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Chapter

Machine Learning Models for
Industrial Applications
Enislay Ramentol,Tomas Olsson and Shaibal Barua

Abstract

More and more industries are aspiring to achieve a successful production using
the known artificial intelligence. Machine learning (ML) stands as a powerful tool
for making very accurate predictions, concept classification, intelligent control,
maintenance predictions, and even fault and anomaly detection in real time. The
use of machine learning models in industry means an increase in efficiency: energy
savings, human resources efficiency, increase in product quality, decrease in envi-
ronmental pollution, and many other advantages. In this chapter, we will present
two industrial applications of machine learning. In all cases we achieve interesting
results that in practice can be translated as an increase in production efficiency. The
solutions described cover areas such as prediction of production quality in an oil and
gas refinery and predictive maintenance for micro gas turbines. The results of the
experiments carried out show the viability of the solutions.

Keywords: machine learning, prediction, regression methods, maintenance,
degradation prediction

1. Introduction

The amount of data accumulated by man’s activity is uncountable. Millions of
tuples are registered daily in the databases, each of them constitutes an observation,
an experience to learn from, and a situation that could reoccur in the future in a
similar way. Learning from experience is something that humans do naturally and
constantly, but what happens if the number of experiences exceeds our ability to
process it? What happens if a fact is repeated millions of times and never happens
again in exactly the same way?

Machine learning (ML) is the area of artificial intelligence, which deals with
learning from the experience, that is, to extract automatically implicit knowledge in
the information (stored in the form of data) [1].

In this paper we will describe two real-world industry problems that have been
solved using ML. The first of these consists in predicting the quality of the final
products of an oil and gas refinery, described in Section 2. The second consists of a
model for estimating the degradation of a fleet of micro gas turbines, described in
Section 3.

In the next section we offer the theoretical elements necessary for the develop-
ment of our solutions. Any interested reader can find in Section 1.1 the description
of the ML methods we have used. We also describe the general working scheme of
the ML applications.
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1.1 Machine learning

There are countless examples of complex real problems solved through ML, such
as [2–6]. In ML, one important subarea is inductive learning; this type of method
assumes that a set of examples or instances is known [7]. Formally, learning is
defined as:

Theorem 1.1. Let a set of examples (xi, yi), xi ∈D be a domain space state D and
yi ∈ S be a solution domain space state S, or, let (xi), i ¼ 1, 2, … , n, be a domain
space state D where the solutions are not defined, that is, S is undefined. The task of
creating a system that can learn the input-output pairs {(x, y)} or learn the charac-
teristics inherent to {x} is defined as learning.

The first case refers to supervised learning, where there is a solution yi (the
class label) for each input vector xi, these examples are known as “classified” or
“labeled” [8]. The second case refers to unsupervised learning, in which a system
learns characteristics, traits, groups, and concepts from unlabeled data.

The supervised learning is a technique to deduce a function from training data.
One component of the pair is the input data and the other, the desired results. The
output of the function can be a numerical value (as in the regression problems) or a
class label (as in the classification ones).

Formally supervised learning is defined as:
Theorem 1.2. Let T a training set, which is formed by pairs (xi, yi), i ¼ 1… n,

where n represents the number of features, xi is defined as input vector, yi is the
output value (the target). If, yi is numeric then it is a regression task, and if, yi is
discrete then it is a classification task.

The need for supervised learning arises from the requirements of having an
automated procedure that is much faster than a human supervisor and that, at the
same time, can avoid biases and prejudices adopted by an expert [9].

There is also another area in ML known as semi-supervised learning (SSL)
[10, 11]. SSL uses both labeled and unlabeled data for training. Reinforcement
learning (RL) is an example of SSL. In RL, the model learns how to act in changing
environments. It is about taking suitable action to maximize reward in a particular
situation. It has been widely used in games, autonomous driving, and many indus-
trial applications. Figure 1 summarizes the previous definitions.

However, to get to the learning process, it is necessary to go through some
preparing phases first. Figure 2 shows these phases.

The first phase is the data collection; the data can come from multiple sources,
be in different formats, etc. The second phase is the data preprocessing; in this

Figure 1.
Machine learning tasks.
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phase numerous tasks are performed in order to prepare the data for the learning
stage. These tasks can remove noise; normalize, discretize (is needed for the learn-
ing phase), and remove/replace missing values; select features; and select instances.
When the data is ready, the learning phase can start. The data is partitioned in:

Training set: is the set of examples used to build the model to train the ML
model.

Testing set: is the set of examples used to test the models. The ML model will
assign an output to each example in the test set. In classification, if the output value
assigned by the ML model matches the label that has the example in the test set,
then it is true classified. In regression, an error is computed using the difference
between the real value and the predicted. Figure 2 shows the phases described
above.

Given the relevance of preprocessing to our study in the following subsection,
we will describe in detail some of the preprocessing techniques.

1.2 Preprocessing steps

In real-world applications, especially the industrial ones, data is rarely clean and
homogeneous. Most often we find data that tends to be incomplete, redundant,
noisy, or inconsistent. The area of ML that deals with the above problems is known
as preprocessing. The preprocessing task consists of the set of techniques that are
carried out before the learning process. Its objective is to obtain a higher-quality
dataset. These techniques can be divided in the following groups:

1.Handling missing values: missing values occur for various reasons: human
errors, errors in sensor measurements, data is merged from various sources,
etc. Some learning methods can deal with missing values internally, while
others do not. The most common techniques to deal with missing values are:

a. Remove the variables or remove the examples with missing values. This
technique can reduce the data sample and cause loss of information.

b. Replace with an “estimated value.” There are several methods to
estimate a missing value, such as the mean value of the variable, the
median, the most frequent value, and so on.

2.Handling noise: a noisy value is a value that is not the correct one. It is also
known as corrupt data. The noisy value may be very close to the true signal.

Figure 2.
Learning phases.
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3.Handling outliers: an outlier is a value that is much different than the other
values. Most of the time, the outliers are noise, but sometimes a data point that
is true signal can be an outlier.

4. Instance selection (IS): not all instances are equally important. IS consists of
the selection of the most appropriate examples for the learning stage. It is also
known as dataset reduction or dataset condensation. During the IS process,
you can select those most representative instances, free of noise, outliers, or
missing values. Some of the used FS algorithms are those based on rough set
theory and fuzzy rough set theory.

5.Feature selection (FS): not all features are equally important. FS consists of the
selection of the most representative variables or features for the learning stage.
Selecting the right subset of features to be used for the learning phase has
proven an improvement in the performance of supervised and unsupervised
learning.

1.3 Learning algorithms background

In this section, we will describe the most significant learning algorithms from
the state of the art, emphasizing those that were used in the present research. First,
we will describe some classifiers and then some regressors.

1.3.1 Classification task

As we defined in previous sections, classification is the learning task where each
input vector corresponds to a discrete output value, known as a class. Next we will
describe the most representative classifiers in the state of the art.

• Decision tree C4.5 [12]: In 2008, it was ranked as #1 in the Top 10 Algorithms
in Data Mining pre-eminent paper published by Springer LNCS. C4.5 builds
decision trees (DT) from a training set, using the concept of information
entropy. At each node of the tree, C4.5 chooses the attribute of the data that
most effectively splits its set of samples into subsets enriched in one class or the
other. The splitting criterion is the normalized information gain (difference in
entropy). The attribute with the highest normalized information gain is chosen
to make the decision. The C4.5 algorithm then recurses on the partitioned
sublists.1 Decision trees are predictive models that use a set of binary rules to
calculate a target value.

• k nearest neighbors’ classifier (kNN) [13]: It is a non-parametric algorithm.
Its purpose is to use a dataset in which the instances are separated into several
classes to predict the classification of a new instance. This method, for a new
example to be classified, finds its k nearest neighbor using Euclidean distance,
and then the example is classified by a majority vote of its neighbors. In a
similar way, this method is used in a regression task. The numeric output is
mean of the nearest neighbors.

• Random forest (RF) [14]: It is an ensemble method formed by decision trees.
During the training phase, the method builds n decision trees from randomly

1 https://en.wikipedia.org/wiki/C4.5_algorithm.
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sampled datasets with replacement and randomly selected subset of features,
where n is an input parameter. In the testing phase, each individual tree spits
out a class prediction and the class with the most votes is then predicted. RF
avoids the overfitting of the traditional decision trees.

• Multilayer perceptron (MLP) [15]: It is one of the most used artificial neural
networks. It consists in a set of layers (minimum 3): one input layer, one or
more hidden layer, and one output layer. The input layer has as many neurons
as features in the training set. The number of hidden layers and the number of
neurons in these layers are parameters defined by the user. The number of
neurons in the output layer corresponds to the number of classes in training
set. MLP used backpropagation for the learning process. MLP can be used for
classification and regression task.

• Support vector machine (SVM) [16]: It is a discriminative classifier defined by
a separating hyperplane. This algorithm performs as follows: given a labeled
training set, it outputs an optimal hyperplane which categorizes new examples.

1.3.2 Regression task

Regression is a widely used task in the world of industrial applications. It learns
from the data and then when facing a new entry, is able to predict an output value.
The most used regression algorithms are:

• Linear regression (LR) [17]: is a linear method that models the relationship
between a group of dependent variables and one or more independent vari-
ables. In LR the relationships are modeled using linear predictor functions.

• Partial least square (PLS) [18]: is also similar to linear regression but that at the
same time projects the data into a lower dimensional space, so that less vari-
ables are used in reality in the prediction model.

• Decision tree regressor: is regression method that works in the same way as the
DT as a classifier; it was introduced in [19]. A decision tree arrives to an
estimation by asking a series of questions to the data. Every node of the tree
represents a binary question to be answered. Each question is further
restricting our possible values until the model has enough confidence to make a
single prediction. In this way, it is possible to build very accurate rules about
the data.

• Ridge [20]: is a method of regularization also known as Tikhonov regulariza-
tion that puts weighted l2 norm penalty on the regression coefficients. This
method has shown very good results in regression problems, specifically in
those of linear regression with the problem of multicollinearity. Multicol-
linearity, correlated independent variables, is very common in problems with a
large number of features.

• LASSO [21]: is another regularization method that puts weighted l1 norm
penalty on the regression coefficients. The least absolute shrinkage and selec-
tion operator, known as LASSO, is a method that performs variable selection
and regularization in order to enhance the prediction accuracy and interpret-
ability of the statistical model it generates.
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• Gaussian process regression (GPR) [22]: is a non-parametric, Bayesian method
for regression that infers all possible values over a probability distribution. In
recent years, GPR has gained popularity among the machine learning
researchers because of its robustness and performance in terms of classification
and prediction accuracy. The advantage of using GPR is that it can be utilized
in the exploration and exploitation scenario [22].

2. Use case 1: predicting output quality in Tüpras

Obtaining high-quality products is a fundamental objective of the Turkish Refin-
ery Tüpras. Its four main products (diesel 95%, diesel sulfur, HSRN 95%, and LSRN
95%) must meet certain quality parameters dictated by the customer. In practice,
achieving the quality required by the client is not a simple task, since during the
distillation process the oil is subjected to many physical and chemical processes.
However, taking into account that (a) in each of the phases of distillation of the crude
oil, many variables are measured (in the laboratory or using sensors), (b) the initial
chemical properties of the crude oil are known, and (c) the company have historical
data on the final quality of the products, in this investigation, we will use machine
learning techniques to predict the final quality values of Tüpras products.

2.1 Problem description

The main task of the Tüpras refinery is to convert crude oil into usable final
products, satisfying the specifications established by consumers. To achieve the
quality specifications, it is necessary to take many decisions, which means in our
context change the manipulated parameters in the distillation process. Figure 3
shows how the crude oil goes through a distillation process.

As can be seen in Figure 3, crude oil goes through several processes before
becoming a final product. When we analyzed the historical data we have, we
observed that in only 7 of the 254 days of which we have information, the three
products were in the desired range. This gives us the measure of how hard it can be
to achieve the desirable quality. Predictions based on historical values, using ML,
can help achieve the desired quality. Knowing in advance the quality value, it will
be possible to take decisions and make changes in the distillation process that allows
to reach the desired value.

Figure 3.
Tüpras refinery process scheme.
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2.1.1 Variables and the frequency in measuring

The complete cycle, starting with crude oil until transforming into a high-quality
diesel, lasts approximately 240 min (4 hours). Having a large amount of data that
comes from different sources, measured with different frequency, our first task is to
create a dataset that logically and consistently unifies the complete distillation cycle.

Data was collected from 260 days, but after removing missing data, we have
254 days left. The data consists of:

• 17 raw input feed characteristics measured once a day where the timepoint was
not specified.

• 272 process-related parameters measured every minute each day, in total 1440
measurements each day.

• 44 output feed characteristic variables where we only predict four of them
(diesel 95%, diesel sulfur, HSRN 95%, and LSRN 95). The output variables
were measured at 8 am every day and are valid for process measurements from
4 am to 8 am.

For the creation of the dataset, we consider:

• The dataset was created in the form x1, x2, … , xn ! y, where n is the number of
independent variables and each xi represent a variable measured during the
distillation process. These variables can be sensor measurements, manipulated
variables, control variables, and the 17 raw input feed characteristics. The
output variable or the dependent variable (y) is the final quality. In this way we
have a decision system ready for learning task.

• We take into account the time delay of the process.

Thus, in total we have 279 (17 feed +272 process) independent variables that are
used to predict four dependent variables. However, since the output variables are
only valid for 4 hours, that is, 240 minutes in total, there are 240 � 272 measure-
ments plus 17 input variables for each output variable sample. Thus, there are many
more independent variables than dependent variables, and therefore, we use the
mean and standard deviation of each process parameter over each 4-hour period as

Figure 4.
Dependent and independent variables in the learning process.
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features. Consequently, we have 17 + 272 � 2 = 561 independent variables for each
4-hour period. A graphic description can be found in Figure 4.

Notice also that only the above 4 hours of each day have labels—that is, have
valid output variables (data is labeled)—while the remaining 20 hours lack valid
labels (data is unlabeled).

Now we have the data ready for the learning process; in the next subsection, we
will describe learning process.

2.2 A first approach: predicting final quality

In this subsection, we will describe the different experiments we used to evalu-
ate the prediction performance for the output variables. First, we will report results
from learning only from the labeled data. Next, we will present an analysis that uses
learning curves to understand the learning problem, whether more data or more
features would help improve the performance. Finally, we will describe results from
applying semi-supervised learning where also the unlabeled data was used.

2.2.1 Experiment 1: prediction with only labeled data

In the first experiment, we use four regression methods described in previous
section. We use LOO2 cross-validation to investigate which method works best for
predicting the four output variables when only trained on the labeled data. In LOO,
we use N � 1 (where N = 254 days) data points for training the machine learning
method that is then tested on the remaining data points. This is repeated N times
resulting in N different predictions. For evaluating the prediction performance, we
use root mean squared error (RMSE) that takes the square root of the mean of the
square of the difference between the predictions and the true values.

In Table 1, the result is shown, and as can be seen, ridge regression has the overall
best result with the smallest error (RMSE) for three of the output variables, while
random forest has the smallest error for two of the output variables. We also notice
that the errors of the two first output variables are not improved much by any of the
methods compared to PMEAN, while the two last are improved quite a lot. Thus, in
the following section, we will try to improve the performance for ridge regression.

2.2.2 Experiment 2: learning curves

In order to investigate whether we can learn some more from collecting more
data or whether more features are needed, we can plot learning curves. Learning

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEANa 2.50 1.00 8.22 5.31

Ridge 2.36 0.79 3.69 3.68

PLS 2.44 0.79 4.53 4.34

RF 2.36 0.73 4.05 3.96

aAs baseline, PMEAN is a simple algorithm used as a base of comparison. PMEAN uses the mean of the training data
as prediction.

Table 1.
RMSE of the LOO cross-validation result for labeled data.

2 Leave-One-Out
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curves show the number training examples on the x-axis and the accuracy on the y-
axis for both training data and test data that was not used for training. As accuracy
we use the negative mean squared error (negative MSE), that is, the negative square
of the RMSE. The learning curves for the output variables using ridge regression are
shown in Figure 5.

The upper blue curve shows accuracy for training data, and the lower orange
curve shows the accuracy for test data. Higher value means better performance,
and as can be seen, the accuracy is better for the training curve than for the test
curve, which is natural since the test curve should indicate the generalization
performance of the algorithm. By extrapolating the curves, we can draw some
conclusions from them.

The number of training examples is quite limited so what can be learned from
the curves is also quite limited. However, we notice that the learning curves for the
two upper output variables—Figure 5a and b—are quite similar, while the same
can be said for the two lower learning curves, Figure 5c and d. We also observe
that for the two upper learning curves, the test curves reach a plateau around �6
and �0.65, respectively, after which no more improvement is seen. Neither do we
see much of an improvement for the training curves. This indicates that more
training examples will not likely improve the performance, but instead we need
more features or a more complex algorithm. For the lower left learning curve (c),
we do not see the plateau that clearly, while the lower right curve (d) shows
increasing performance with more data. So, for the lower curves, more training
examples might improve the performance. In the next experiment, we will inves-
tigate this by using a semi-supervised approach that also uses the unlabeled data
for training.

Figure 5.
The learning curves for the four different output variables.
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2.2.3 Experiment 3: prediction with a semi-supervised approach

A semi-supervised approach uses both labeled and unlabeled data in the training
phase [11]. In essence, we achieve this by creating more training examples and by
using the ML algorithm to label them. We create unlabeled data by moving a sliding
window of length 4 hours over each day with time step of 1 hour from 4:00 am to
0:00 pm. This created 20 periods of 4-hour data with 1 labeled and 19 unlabeled
time periods. This increased the number of training examples from 254 to almost
5000 (≈20� 254). The algorithm we use to train on both labeled and unlabeled data
has the following steps:

1. Train the learning method using only labeled data.

2. Predict the labels (output variables) of the unlabeled data.

3. Train the learning method using both labeled data and the data with predicted
labels.

4. Repeat step 2 and step 3 until the difference between the old and new
predicted labels becomes small.

The algorithm uses the maximum likelihood principle in that it converges
toward the values with maximum likelihood, similar to how the expectation-
maximization (EM) algorithm works [23].

For evaluation, we use also LOO cross-validation. That is, we used only labeled
data for evaluation but used all unlabeled data in the training phase as described
above and tested the trained method on the left-out labeled data. The result is
shown in Table 2. The overall best approach is clearly ridge regression with semi-
supervised learning. This confirms the observation from the learning curve analysis
that the first and second output variable would not improve with more training
examples, while the two last output variables we can indeed see improved
performance with more data.

2.3 A second approach

After concluding a first stage in which we carried out the study shown in the
previous section, we obtained new data from Tüpras. With the new data with a total
269 samples, we designed three new experiments. The objective of the following
three experiments is to find with which dependent variables the best predictions of
the variables are achieved.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.50 1.00 8.22 5.31

Ridge 2.36 0.79 3.69 3.68

Ridge (SEMI) 2.34 0.82 2.54 3.31

Table 2.
RMSE of the LOO cross-validation with semi-supervised learning.
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2.3.1 Experiment 1: not using the controlled variables

In our first experiment, we will predict the quality of the output variables without
using the controlled variables. As in previous section, we will use LOO validation.
Table 3 shows the results. As we can observe, best results are obtained in all cases for
LASSO, while ridge performs much worse for diesel 95% than in the first approach.

2.3.2 Experiment 2: using controlled variables

In our second experiment, we will predict the quality of the output variables
including the controlled variables as independent variables. Table 4 shows the
results. Again, LASSO gets the best results in all cases, while ridge is the second best.

2.3.3 Experiment 3: using only controlled variables and diesel feed

In our third experiment, we will predict the quality of the output variables using
only controlled variables and diesel feed characteristics. Table 5 shows the results.
LASSO gets the best results in all cases.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.47 0.99 8.21 5.31

Ridge 2.58 0.85 2.64 3.49

PLS 2.50 0.82 3.32 3.91

LASSO 2.26 0.78 2.21 2.68

Table 3.
RMSE of the LOO cross-validation for experiment 1.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.45 1.00 8.24 5.34

Ridge 2.41 0.88 2.79 3.56

PLS 2.72 0.88 3.30 3.92

LASSO 2.29 0.79 2.26 2.81

Table 4.
RMSE of the LOO cross-validation for experiment 2.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.46 1.00 8.23 5.32

Ridge 2.18 0.85 5.68 4.42

LASSO 2.07 0.82 5.64 4.43

Table 5.
RMSE of the LOO cross-validation for experiment 3.
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2.4 Partial conclusions

In this section we have described the use of regression methods to predict the
four output variables of the Tüpras refinery.

In our first approach, we have described the evaluation of using ridge regression,
partial least squares, and random forest to the problem of predicting the four output
variables, where the ridge regression had the best performance. We have also
shown that using a semi-supervised approach, we could improve the performance
for two of the variables, which also indicates that more data collected from the
process would most likely further improve the performance. However, for two of
the variables, the learning methods did not improve the performance much com-
pared to the baseline using the mean value of the training data, and neither did
semi-supervised learning. For those two variables, we need to consider other rele-
vant features than the mean or standard deviation.

When using more data (second approach), we constantly get the best results
using LASSO regressor for the prediction of the four output variables. From our
results we conclude that:

• For the prediction of diesel 95 it is better to use only the controlled variables
and the diesel feed characteristics.

In contrast, ridge regression shows varying performance in the experiments,
while being many times the second best. Thus, ridge seems to be less stable than
LASSO for this problem.

3. Use case 2: predictive maintenance model from micro gas turbine

The need to predictmaintenance intervals is a problem that currently has great
relevance in the field ofML applied to the industry. Predicting in advance if a device
needsmaintenance can result in significant savings in time andmoney.With predictive
maintenance, important failures and breakdowns in production time can be avoided
[5, 23]. It is a fact that themaintenance intervals recommended by themanufacturers
almost never correspond in practice with reality. This is largely due to the fact that local
conditions vary a lot from one environment to another andmanufacturers operatewith
genericmeasurements that do not take into account specific conditions.

In this section we will describe a proposal to estimate the performance degrada-
tion of a fleet of micro gas turbines. An important issue to consider is that there is
no explicit degradation measure, which therefore must be estimated.

3.1 Problem description

The existing method for estimating degradation uses a linear model fitted to data
from a reference system which then is used to correct the generated power from an
installed system. Thus, the values are corrected and normalized so that they can be
compared. In Figure 6, we can observe an example of the current approach. The
yellow curve is the corrected power which shows the current approach to measur-
ing degradation.

In addition to that, there are some conditions that make the problem unusual.
These conditions are as follows:

• The systems are small-scale and low-cost installations, so there is only a small
number of sensors available.

12
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• At the time of development of our method, there were not many systems
installed and not many failures recorded, and thus, a traditional supervised ML
approach could not be used.

• Each system is always running at full capacity, where the ideal power is the
maximum power generated when there is no loss due to degradation and no
effect of ambient conditions.

• Finally, there are recordings of maintenance actions, but the effect of an action
on remaining degradation is not known.

Given the above list of circumstances, the design goal of the proposed method is
to measure degradation:

1. Using only data from real systems and removing the need for a reference
system

2. More smoothly than the existing method

3. Relative to the ideal power generation

3.1.1 Data collection and preprocessing

Data was collected from five different micro gas turbines with system ID 24, 27,
28, 29, and 30. The data was sampled every minute, but we used only samples from
every second hour, since it was deemed to be sufficient for long-term degradation
modeling. We use data from the parameters shown in Table 6.

3.2 Approach: power degradation model

The proposed method uses a regression model where physical properties are
taken into account. As we said before, we are not facing a classic problem of
supervised learning, since degradation cannot be measured. Thus, instead we let
both the degradation and ideal power be properties of the model, and the model is
trained to predict the measured electric power.

Now we introduce our model: let y be the measured power, x
!
be a column vector

with the ambient parameters like weather, pressure, etc. Then, let t
!

be a column
vector with time-dependent variables and n and m be the number of systems and
number of maintenance periods, respectively. We use 1≤ i≤ n to denote a specific

Figure 6.
Pe is measured and Pe_cor is corrected power; engine replacement indicates start of currently installed engine
life.
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system and 1≤ j≤m for a specific maintenance period. Now, we define the generic
model of degradation as follows:

y ¼ ki þ g x
!
� �

þ e t
!

; i, j
� �

(1)

where ki is the known ideal power generation for system i, function g is the effect
of ambient variables, and function e is the degradation over time due to wear.

In the above equation, the signal is divided into to two parts: a variation caused
by ambient conditions and a degradation trend given by the time-dependent vari-
ables. It is also assumed that the variation due to ambient variables is the same for
different systems, while the degradation is dependent on both the individual system
and the maintenance period.

Let us assume a linear model for both functions g and e as follows:

g x
!

� �

¼ c
!T

x
!

e t
!

; i, j
� �

¼ ai þ b j þ e
!T

o t
!

þ e
!T

i t
!

(2)

where c
!
is a column vector to model ambient conditions and ai and bi model

remaining degradation at start or after a maintenance action for system i and

maintenance period j, respectively, and e
!

0 and e
!

i are column vectors modeling
the degradation common for all systems and for each individual system,
respectively.

Variables Parameters Unit

Predicted variable (y) • Net electric output power Watts

Ambient (contextual)

variables (x)

• Measured return water temperature Kelvin

• Inlet air temperature Kelvin

• Ambient pressure Bar

• Ambient pressure at stand still Bar

• Measured turbine speed Rpm

• Set point requests based on heat demand —

• The internal set point for desired speed and turbine exit

temperature

—

Ambient pressure variable* • Ambient pressure is missing Dummy

Time-dependent variables • Total number of running hours Hours

Affecting the degradation

trend (t)

• Total number of starts and stops Frequency

Maintenance actions (M) • Total number of running hours when action was taken —

The ideal power per system

(k)**
• Net electric output power during installation Watts

*To handle missing values of the ambient pressure variable, we add a dummy variable that is 1 when the variable
is missing and 0 when it is present.
**The ideal power was measured when a system was installed and corresponds to the power that would be
generated without disturbances from ambient variables and degradation due to wear.

Table 6.
Parameters used in the prediction model.
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In order to get a feasible solution, we put a l1 regularization on the remaining

degradation coefficients in a
!
and b

!

so that the coefficients are kept close to zero.

We also assume that the degradation is monotonic so that e
!
≤0. The solution was

implemented using a machine learning framework called Keras3 together with
TensorFlow4 as backend.

3.3 Experimental results

In this experiment, we use the existing method that uses corrected power
derived from a reference system to validate the new method. Table 7 shows, for
each of the five systems we have tested, the Pearson correlation coefficient (r)
between the estimated negative degradation and the corrected power, the root
mean squared error, and mean absolute percentage error (MAPE in %) for
predicting the measured power.

As can be seen, the correlation coefficients are above 0.9 for all but one system
(28), which indicates that the proposed method is indeed a good replacement for
the corrected power. Also, the RMSE and MAPE are of reasonable sizes.

3.4 Partial conclusions

In this use case, we presented a machine learning approach that incorporates
physical properties into the model in order to estimate the degradation of a fleet of
gas systems. In addition, we show that it was a good replacement of the existing
approach to measuring degradation that was based on data from a reference system.

4. Conclusion

In this chapter, we presented an overview of machine learning and presented
example use cases where we applied machine learning. In the first use case, we
predicted the diesel product quality using common regularized linear regression,
while in the second use case, we used a more customized regularized regression to
implement predictive maintenance.

System r RMSE MAPE

24 0.91 81.80 2.35

27 0.95 72.13 2.20

28 0.82 71.31 1.95

29 0.92 62.85 1.83

30 0.95 52.49 1.50

All 0.92 70.59 2.01

Table 7.
Estimation model results over five systems.

3 https://keras.io.
4 https://tensorflow.org.
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As general conclusions, we can summarize:

• LASSO and ridge regressor were very efficient methods in predicting diesel
quality at UC 1.

• For the prediction of diesel 95, it is better to use only the controlled variables
and the diesel feed characteristics.

• The incorporation of physical properties into the degradation model in use case
2 is very useful for the final maintenance prediction.

A summary of general approach to solving a problem with machine learning is to:

1.Start by defining the learning problem: what variable should be predicted? If
there is no explicit variable, it might be an unsupervised problem, but as in use
case 2, it can also be a variable that is not measured. Thus, the sought variable
needs to be extracted from or part of the estimated model.

2.Next, chose a performance metric that measures the desired outcome. In use
case 1, it was quite simple since the diesel quality was measured directly, while
in use case 2, the desired outcome—the time when the degradation of a system
is too bad—was not measured directly.

3.Then, start out with a simple model, like a linear regression model, which also
can be used as a baseline for comparison of more complicated models used in
the next step.

4.Plot and analyze the learning curves (see Section 2.2.2). If the curves indicate
potential of using a more complex model, then try with a more complex model
like a random forest or a neural network. However, the selection of model is
also dependent on the size of the dataset. If there is only small dataset as in use
case 1, it is not possible to use a too complex model since more model
parameters need more data for training.

5.Finally, test the models on a dataset not used for training above. This is to
ensure that the performance measures the generalization power of the model
and to avoid overfitting to the training data.

As an overall conclusion, we can see that we ended up with quite simple variants
of linear models in both use cases, which is not uncommon given the authors experi-
ence from industrial problems. Another general comment is that in most cases each
industrial problem is quite unique and there is no single solution that fits every
problem. So, it is important to understand the problem domain and chose methods
that fit that particular problem. Hence, machine learning is not a silver bullet that will
solve all problems. If there is a good physical model, a machine learning model will
probably not be a better choice. However, it might be a benefit to create a hybrid
model combining the physical model with a data-driven machine learning model.
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