA blocks. Possible neighbors of the current solu-
tion are split evenly between the launched blocks, which then explores these
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neighbors evenly including the fitness evaluations. If a new better solution is found,
it is then stored into the global memory allocation of that block. Thereafter, if at least
one of the launched blocks finds an improving solution during the iteration, the best
cost solution amongst all blocks is obtained and stored into memory as the current
solution for the next iteration. Otherwise, the current solution is returned as the
best. It should be noted that the fitness function is not parallelized, as only a single
thread in each block is tasked with this task.

Each block explores approximately the same amount of possible neighbors to the
current solution (in the worst case, when no improving solution is found), including
the cost evaluation. However, if it finds an improving solution, that solution is stored
into the global memory allocated for each block, and the block terminates. If at least one
of the blocks found an improving solution, the minimal cost solution amongst all blocks
is found and stored into memory as the current solution for the next iteration.
Otherwise, the current solution is returned. The cost function evaluation itself was
not parallelized, as in each block only a single thread performs this task.

The outline of the parallel algorithm can be given as follows:

Step 1: Set current solution S = Initial solution.
Step 2: Explore the neighborhood of S by G blocks in parallel. In each block b:

Step 1.1: Determine initial index i for b.
Step 1.2: Explore all neighbors of S created by swapping of i and

j, j∈ 1, … ,Nf g. If improving neighbor T found, go to step 1.4.
Step 1.3: Determine next index i for b. If i≥N, terminate. Otherwise go

to step 1.2.
Step 1.4: Store T and its objective function value f T into global memory

and terminate.
Step 3: If no improving solution found, exit procedure and return S as the best

solution found. Otherwise determine the best solution amongst those found by
blocks in parallel.

Step 4: Store best solution as S. Go to step 2.
Where N is the number of cities in the tour and i is the outer loop index (see

Algorithm 1 for sequential version of 2-opt).

5.1 Exploration and evaluation of neighboring solutions

The neighbors of solution are generated and evaluated in this kernel. From the
sequential version pseudocode (Algorithm 1), it is obvious that the function of
generating individual neighbors by swapping every possible pair of jobs pair-wise
i, jð Þ for i ¼ 1, … ,N and j ¼ iþ 1, … ,N can be considered independent and there-
fore executed in parallel. These solutions can be stored in the shared memory after
generation. After evaluation, if the new solution has better fitness value compared
to the current one, it is stored into the global memory allocated for each block, to
avoid data races between blocks (this is illustrated in Figure 1 depicting memory
layout for six cities and four blocks). The improvements counter in the global
memory is incremented using an atomic operation. This counter is compared against
zero after the kernel termination, to determine if the stopping criterion of the
algorithm was met. The fitness function itself is evaluated by only a single thread;
the other threads in a block process the elements of the solution when transferring
data between shared and global memory locations.

It is logically impractical to allocate the full number of N � 1ð Þ2=2 blocks on the
GPU in most case scenarios. This number can be very large, whereas the number of
SMs and the number of resident blocks on SM is limited by various factors, such as
the number of threads in a block and a registers/shared memory usage.
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The optimal number of threads in a blockmaximizing the number of resident blocks,
as well as GPU occupancy, can be easily determined based on the calculations
performed in the CUDA occupancy calculator tool [33], as a function of the number
of cities in a tour (which determines the size of shared memory used). This can
maximizes the utilization of the GPU, while reducing the total global memory size
required by the grid, as well as the workload done by the search for minimal cost
solution in the next kernel. The mapping of the blocks to the tasks however can
becomes more complicated to implement in code.

Using the assumption that the number of blocks will be nearly always smaller
than the aforementioned function of the number of actual cities for the problem
instances of interest (problems with cities larger than 30), only the outer loop of the
sequential 2-opt algorithm was parallelized. The inner loop is performed by each
block sequentially. This reduces the data transfers between global and shared mem-
ory, and does not eliminate the advantage of the low complexity of the swap
operation at the same time. If the solution created by swapping jobs i and j is worse
than the current one, it is easy to reverse this change by swapping again j and i, with
equal complexity. Therefore, maximally N � 1 blocks are needed for this function.
The mapping of blocks to tasks is illustrated in Figure 2.

5.2 Parallel reduction to obtain minimal cost

The parallel reduction procedure is used to find the index of the solution with the
minimal fitness value. This employs shared memory to store the data being used,
whereas the data is initially copied from the global to shared memory. In this step,
each active thread compares two costs, and stores the smaller of the two costs on the
place of the first cost, along with its original index (cost is represented as a structure

Figure 1.
CUDA-based 2-opt memory layout.
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containing two elements: cost value, and cost index). Using this reduction, the first
element of the costs array contains the minimal cost found, along with its respective
solution index. This pair is then written into global memory.

5.3 Device synchronization and subsequence update

In the final process, a new kernel copies the best indexed solution into the
current solution buffer, and the next step of the main loop can be performed. A
global CUDA device synchronization is required for relatively large data (for a tour
size/number of threads in a block of size more than approximately 100, as was
empirically confirmed) before the start of the synchronization. As each of the

Figure 2.
CUDA-based 2-opt, mapping of blocks to tasks.

Figure 3.
CUDA-based 2-opt distance and indices layout.
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kernels consumes some of the GPU resources, it is necessary to wait, until the
pending kernels completely finish the execution, and release their resources, other-
wise the GPU freezes and unsuccessful kernel launches start to appear. This is done
by calling cudaDeviceSynchronize() function from the host code, after the Update
kernel is launched.

Figure 3 outlines the memory layout of the previously described code (without
TSP input data, for the current subsequence size 2, city tour 4. The data fields not
used in the current step are grayed out). The candidate solutions are stored in one
global memory 1D array, which conceptually represents 2D array, wherein each row
contains one candidate tour. The respective costs are stored in a separate array. The
TSP problem input data (distance between cities) are stored in the similar fashion in
global memory (because of its large size).

This implementation is expected to provide in each step the speedup propor-
tional to the number of solutions generated.

6. 2-OPT variants

Two versions of the 2-opt local searchwas implemented in this work. The first is the
LS2OPT variant, which uses the searchwith the first ascend strategy. In this strategy, the
next tour is the first improving solution found. This can be given in Algorithm 2.

The second variant is the MLS2OPT version, which is the best ascend strategy. In
this strategy, the next tour is the best improving solution found in the 2-swap
neighborhood as given in Algorithm 3.

7. Experimentation design

The experimentation design is as the following. Three different CPU’s and three
different GPU’s are used to run the two different 2-opt variants on a selected number of
asymmetric TSP instances (ATSP). The only measure is the time complexity.

The problem instances of the ATSP was obtained from the TSP library [34]. The
following problems were selected due to differing city sizes as given in Table 1.

The machine specifications is given in Table 2. Three separate machines were
used with differing CPUs and GPUs. Two machines were on a Windows 10 operat-
ing system and the other is a Central Washington University Supercomputer cluster
running Ubuntu [35]. Machine 2 and 3 utilized headless GPU’s.

Data Cities

ft70 70

ftv64 65

ftv170 171

kro124p 100

rbg323 323

rbg358 358

rbg403 403

Table 1.
TSP instances and number of cities.
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Algorithm 2: LS2OPT sequential version. The Swap(T,j,i) procedure swaps j�th
and i�th cities of tour T

Algorithm 3:MLS2OPT sequential version. The Swap(T,idx,i) procedure swaps
idx�th and i�th cities of tour T, where idx�th is the best 2-swap
schedule j�th index found after iteration

Specifications Machine 1 Machine 2 Machine 3

Processor Intel i7-9750H GTX 1050 Intel i7-7800X Titan Xp Power 8 P100

Memory 16 GB 2 GB 32 GB 12 GB 32 GB 16 GB

Cores 4 640 6 3840 6 3584

OS Win10 Win10 Ubuntu

Language C++ CUDA-C C++ CUDA-C C++ CUDA-C

IDE Visual Studio 17 Visual Studio 17 Makefile

Cost (USD) $200 $1500 $15,000

Table 2.
Machines specifications.
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8. Results and analysis

The results are grouped by the machine architectures, as there is a dependency
between the CPU and GPU. Thirty experimentations was done of each problem
instance on each machine for each algorithm and the average time is given in the
tables (* in msec). The percentage relative difference (PRD) is calculated between the
CPU and GPU times as given in Eq. (3). Negatives values (given as bolded text in
the tables) indicate that the GPU execution is faster.

PRD ¼ GPU � CPUð Þ=CPUð Þ � 100 (3)

The first part of the first machine experiment results of the LS2OPT and its
CUDA variant is given in Table 3. The first column is the problem instances and the
second and third column is the CPU and GPU average results of the LS2OPT in
milliseconds. The final column is the PRD results. From all the results, apart from
the ftv64 instance, the GPU produced faster results. The average time was
22480.28 ms for the CPU and 2168.57 ms for the GPU. The average PRD was
�47.29% for all experiments. A deeper analysis shows that for the larger instances,
the PRD was over 80%.

The plot of the execution time is given in Figure 4 where the execution speedup
is clearly identifiable for the larger instances.

The second part of the first machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 4. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
14183.85 ms for the CPU and 1854.28 ms for the GPU. The average PRD was
�52.55% for all experiments. Apart from two instances, all the other were above
85% PRD.

The plot of the execution time is given in Figure 5, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the second machine experiment results of the LS2OPT and its
CUDA variant is given in Table 5. As the NVidia Titan Xp is a dedicated headless
TESLA category GPU, the computational times are better than the CPU for all the
results. The average time was 12157.14ms for the CPU and 857ms for the GPU. The
average PRD was�64.92% for all experiments. A deeper analysis shows that for the
larger instances, the PRD was over 90%. As the transfer overhead for the PCIe bus is

Data Intel i7-9750H LS2OPT Nvidia GTX 1050 LS2OPTCUDA PRD (%)

ft70 42 34 �19.047

ftv64 14 30 114.29

ftv170 322 87 �72.98

kro124p 580 111 �80.86

rbg323 43,854 2963 �93.24

rbg358 51,069 4096 �91.98

rbg403 61,481 7859 �87.22

Average 22480.28 2168.57 �47.29

*All results are in milliseconds (ms).

Table 3.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.
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compensated by more extensive experimentation, larger instances performed faster
on the GPU.

The plot of the execution time is given in Figure 6, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the second machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 6. For all the problem instances, the
execution time for the GPU was significantly better. The average time was
7955.28ms for the CPU and 616.28ms for the GPU. The average PRD was�63.39%
for all experiments. The three larger instances were above 90% PRD.

The plot of the execution time is given in Figure 7, where the execution speedup
is linearly identifiable for the larger instances.

The first part of the third machine experiment results of the LS2OPT and its
CUDA variant is given in Table 7. Generally, the NVidia P100 is regarded as an
industry leading GPU solution for scientific computing. This is coupled with the
IBM Power 8 CPU Architecture. For all the problem instances the result was

Data Intel i7-9750H MLS2OPT Nvidia GTX 1050 MLS2OPTCUDA PRD (%)

ft70 37 21 �43.24

ftv64 26 52 100.00

ftv170 619 78 �87.40

kro124p 303 75 �75.25

rbg323 21,205 2525 �88.09

rbg358 31,330 3775 �87.95

rbg403 45,767 6454 �85.90

Average 14183.85 1854.28 �52.55

*All results are in milliseconds (ms).

Table 4.
Results of the experiments of Intel i7-9750H and NVidia GTX 1050 on the MLS2OPT and
MLS2OPTCUDA algorithms.

Figure 4.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the LS2OPT and LS2OPTCUDA
algorithms.
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significantly better. The average time was 28592.43 ms for the CPU and 1536.42 ms
for the GPU. The average PRD was �87.83% for all experiments.

The plot of the execution time is given in Figure 8, where the execution speedup
is clearly identifiable for the larger instances.

The second part of the third machine experimentation is the MLS2OPT and its
CUDA variant and the result are given in Table 8. For all the problem instances, the
execution time for the GPU was again significantly better. The average time was
23429.14 ms for the CPU and 751 ms for the GPU. The average PRD was �92.78%
for all experiments. The PRD is the highest of all experiments.

The plot of the execution time is given in Figure 9, where the execution speedup
is linearly identifiable for the larger instances.

The final comparison is of the three GPU’s on the two separate algorithms.
Figure 10 shows the values of the three GPU’s on the problem instances for the
LS2OPTCUDA algorithm. For the small sized problem, the timing is not significantly
distinct. The distinction only becomes variable when the instance sizes increase.
Overall, the NVidia Titan Xp is the best performing GPU for this algorithm.

Figure 5.
Figure for the experiments of Intel i7 and NVidia GTX 1050 on the MLS2OPT and MLS2OPTCUDA
algorithms.

Data Intel i7-7800X LS2OPT NVidia Titan Xp LS2OPTCUDA PRD (%)

ft70 21 18 �14.29

ftv64 12 8 �33.33

ftv170 183 77 �57.92

kro124p 306 94 �69.28

rbg323 23,619 1467 �93.79

rbg358 27,614 1848 �93.31

rbg403 33,345 2487 �92.54

Average 12157.14 857 �64.92

*All results are in milliseconds (ms).

Table 5.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.
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Figure 6.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the LS2OPT and LS2OPTCUDA
algorithms.

Data Intel i7-7800X MLS2OPT NVidia Titan Xp MLS2OPTCUDA PRD (%)

ft70 20 16 �20.00

ftv64 11 8 �27.27

ftv170 321 58 �81.93

kro124p 164 56 �65.85

rbg323 11,517 941 �91.83

rbg358 17,109 1059 �93.81

rbg403 24,445 2176 �91.10

Average 7955.28 616.28 �63.39

*All results are in milliseconds (ms).

Table 6.
Results of the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.

Figure 7.
Figure for the experiments of Intel i7-7800X and NVidia titan Xp on the MLS2OPT and MLS2OPTCUDA
algorithms.
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Data Power 8 LS2OPT NVidia P100 LS2OPTCUDA PRD (%)

ft70 57 10 �82.46

ftv64 23 6 �73.91

ftv170 430 75 �82.56

kro124p 754 61 �91.91

rbg323 61,775 3245 �94.75

rbg358 64,419 3587 �94.43

rbg403 72,689 3771 �94.81

Average 28592.43 1536.42 �87.83

*All results are in milliseconds (ms).

Table 7.
Results of the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Figure 8.
Figure for the experiments of power 8 and NVidia P100 on the LS2OPT and LS2OPTCUDA algorithms.

Data Power 8 MLS2OPT NVidia P100 MLS2OPTCUDA PRD (%)

ft70 53 7 �86.79

ftv64 33 4 �87.88

ftv170 811 52 �93.59

kro124p 385 35 �90.91

rbg323 30,120 1124 �96.27

rbg358 44,709 1215 �97.28

rbg403 87,893 2820 �96.79

Average 23429.14 751 �92.78

*All results are in milliseconds (ms).

Table 8.
Results of the experiments of power 8 and NVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.
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Figure 11 shows the results of the MLS2OPTCUDA algorithm on the problem.
As with the previous case, the distinction only becomes obvious for large sized
problem instances. Again the NVidia Titan Xp is the best performing GPU for this
algorithm.

9. Algorithm comparison

This section discusses the tour cost obtained by the two different 2-OPT
approaches developed here compared with published research. The first compari-
son is done with the best known solution in literature, which can be obtained from
the TSPLib [36].

Table 9 gives the comparison results between the optimal and the results
obtained from the LS2OPTCUDA and MLS2OPTCUDA algorithms on the P100

Figure 9.
Figure for the experiments of power 8 andNVidia P100 on the MLS2OPT and MLS2OPTCUDA algorithms.

Figure 10.
Figure for the experiments of the three NVidia GPU’s for the LS2OPTCUDA algorithm.
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GPU. The results are compared using the PRD Eq. (3). The GPU is replaced with the
optimal value and the CPU is replaced by the obtained result.

The PRD values comparison shows that the LS2OPT is at most 40% away from
the optimal value for ftv170 instance and � 9% for the rbg403 instance. For the
MLS2OPT comparison, the PRD is �39% from the optimal value for ftv170 instance
and � 5% for the rbg403 instance. On average, the MLS2OPT is a better performing
algorithm with an average of 15853.86 against 16356.57 for the LS2OPT algorithm. A
plot of the comparison values is given in Figure 12.

The second comparison is now done with four different evolutionary algorithms
as given in Table 10. Theses are the Discrete Particle Swarm Optimization (DPSO)
algorithm [37], Discrete Self-Organizing Algorithm (DSOMA) [38], Enhanced Dif-
ferential Evolution (EDE) algorithm and the Chaos driven Enhanced Differential
Evolution (EDEC) algorithm [17]. The DPSO and DSOMA algorithms were revised
for the TSP problem and the 2-OPT local search was removed from the algorithms
to compare the results without any local search implemented. EDE and EDEC are
published algorithms however only three instances were published. Both these
algorithms had the 2-OPT local search embedded in them.

Figure 11.
Figure for the experiments of the three NVidia GPU’s for the MLS2OPTCUDA algorithm.

Data Optimal LS2OPT PRD (%) MLS2OPT PRD (%)

ft70 38,673 43,163 �10.40 43,310 �10.71

ftv64 1839 2744 �32.98 2554 �28.00

ftv170 2755 4559 �39.57 4510 �38.91

kro124p 36,230 58,014 �37.55 55,011 �34.14

rbg323 1326 1681 �21.12 1535 �13.62

rbg358 1163 1625 �28.43 1459 �20.29

rbg403 2465 2710 �9.04 2598 �5.12

Average 12064.43 16356.57 �25.58 15853.86 �21.54

Table 9.
Comparison of 2OPT vs. optimal values.
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From the results, it was obvious that evolutionary algorithms without local
search heuristics are not as effective as the 2-opt local search heuristic or algorithms
with both directed and local search combined. Therefore, it is important to combine
these two algorithms as in [39]. As reported in [39] that the execution time of local
search can be around 95–99% of the total run time of the algorithm, it is viable to
accelerate the local search heuristics.

10. Conclusions

This chapter introduces a CUDA accelerated 2-opt algorithm for the TSP prob-
lem. As one of the most common and widely used approaches to solve the problem,
the 2-opt approach can be considered as canonical in the field.

GPU programming, especially CUDA has gained significant traction for high
performance computing. Readily available hardware has made programming a
much easier and available task.

Two variants of the 2-opt algorithm have been coded in CUDA to show the
acceleration of computational time. This has been tested against a sample of test

Figure 12.
Figure for the comparison of 2-OPT against global optimal values [36].

Data MLS2OPT DPSO DSOMA EDE EDEC

ft70 43,310 54,444 51,325 40,285 39,841

ftv64 2554 4711 4423 — —

ftv170 4510 19,102 9522 6902 4578

kro124p 55,011 113,153 75,373 41,180 39,574

rbg323 1535 4852 4523 — —

rbg358 1459 5692 4874 — —

rbg403 2598 6373 4427 — —

Average 15853.86 29761.00 22066.71 — —

Table 10.
MLS2OPT vs. evolutionary algorithms.
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instances from literature. From the results obtained, it is clear that even for a
relatively cheap GPU such as the GTX 1050 the performance improvement is
significant, especially for larger sized problem instances. These were compared
against industry leading CPU’s such as Intel i7-X series and IBM Power 8.

One of the interesting aspects was that the Titan Xp performed better than the
P100 for these instances. It is difficult to identify the reasons, as the same code was
deployed on all machines, however the IBM and Intel architecture differences and
different C/C++ compiler usage may have affected the performance. The physical
configuration of the GPU’s inside the hardware and its connection to the mother-
board and memory bandwidth issues could also add to the time overhead. However,
when analyzing the cost-performance of the GPU’s then the $1500 Titan Xp is a
better GPU than the $15,000 P100 in this case.

However, the clear distinction is that there is a significant improvement to be
had when applying the CUDA version of the 2-opt algorithm. The next direction of
this research is to combine it with powerful swarm meta-heuristics with a layered
approach, and try and solve very large TSP instances.
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